

Workers' Compensation Board

Medical Treatment Guidelines

Hand, Wrist and Forearm Injuries (including Carpal Tunnel Syndrome)

Effective May 2, 2022

Adapted by NYS Workers' Compensation Board ("WCB") from MDGuidelines® with permission of Reed Group, Ltd. ("ReedGroup"), which is not responsible for WCB's modifications. MDGuidelines® are Copyright 2019 Reed Group, Ltd. All Rights Reserved. No part of this publication may be reproduced, displayed, disseminated, modified, or incorporated in any form without prior written permission from ReedGroup and WCB. Notwithstanding the foregoing, this publication may be viewed and printed solely for internal use as a reference, including to assist in compliance with WCL Sec. 13-0 and 12 NYCRR Part 44[0], provided that (i) users shall not sell or distribute, display, or otherwise provide such copies to others or otherwise commercially exploit the material. Commercial licenses, which provide access to the online text-searchable version of MDGuidelines®, are available from ReedGroup at www.mdguidelines.com.

Contributors

The NYS Workers' Compensation Board would like to thank the members of the New York Workers' Compensation Board Medical Advisory Committee (MAC). The MAC served as the Board's advisory body to adapt the American College of Occupational and Environmental Medicine (ACOEM) Practice Guidelines to a New York version of the Medical Treatment Guidelines (MTG). In this capacity, the MAC provided valuable input and made recommendations to help guide the final version of these Guidelines. With full consensus reached on many topics, and a careful review of any dissenting opinions on others, the Board established the final product.

New York state Workers' Compensation Medical Advisory Committee

Joseph Canovas, Esq. Special Counsel

New York State AFL-CIO

Kenneth B. Chapman, MD

Director Pain Medicine, SIUH Northwell Health Systems Assistant Clinical Professor, NYU Langone Medical Center Adjunct Assistant Professor, Hofstra Medical School

Lev Ginsburg, Esq.

Senior Director of Government Affairs The Business Council of New York State

Robert Goldberg, DO

Attending Physician – Department of Rehabilitation, Beth Israel Hospital and Medical Center of NYC Professor of Physical Medicine and Rehabilitation and Health Policy Clinical Associate Professor of Rehabilitation Medicine, New York Medical College Clinical Professor of Rehabilitation Medicine, Philadelphia College of Osteopathic Medicine Member Council on Medical Education of the American Medical Association

Brian M. Gordon, MD

Former Medical Director, New York State Workers' Compensation Board

Roy G. Kulick, MD

Associate Professor of Orthopaedic Surgery, Albert Einstein College of Medicine Chief, Section of Hand Surgery, Department of Orthopaedic Surgery, Montefiore Medical Center.

Joseph Pachman, MD, PhD, MBA, MPH

Licensed Psychologist and Physician Board Certified in Occupational Medicine Fellow in ACOEM Vice President and National Medical Director, Liberty Mutual

Elaine Sobol-Berger, MD, JD

Former Medical Director and Senior Policy Advisor, New York State Workers' Compensation Board

James A. Tacci, MD, JD, MPH

Medical Director and Executive Medical Policy Director, New York State Workers' Compensation Board (At the time of drafting: Attending Physician, Associate Professor, and Medical Director, University of Rochester Medical Center)

Edward C. Tanner, MD,

Chair, Department of Orthopaedics at Rochester General Hospital Past President, New York State Society of Orthopaedic Surgeons (NYSSOS) Member, American Academy of Orthopaedic Surgeons (AAOS) Member, American Association of Hip and Knee Surgeons (AAHKS)

Contributors to ACOEM Hand, Wrist, and Forearm Disorders Guideline

Editor-in-Chief:

Kurt T. Hegmann, MD, MPH, FACOEM, FACP

Evidence-based Practice Hand, Wrist, and Forearm Panel Chair: J. Mark Melhorn, MD, FAAOS, FACOEM, FAADEP, FACS, FASSH, FAAHS

Evidence-based Practice Hand, Wrist, and Forearm Panel Members:

James Ausfahl, MD M. Felix Freshwater, MD Charles P. Prezzia, MD, MPH, MMM, FACOEM David M. Rempel, MD, MPH, FACOEM, FACP Shawn C. Roll, PhD, OTR/L, RMSKS, FAOTA Arlen J. Rollins, DO, MSc, FACOEM, FACPM Robert A. Werner, MD, MS, FAAPMR Jason L. Zaremski, MD, CAQSM

These panel members represent expertise in occupational medicine, orthopedic surgery, hand surgery, occupational therapy, physical medicine and rehabilitation, sports medicine, internal medicine, family practice, forensic medicine, and electrodiagnostic medicine. As required for quality guidelines (Institute of Medicine's [IOM] Standards for Developing Trustworthy Clinical Practice Guidelines and Appraisal of Guidelines for Research and Evaluation [AGREE]), a detailed application process captured conflicts of interest. The above Panel has none to declare relevant to this guideline.

Methodology Committee Consultant:

Kurt T. Hegmann, MD, MPH, FACOEM, FACP

Managing Editors:

Production: Marianne Dreger, MA Research: Julie A. Ording, MPH

Research Conducted By:

Kurt T. Hegmann, MD, MPH, FACOEM, FACP Matthew A. Hughes, MD, MPH Matthew S. Thiese, PhD, MSPH Ulrike Ott, PhD, MSPH Deborah Gwenevere Passey, PhDc, MS Atim Effiong, MPH Kristine Hegmann, MSPH, CIC Emilee Eden. MPH Jenna L. Praggastis, BS Weijun Yu, BM, BA, MS Michael L. Northrup, BS Komal Kaur, BS Alzina Koric, MPP Brenden Ronna, BS Chapman B. Cox Jenny Dang Helena Tremblay Amrinder Kaur Thind Melissa Gonzalez Austen J. Knudsen Pranial A. Muthe Skyler Walker Anh Tran Jenna K. Lindsey Dillon J. Fix Leslie MC Echeverria, BS Jeremiah L. Dortch, BS

Specialty Society and Society Representative Listing:

ACOEM acknowledges the following organizations and their representatives who served as reviewers of the Hand, Wrist, and Forearm Disorders Guideline. Their contributions are greatly appreciated. By listing the following individuals or organizations, it does not infer that these individuals or organizations support or endorse the hand, wrist, and forearm treatment guidelines developed by ACOEM.

American Academy of Physical Medicine & Rehabilitation

American Association of Occupational Health Nurses David A. Allcott, MSN, APRN, ANP-BC, COHN-S, FAAOHN

Association for Applied Psychophysiology and Biofeedback Gabriel E. Sella, MD, MPH, MSC, PhD, FAADP, FAAFP, FACPM

American College of Emergency Physicians Charles Gerardo, MD, MHS, FACEP

American Society of Anesthesiologists Richard W. Rosenquist, MD

The American Occupational Therapy Association, Inc. Debbie Amini, EdD, OTR/L, CHT, FAOTA

Table of Contents

		ents butors	
Со	nten	its	
A.	Ge	eneral Guideline Principles	7
	A.1	1 Medical Care	7
	A.2	2 Rendering Of Medical Services	7
	A.3	3 Positive Patient Response	7
	A.4	4 Re-Evaluate Treatment	7
	A.5	5 Education	7
	Α.6	6 Acuity	
	A.7	7 Initial Evaluation	
	A.8	8 Diagnostic Time Frames	
	A.9	9 Treatment Time Frames	
	A.1	10 Delayed Recovery	
	A.1	11 Active Interventions	
	A.1	12 Active Therapeutic Exercise Program	
	A.1	13 Diagnostic Imaging And Testing Procedures	
	A.1	14 Surgical Interventions	
	A.1	15 Pre-Authorization	
	A.1	16 Psychological/Psychiatric Evaluations	
	A.1	17 Personality/Psychological/Psychosocial Intervention	
	A.1	18 Functional Capacity Evaluation (FCE)	
	A.1	19 Return To Work	
	A.2	20 Job Site Evaluation	
	A.2	21 Guideline Recommendations And Medical Evidence	
	A.2	22 Experimental/Investigational Treatment	
	A.2	23 Injured Workers As Patients	
	A.2	24 Scope Of Practice	
В.	I	Introduction to Hand, Wrist and Forearm Injuries	
I	3.1	History Taking and Physical Exam	
C.	(Conditions	
(C.1	Carpal Tunnel Syndrome (CTS)	
(C.2	Triangular Fibrocartilage Complex (TFCC) Tears	
(C.3	Crush Injuries and Compartment Syndrome	44
(C.4	Kienböck Disease	50
(C.5	Wrist Sprains	55

C.6	Mallet Finger	59
C.7	Flexor Tendon Entrapment (Tenosynovitis and Trigger Digit)	63
C.8 Syndr	Extensor Compartment Tenosynovitis (Including de Quervain's Stenosing Tenosynovitis and Intersect ome)	
C.9 Syndr	Ulnar Nerve Entrapment at the Wrist (Including Guyon's Canal Syndrome and Hypothenar Hammer ome).	73
C.10	Radial Nerve Entrapment	78
C.11	Non-Specific Hand, Wrist and Forearm Pain	83
C.12	Scaphoid Fracture	88
C.13	Distal Phalanx Fractures and Subungual Hematoma	94
C.14	Middle and Proximal Phalangeal and Metacarpal Fractures	99
C.15	Distal Forearm Fractures	107
C.16	Ganglion Cyst	113
C.17	Hand / Arm Vibration Syndrome (HAVS)	118
C.18	Laceration Management	123
C.19	Human Bites, Animal Bites and Associated Lacerations	126
C.20	Hand / Finger Osteoarthrosis	130
C.21	Dupuytren's Disease	137
Append	ix One - Evidence Tables	142
Append	ix Two – Medical Studies	560
Append	ix Three - References	632

A. GENERAL GUIDELINE PRINCIPLES

The principles summarized in this section are key to the intended application of the New York State Medical Treatment Guidelines (MTG) and are applicable to all Workers' Compensation Medical Treatment Guidelines.

A.1 Medical Care

Medical care and treatment required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities with a focus on a return to work, while striving to restore the patient's health to its pre-injury status in so far as is feasible.

A.2 Rendering Of Medical Services

Any medical provider rendering services to a workers' compensation patient must utilize the Treatment Guidelines as provided for with respect to all work-related injuries and/or illnesses.

A.3 Positive Patient Response

Positive results are defined primarily as functional gains which can be objectively measured. Objective functional gains include, but are not limited to, positional tolerances, range of motion, strength, endurance, activities of daily living (ADL), cognition, psychological behavior, and efficiency/velocity measures which can be quantified. Subjective reports of pain and function may be considered and given relative weight when the pain has anatomic and physiologic correlation in proportion to the injury.

A.4 Re-Evaluate Treatment

If a given treatment or modality is not producing positive results within a well-defined timeframe, the provider should either modify or discontinue the treatment regime. The provider should evaluate the efficacy of the treatment or modality 2 to 3 weeks after the initial visit and 3 to 4 weeks thereafter. These timeframes may be slightly longer in the context of conditions that are inherently mental health issues, and shorter for other non-musculoskeletal medical conditions (e.g. pulmonary, dermatologic etc.). Recognition that treatment failure is at times attributable to an incorrect diagnosis a failure to respond should prompt the clinician to reconsider the diagnosis in the event of an unexpected poor response to an otherwise rational intervention.

A.5 Education

Education of the patient and family, as well as the employer, insurer, policy makers and the community should be a primary emphasis in the treatment of work-related injury or illness. Practitioners should develop and implement effective educational strategies and skills. An education-based paradigm should always start with communication providing reassuring information to the patient. No treatment plan is complete without addressing issues of individual and/or group patient education as a means of facilitating self-management of symptoms and prevention of future injury.

Time Frames

A.6 Acuity

Acute, Subacute and Chronic are generally defined as timeframes for disease stages:

- Acute Less than one month
- Subacute One to three month, and
- Chronic greater than three months.

A.7 Initial Evaluation

Initial evaluation refers to the acute timeframe following an injury and is not used to define when a given physician first evaluates an injured worker (initial encounter) in an office or clinical setting.

A.8 Diagnostic Time Frames

Diagnostic time frames for conducting diagnostic testing commence on the date of injury. Clinical judgment may substantiate the need to accelerate or decelerate the time frames discussed in this document.

A.9 Treatment Time Frames

Treatment time frames for specific interventions commence once treatments have been initiated, not on the date of injury. It is recognized that treatment duration may be impacted by disease process and severity, patient compliance, as well as availability of services. Clinical judgment may substantiate the need to accelerate or decelerate the time frames discussed in this document.

A.10 Delayed Recovery

For those patients who fail to make expected progress 6-12 weeks after an injury and whose subjective symptoms do not correlate with objective signs and tests, reexamination in order to confirm the accuracy of the diagnosis and re-evaluation of the treatment program should be performed. When addressing a clinical issue that is not inherently a mental health issue, assessment for potential barriers to recovery (yellow flags/psychological issues) should be ongoing throughout the care of the patient. At 6-12 weeks, alternate treatment programs, including formal psychological or psychosocial evaluation should be considered. Clinicians must be vigilant for any pre-existing mental health issues or subsequent, consequential mental health issues that may be impacting recovery. For issues that are clearly and inherently mental health issues from the outset (i.e. when it is evident that there is an underlying, work-related, mental health disorder as part of the claim at issue), referral to a mental health provider can and should occur much sooner. Referrals to mental health providers for the evaluation and management of delayed recovery do not indicate or require the establishment of a psychiatric or psychological condition. The evaluation and management of delayed recovery does not require the establishment of a psychiatric or psychological claim.

Treatment Approaches

A.11 Active Interventions

Active interventions emphasizing patient responsibility, such as therapeutic exercise and/or functional treatment, are generally emphasized over passive modalities, especially as treatment progresses. Generally, passive and palliative interventions are viewed as a means to facilitate progress in an active rehabilitation program with concomitant attainment of objective functional gains.

A.12 Active Therapeutic Exercise Program

Active therapeutic exercise program goals should incorporate patient strength, endurance, flexibility, range of motion, sensory integration, coordination, cognition and behavior (when at issue) and education as clinically indicated. This includes functional application in vocational or community settings.

A.13 Diagnostic Imaging And Testing Procedures

Clinical information obtained by history taking and physical examination should be the basis for selection of imaging procedures and interpretation of results. All diagnostic procedures have characteristic specificities and sensitivities for various diagnoses. Usually, selection of one procedure over others depends upon various factors, which may include: relative diagnostic value; risk/benefit profile of the procedure; availability of technology; a patient's tolerance; and/or the treating practitioner's familiarity with the procedure.

When a diagnostic procedure, in conjunction with clinical information, provides sufficient information to establish an accurate diagnosis, a second diagnostic procedure is not required. However, a subsequent diagnostic procedure including a repeat of the original (same) procedure can be performed, when the specialty physician (e.g. physiatrist, sports medicine physician or other appropriate specialist) radiologist or surgeon documents that the initial study was of inadequate quality to make a diagnosis. Therefore, in such circumstances, a repeat or complementary diagnostic procedure is permissible under the MTG.

It is recognized that repeat imaging studies and other tests may be warranted by the clinical course and/or to follow the progress of treatment in some cases. It may be of value to repeat diagnostic procedures (e.g., imaging studies) during the course of care to reassess or stage the pathology when there is progression of symptoms or findings, prior to surgical interventions and/or therapeutic injections when clinically indicated, and post-operatively to follow the healing process. Regarding serial imaging, (including x-rays, but particularly CT scans), it must be recognized that repeat procedures result in an increase in cumulative radiation dose and associated risks.

A given diagnostic imaging procedure may provide the same or distinctive information as obtained by other procedures. Therefore, prudent choice of procedures(s) for a single diagnostic procedure, a complementary procedure in combination with other procedures(s), or a proper sequential order in multiple procedures will ensure maximum diagnostic accuracy, minimize the likelihood of adverse effect on patients, and promote efficiency by avoiding duplication or redundancy.

A.14 Surgical Interventions

Consideration of surgery should be within the context of expected functional outcome. The concept of "cure" with respect to surgical treatment by itself is generally a misnomer. All operative interventions must be based upon positive correlation of clinical findings, clinical course and imaging and other diagnostic tests. A comprehensive assimilation of these factors must lead to a specific diagnosis with positive identification of pathologic condition(s). For surgery to be performed to treat pain, there must be clear correlation between the pain symptoms and objective evidence of its cause. In all cases, shared decision making with the patient is advised. The patient should be given the opportunity to understand the pros and cons of surgery, potential for rehabilitation as an alternative where applicable, evidence-based outcomes, and specific surgical experience.

A.15 Pre-Authorization

All diagnostic imaging, testing procedures, non-surgical and surgical therapeutic procedures, and other therapeutics within the criteria of the Medical Treatment Guidelines and based on a correct application of the Medical Treatment Guidelines are considered authorized, with the exception of the procedures listed in section 324.3(1)(a) of Title 12 NYCRR. These are not included on the list of pre-authorized procedures. Providers who want to perform one of these procedures must request pre-authorization from the carrier before performing the procedure.

Second or subsequent procedures (the repeat performance of a surgical procedure due to failure of, or incomplete success from the same surgical procedure performed earlier, if the Medical Treatment Guidelines do not specifically address multiple procedures) also require pre-authorization.

A.16 Psychological/Psychiatric Evaluations

In select patients, mental health evaluations are essential to make, secure or confirm a diagnosis. Of course, the extent and duration of evaluations and/or interventions by mental health professionals may vary, particularly based on whether: the underlying clinical issue in the claim is inherently a mental health issue; or there is a mental health issue that is secondary or consequential to the medical injury or illness that is at issue in the claim in question; or there is a pre-existing, unrelated mental health issue that has been made worse by, or is impeding the recovery from (or both) the medical injury or illness that is at issue in the claim in question.

Tests of psychological function or psychometric testing, when indicated, can be a valuable component of the psychological evaluation in identifying associated psychological, personality and psychosocial issues. Although these instruments may suggest a diagnosis, neither screening nor psychometric tests are capable of making a diagnosis. The diagnosis should only be made after careful analysis of all available data, including from a thorough history and clinical interview.

A professional fluent in the primary language of the patient is strongly preferred. When such a provider is not available, services of a professional language interpreter must be provided.

Frequency: When assessing for a pre-existing, unrelated mental health issue that has been made worse by, or is impeding the recovery from (or both) a work-related, medical injury or

illness, then a one-time visit for initial psychiatric/psychological encounter should be sufficient, as care would normally be continued by the prior treating provider. If psychometric testing is indicated by findings in the initial encounter, time for such testing should not exceed an additional three hours of professional time. For conditions in which a mental health issue is a central part of the initial claim, or in which there is a mental health issue that is secondary or consequential to the work-related, medical injury or illness, that is part of the claim in question, then more extensive diagnostic and therapeutic interventions may be clinically indicated, and are discussed in detail in the Medical Treatment Guidelines for such mental health conditions.

A.17 Personality/Psychological/Psychosocial Intervention

Following psychosocial evaluation, when intervention is recommended, such intervention should be implemented as soon as possible. This can be used alone or in conjunction with other treatment modalities. For all psychological/psychiatric interventions, there must be an assessment and treatment plan with measurable behavioral goals, time frames and specific interventions planned.

- Time to produce effect: two to eight weeks.
- Optimum duration: six weeks to three months.
- Maximum duration: three to six months.
- Counseling is not intended to delay but rather to enhance functional recovery.

For PTSD Psychological Intervention:

- Optimum duration three to six months.
- Maximum duration: nine to twelve months.

For select patients, longer supervision and treatment may be required, and if further treatment is indicated, documentation of the nature of the psychological factors, as well as projecting a realistic functional prognosis, should be provided by the authorized treating practitioner every four weeks during the first six months of treatment. For treatment expected to last six to twelve months, such documentation should be provided every four to eight weeks. For long-term treatment beyond twelve months, such documentation should be provided every eight to twelve weeks. All parties should strive for ongoing and continuous communications, in order to facilitate seamless, continuous and uninterrupted treatment.

A.18 Functional Capacity Evaluation (FCE)

Functional capacity evaluation is a comprehensive or more restricted evaluation of the various aspects of function as they relate to the patient's ability to return to work. Areas such as endurance, lifting (dynamic and static), postural tolerance, specific range-of-motion, coordination and strength, worker habits, employability, as well as psychosocial, cognitive, and sensory perceptual aspects of competitive employment may be evaluated. Components of this evaluation may include: (a) musculoskeletal screeen; (b) cardiovascular profile/aerobic capacity; (c) coordination; (d) lift/carrying analysis; (e) job-specific activity tolerance; (f) maximum voluntary effort; (g) pain assessment/psychological screening; (h)

non-material and material handling activities; (i) cognitive and behavioral; (j) visual; and (k) sensory perceptual factors.

In most cases, the question of whether a patient can return to work can be answered without an FCE.

An FCE may be considered at time of MMI, following reasonable prior attempts to return to full duty throughout course of treatment, when the treating physician is unable to make a clear determination on work status on case closure. An FCE is not indicated early during a treatment regime for any reason including one to support a therapeutic plan.

When an FCE is being used to determine return to a specific job site, the treating physician is responsible for understanding and considering the job duties. FCEs cannot be used in isolation to determine work restrictions. The authorized treating physician must interpret the FCE in light of the individual patient's presentation and medical and personal perceptions. FCEs should not be used as the sole criteria to diagnose malingering.

A.19 Return To Work

For purposes of these guidelines, return to work is defined as any work or duty that the patient is able to perform safely. It may not be the patient's regular work. Ascertaining a return to work status is part of medical care, and should be included in the treatment and rehabilitation plan. It is normally addressed at every outpatient visit. A description of the patient's status and task limitations is part of any treatment plan and should provide the basis for restriction of work activities when warranted. Early return to work should be a prime goal in treating occupational injuries. The emphasis within these guidelines is to move patients along a continuum of care and return to work, since the prognosis of returning an injured worker to work drops progressively the longer the worker has been out of work.

A.20 Job Site Evaluation

The treating physician may communicate with the employer or employer's designee, either in person, by video conference, or by telephone, to obtain information regarding the individual or specific demands of the patient's pre-injury job. This may include a description of the exertional demands of the job, the need for repetitive activities, load lifting, static or awkward postures, environmental exposures, psychological stressors and other factors that would pose a barrier to re-entry, risk of re-injury or disrupt convalescence. When returning to work at the patient's previous job tasks or setting is not feasible, given the clinically determined restrictions on the patient's activities, inquiry should be made about modified duty work settings that align with, the patient's condition in view of proposed work activities/demands in modified duty jobs. It should be noted, that under certain circumstances, more than one job site evaluation may be indicated.

Ideally, the physician would gain the most information from an on-site inspection of the job settings and activities; but it is recognized that this may not be feasible in most cases. If job videos/CDs/DVDs are available from the employer, these can contribute valuable information, as can video conferences, conducted from the worksite and ideally workstation or work area.

Frequency: one or two contacts

- 1st contact: Patient is in a functional state where the patient can perform some work.
- 2nd contact: Patient has advanced to state where the patient is capable of enhanced functional demands in a work environment.

The physician shall document the conversation.

Other

A.21 Guideline Recommendations And Medical Evidence

The Workers' Compensation Board and its Medical Advisory Committee have not independently evaluated or vetted the scientific medical literature used in support of the guidelines, but have relied on the methodology used by the developers of various guidelines utilized and referenced in these Guidelines.

A.22 Experimental/Investigational Treatment

Medical treatment that is experimental/investigational and not approved for any purpose, application or indication by the FDA is not permitted under these Guidelines.

A.23 Injured Workers As Patients

In these Guidelines, injured workers are referred to as patients recognizing that in certain circumstances there is no doctor-patient relationship.

A.24 Scope Of Practice

These Guidelines do not address scope of practice or change the scope of practice.

Hand, Wrist and Forearm Injuries

Effective: May 02, 2022

B. Introduction to Hand, Wrist and Forearm Injuries

This guideline addresses common work-related hand, wrist and forearm injuries/conditions and includes recommendations for assessing and treating these disorders.

B.1 History Taking and Physical Exam

B.1.a History Taking and Physical Exam

History taking and physical examination establish the foundation/basis for and dictate subsequent stages of diagnostic and therapeutic procedures. When findings of clinical evaluations and those of other diagnostic procedures are not consistent with each other, the objective clinical findings should have preference. The medical records should reasonably document the following:

B.1.b History Of Present Injury (HPI)

- Age, hand dominance, gender.
- Mechanism of injury: includes details of symptom onset (date of onset), progression, triggering event (if present) versus gradual onset. Activity at or before onset of symptoms.
- Prior occupational and non-occupational injuries to the same area including specific prior treatment.
- Location of symptoms.
- Nature of symptoms: pain, numbness, tingling, weakness, swelling, stiffness, limited movement, temperature change, moisture change, color change.
- Exacerbating and alleviating factors for symptoms. Identify the specific physical factors that aggravate or alleviate the problem.
- Time of day symptoms are best and worst e.g., upon awakening, after work.
- If symptoms improve when away from work (weekends, vacations).
- For traumatic injuries: Note if the area was swollen at any time and if so how quickly the swelling occurred (immediately or delayed). Hand/finger deformity.
- Use of comprehensive pain diagrams to better localize pain symptoms.
- Sleep disturbances.
- Other associated signs and symptoms noted by the patient.
- Ability to perform work activities and activities of daily living (ADL's). Assess the overall degree of restriction or combination of restrictions.
- Discussion of any symptoms present in the uninjured extremity.
- Relationship to work: This includes a statement of the probability that the illness or injury is work-related.
- Treatments used for current symptoms: Medications? Splints? Ice/heat? Rest? Surgery? Other? Have any treatment(s) been helpful? What treatments were not helpful?

Past medical history includes, but is not limited to, neoplasm, gout, arthritis, and diabetes overweight/obesity, hypothyroidism, other endocrinopathy, pregnancy, osteoarthrosis, rheumatoid arthritis, other arthritides, renal disease, systemic lupus erythematosus, spondyloarthropathy;

- Review of systems includes, but is not limited to, symptoms of rheumatologic, neurologic, endocrine, neoplastic, and other systemic diseases;
- Smoking history;
- Vocational and recreational pursuits;
- Previous testing, imaging or diagnostic studies or treatment, including the results and outcomes;
- Past surgical history,
- Psychosocial history.

B.1.d Physical Examination

Examination should include the joint above and below the affected area, including the opposite side for comparison. Physical examination should include accepted tests and exam techniques applicable to the joint or area being examined, including:

B.1.d.i Visual inspection - Examine both hands, wrists and forearms and look for and note asymmetries and for deformities suggestive of degeneration, malformation, fracture, or dislocations. Observe for signs of serious injuries, e.g., degloving injuries, lacerations, puncture wounds, open wounds and crush injuries

> The neurologic and vascular status of the hand, wrist, forearm, and upper limb should include peripheral pulses, motor function, reflexes, and sensory status. It should also describe any dystrophic changes or variation in skin color or turgor. Examining the neck and cervical nerve root function is also recommended for most patients.

- B.1.d.ii Palpation
- B.1.d.iii Range of motion/quality of motion (active and passive); The range of motion (ROM) of the hand, wrist and forearm should be determined both actively and passively. Compare mobility of the affected and unaffected side.
- B.1.d.iv Strength (weakness / atrophy)
- B.1.d.v Joint integrity / stability Stress the ligaments to assess the stability and compare to contralateral unaffected side
- B.1.d.vi Examination for deformity, displacement, swelling
- B.1.d.vii Assess neurologic (motor, sensory and reflexes) and vascular status (integrity of distal circulation, peripheral pulses, skin temperature) of the foot and ankle, as clinically indicated. Examining the neck and cervical nerve root function is also recommended for most patients.

Observe for signs of serious injuries, e.g., degloving injuries, lacerations, puncture wounds open wounds and crush injuries.

B.1.e Red Flags

Certain findings, "red flags," raise suspicion of potentially serious and urgent medical conditions. Assessment (history and physical examination) should include evaluation for red flags that require urgent/emergent assessment and treatment as clinically indicated. The Hand Wrist and Forearm MTG incorporate changes in clinical management as triggered by "red flags".

See table 4 and each individual condition for condition specific physical examination guidelines.

B.1.f Assessing Red Flags

Potentially serious conditions for the hand, wrist, and forearm are listed in Table 3. Early consultation by a hand or upper limb specialist, rheumatologist, or other relevant specialist is recommended depending on the provider's training and experience in dealing with the particular disorder.

Table 3. Red Flags for Potentially Serious Hand, Wrist, or Forearm Conditions

Disorder	Medical History	Physical Examination
Fracture	History of significant trauma History of deformities with or without spontaneous reduction or self-reduction Focal, severe non-radiating pain combined with history of trauma Inability to use the joint	Significant swelling Deformity with displaced, rotated or spiral fractures Point tenderness Swelling, hematoma Ecchymosis Compartment syndrome
Dislocation	History of significant trauma History of deformities with or without spontaneous or self- reduction Inability to use the joint	Deformity present Tenderness and instability with history of deformity with reduction Hemarthrosis Compartment syndrome
Infection	History of systemic symptoms: fever, chills/rigor History of immunosuppression (e.g., transplant, chemotherapy, HIV) Diabetes mellitus Portal of infection (e.g., laceration, distant infection)	Tenderness with motion Systemic signs of sepsis Local heat, swelling, erythema Drainage of a sinus tract Painful, red, swollen area(s)
Tumor	 History of rapidly growing, painful, firm or hard mass of hand or wrist not consistent with ganglion History of immunosuppression (e.g., transplant, chemotherapy, HIV) History of cancer 	Mass of hand, wrist, or forearm, not consistent with ganglion or other benign lesion
Joint Inflammation	History of inflammatory arthropathy or crystal arthritis Clinical history consistent with inflammatory or crystal arthropathies	Swelling and deformity Mostly symmetrical joint involvement for more common inflammatory arthropathies (e.g., rheumatoid arthritis) Erythematous, swollen, warm usually solitary joint for acute crystal arthropathy

		Painful swollen joints, usually without systemic symptoms
Rapidly Progressive Neurologic Compromise	Rapidly progressive numbness, paresthesias, or weakness in radial, ulnar, or median nerve distribution Inciting traumatic event or history to produce acute neurological compromise Progressive weakness Stroke, cervical spine disorders or other central nervous system compromise	Sensory deficit in ulnar, median, or radial distribution Loss of finger or grip strength when picking up objects Atrophy Compartment syndrome
Vascular Compromise	History of vascular disease History of diabetes mellitus Compartment syndrome Inflammatory arthropathies with vasculitis	Decreased pulses Decreased capillary filling Cold, cool, or pale hand Compartment syndrome
Severe Carpal Tunnel Syndrome	Continuous median distribution tingling and numbness after acute trauma, especially fracture Severe flexor compartment pain after repeated, unaccustomed, forceful use with continual median distribution tingling and numbness	Reduced median distribution sensation Muscle atrophy (late) and severe weakness of thenar muscles
Compartment Syndrome	Trauma, fracture, penetrating fracture, animal bites or stings, high pressure injection, vascular injury Cast, bandages, splints Thermal burns *Compartment syndrome is an emergency requiring emergent surgical evaluation and treatment	Serial evaluation as indicated for Painful tense muscle compartment, pain out of proportion to the injury Pain with passive stretch of muscles in the effected compartment Muscle weakness, palor of the extremity, decreased sensation Increased (measured) compartment pressure

B.1.g Diagnostic Criteria

The criteria presented in the Diagnostic Criteria for Hand, Wrist, or Forearm Disorders table (Table 4) list the probable diagnosis or injury, potential mechanism(s) of illness or injury, symptoms, signs, and appropriate tests and results to consider in assessment and treatment.

Table 4. Diagnostic Criteria for Hand, Wrist, or Forearm Disorders

Probable Diagnosis or Injury	Mechanism of Injury (includes only physical factors; in some cases, there are other factors)	History	Examination	Tests and Results
Carpal Tunnel Syndrome	High force and repetition, combinations of physical factors Vibration (Associated factors include cold temperatures and glove use. Posture is unclear factor, thought to be a relatively weak factor)	Hand dominance, numbness/tingling in thumb, index, middle, radial half of ring finger, especially at night or with activity Volar hand pain radiating into forearm may be present. Aggravating and alleviating factors (occupational and nonoccupational) Difficulty picking up small objects	Atrophy or decreased strength of abductor pollicis brevis, opponens (advanced cases) Decreased sensation (to light touch, pinprick two - point discrimination) in median nerve distribution (including monofilaments). Moisture, temperature or color change.	Electrodiagnostic studies

Triangular Fibrocartilage Complex (TFCC) Tears	Acute discrete traumatic events and/or as degenerative cartilaginous changes	Should include ulnar wrist joint pain and a catching snapping or popping sensation in the wrist with movement. The physical exam should reproduce these symptoms	Ulnar deviation with axial loading tends to increase pain. A "click" or "clunk" in the ulnar wrist joint may be reproduced with forearm rotation (supination/pronation).	X-rays
Crush Injuries and Compartment Syndrome	Crush injuries have clear mechanisms of injury on history. However, there are many causes of compartment syndrome	Crush: specific acute injury Compartment Syndrome: trauma, excessive traction from fractures, tight casts, bleeding disorders, burns, snakebites, intraarterial injections, infusions, and high-pressure injection injuries. *Compartment syndrome is an emergency requiring emergent surgical evaluation and treatment	Mild abnormalities with mild injuries (e.g., contusions) to severe with fractures, limited range(s) of motion and neurovascular compromise. Those with vascular compromise may have a cool extremity compared with the unaffected limb Progressive pain out of proportion to the injury; signs include tense swollen compartments and pain with passive stretching of muscles within the affected <i>compartment.</i>	X-Ray MRI/CT
Kienböck Disease	There are multiple disorders that are thought to predispose to Kienböck disease.	Complaints of increasing (non- radiating) wrist pain, pain with movement, pain with use, and limited range of motion.	The physical examination may be normal early, but generally the patient has mild to moderate dorsal wrist tenderness while also having asymmetric, limited range of motion. Tenderness and limited range of motion tend to progress.	X-Ray, CT, MRI Screening for systemic disorders that may predispose to Kienböck disease including: diabetes, glucose intolerance, alcoholism, and rheumatological studies
Wrist Sprains	Typically occur with acute traumatic events	Occupational slips, trips, and falls with forceful loading of the wrist joint in full extension	May include wrist capsule tenderness. Deformity or scaphoid tubercle tenderness suggests (scaphoid) fracture	X-rays CT MR Arthrography
Mallet Finger	Involves rupture of the extensor mechanism of a digit at the distal upper extremity joint with or without fracture of the distal phalangeal segment. The mechanism of injury most typically involves forcefully striking the tip of the extended digit on an object	Striking tip of extended digit on an object. Fall	The patient is unable to extend the distal phalangeal segment. Swelling often signifies a fracture fragment, while most are extensor tendon ruptures and have no significant swelling.	X-ray occasionally may show fracture, but usually normal. May not have fracture if extensor mechanism ruptured without fracturing bone

Mallet Finger (Continued)	including balls, or from falls. Forceful flexion of DIP joint while digit is extended. Ball striking tip of digit or digit extended during fall. Some rupture spontaneously, usually over a Heberden's node from osteoarthrosis.			
Ligament Sprain	Acute excess loading, generally from falling onto an extremity. Increased pain with motion.	Focal pain in ligament	Tenderness over ligament(s) Pain or weakness on strength testing of the affected ligament(s)	X-rays (normal)
Flexor Tendon Entrapment (Tenosynovitis and Trigger Digit)	Typically, idiopathic or as a complication of medical conditions (especially diabetes mellitus and rheumatoid arthritis) May also occur as a complication of repeated forceful use of a digit, or unaccustomed use		Tenderness localized over the A1 pulley A palpable tendon nodule may be present Finger stuck in a bent position Clicking, snapping, locking with range of motion	None
Extensor Compartment Tenosynovitis Including de Quervain's Stenosing Tenosynovitis and	High force and repetition with forceful wrist and thumb motion Direct pressure (unusual) Blunt trauma (rare)	Patients present with wrist pain that is augmented by movement and generally non-radiating, although occasionally pain may spread along the course of the affected tendon sheath	Focal tenderness over extensor compartment Thick tendon sheath Pain upon passive abduction Finkelstein's maneuver is the classic provocative maneuver and is nearly always present	None
Ulnar Nerve Entrapment at the Wrist (including Guyon's Canal Syndrome) and Hypothenar Hammer Syndrome	Repeated striking of the heel of the hand/hypothenar region on a tool or object	First presents with symptoms of paresthesias followed by late symptoms of weakness. usually not associated with pain, in contrast with carpal tunnel syndrome that appears to more often involve pain. Patients with traumatic causes of ulnar neuropathy tend to have motor symptoms, whereas those with idiopathic or non-trauma related causes usually manifest sensory symptoms	Dependent on the location of the lesion, motor, sensory, or mixed motor-sensory findings are detectable. Muscle atrophy and point tenderness may be present. Sensory loss is typically most prominent at the palmar tip of the 5th finger	Electrodiagnostic studies
Radial Nerve Entrapment	Has been attributed to wearing a tight wrist or forearm band, anomalous brachioradialis	The medical history should search for sensory symptoms including paresthesias with location of the paresthesias in a typical	Should include evaluation of sensory and motor components (including wrist extensor weakness as well as	Electrodiagnostic studies

	tendon, repeated wrist flexion and ulnar deviation, external compression and trauma, or from mass or bony lesion	radial nerve distribution on the dorsal hand	wrist drop) to localize the entrapment Compare to unaffected limb	
Non-Specific Hand/Wrist/Forearm Pain	Occurs in the absence of discrete trauma. Instead, it frequently occurs in settings of high physical job demands or ill-defined exposures.	Varied and non-specific	Evaluate strength/weakness, pain and changes in sensation	Rheumatological Studies Arthrocentesis for Joint Effusions Electrodiagnostic Studies X-Rays
Scaphoid Fracture	Fall on the outstretched hand Axial loading with a closed fist	Fall Auto accident (when gripping steering wheel) Using heel of wrist as a hammer	Scaphoid tenderness Snuffbox tenderness	X-Rays
Distal Phalanx Fractures (tuft fracture/mallet fracture) and Subungual Hematoma	Tuft fracture usually due to crush injury of the fingertip. Often accompanied with nail bed laceration and subungual hematoma. Mallet fracture is fracture-dislocation injury of the distal phalanx involving loss of continuity of the extensor tendon over the distal interphalangeal joint	Acute injury	Evaluate neurovascular status, swelling and wounds Evaluate passive range of motion and joint stability through dorsal, volar and lateral stressing Evaluate (and describe) for subungual hematoma	X-Rays Trephination
Middle and Proximal Phalangeal and Metacarpal Fractures	Trauma/Direct blow to the bone	Acute injury	Pin prick nerve evaluation, range of motion, pain, swelling, deformity	X-Rays
Distal Forearm Fractures	Falling on outstretched hand		Evaluate for significant pain, swelling, ecchymosis, crepitus, deformity, vascular, neurological, ligament and tendon injuries	X-Ray
Ganglion Cyst	Unknown	Non-contributory	Wrist ganglia are usually well demarcated, firmly tethered, have a consistency similar to a rubber ball, and are translucent. Lack of translucency should raise suspicion of other tumor type	None
Hand-Arm Vibration Syndrome	Repeated, prolonged use of low-frequency, high-amplitude vibrating tool,	Use of vibrating tools local finger blanching; sensory and motor disturbances such as	Blanching of fingers/skin changes, worse with cold provocation. Decreased grip strength, tenderness, sensory and	None

	especially in cold environments	numbness, loss of finger coordination and dexterity	motor disturbances such as numbness, loss of finger coordination and dexterity, inability to perform intricate tasks; and musculoskeletal disturbances such as swelling of the fingers, bone cysts, and vacuoles.	
Laceration Management	Acute Injury/Trauma	Non-specific	The wound should be evaluated for damage to underlying structures including joint involvement, vessels, tendons, bone and nerves. Close inspection should be made for foreign bodies.	X-Ray Antibiotics
Human and Animal Bites and Associated Lacerations	Acute Injury/Trauma	Non-specific Should note exposure to saliva in animal bites.	Based upon presentation	
Hand/Finger Osteoarthrosis	Genetic factors Potentially discreet trauma	Non-specific	Evaluate for joint enlargement and range of motion	X-Ray
Dupuytren's Disease	Age/Genetics	Non-specific	Thickening of the skin at the palm (cord). Contracture of finger(s)	

B.1.h Rehabilitation Principles

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C. Conditions

This Guideline addresses the following hand, wrist, and forearm disorders which may present to the health care provider.

- C.1 Carpal Tunnel Syndrome
- C.2 Triangular Fibrocartilage Complex (TFCC) Tears
- C.3 Crush Injuries and Compartment Syndrome
- C.4 Kienböck Disease
- C.5 Wrist Sprains
- C.6 Mallet Finger
- C.7 Flexor Tendon Entrapment (Tenosynovitis and Trigger Digit)
- C.8 Extensor Compartment Tenosynovitis (Including de Quervain's Stenosing Tenosynovitis and Intersection Syndrome)
- C.9 Ulnar Nerve Entrapment at the Wrist (Including Guyon's Canal Syndrome and Hypothenar Hammer Syndrome)
- C.10 Radial Nerve Entrapment
- C.11 Non-Specific Hand/Wrist/Forearm Pain
- C.12 Scaphoid Fracture
- C.13 Distal Phalanx Fractures and Subungual Hematoma
- C.14 Middle and Proximal Phalangeal and Metacarpal Fractures
- C.15 Distal Forearm Fractures
- C.16 Ganglion Cyst
- C.17 Hand Arm Vibration Syndrome
- C.18 Laceration Management
- C.19 Human and Animal Bites and Associated Lacerations
- C.20 Hand/Finger Osteoarthrosis
- C.21 Dupuytren's Disease

C.1 Carpal Tunnel Syndrome (CTS)

CTS is the most common and widely known of the entrapment neuropathies in which the body's peripheral nerves are compressed or traumatized. CTS occurs when symptoms occur that are attributable to abnormal median nerve compression within the carpal tunnel. The median nerve supplies sensations to the palmar aspect of the thumb, index, middle and radial half of the ring finger, as well as the dorsal segment of each of those four digits from the DIP distally. Tingling and numbness are essential symptoms. Pain is not an essential symptom and it may indicate other conditions, but if present, may also radiate proximally. Often, the condition arises without apparent cause.

CTS may result from numerous conditions, including inflammatory or non- inflammatory arthropathies, recent or remote wrist trauma or fractures, diabetes mellitus, obesity, hypothyroidism, pregnancy, and genetic factors. In the unusual instance that CTS is acutely, traumatically induced, e.g. a patient has both CTS and concomitant trauma (fracture or dislocation), the treatment may require prompt carpal tunnel release. Patients who have open injuries, unstable fractures, wrist fractures that results in acute CTS require immediate referral to a surgeon since improvement may only be obtained through surgery.

C.1.a Medical History

A diagnosis of CTS requires symptoms suggestive of median nerve entrapment at the wrist supported by physical examination findings. Prior to surgery, confirmation of the diagnosis by electrodiagnostic studies (EDX) is required. Typical symptoms of CTS may include numbness, tingling, or pain in the volar aspects of one or both hands, especially noted after work or at night. Nocturnal symptoms are prominent in a majority of patients. Patients frequently awaken at night or early morning and shake their hands to relieve these symptoms. The location of these symptoms may be reported as involving the entire hand or localized to the palmar surfaces of the thumb and first two or three fingers. A hand pain diagram may be useful in localizing sensory symptoms of CTS. Weakness of the hands or dropping objects are more ominous signs that may suggest muscle damage. Presence of such symptoms in the clinical context of a possible CTS diagnosis requires prompt consideration to EDX and surgical treatment.

Medical conditions associated with CTS: The following are examples of medical conditions which have been commonly seen in association with CTS conditions. These require treatment and may impact the recovery of the work-related injury.

- Arthropathies including connective tissue disorders, rheumatoid arthritis, systemic lupus erythematosus, gout, osteoarthritis and spondyloathropathy;
- b. Diabetes mellitus, including family history or gestational diabetes;
- c. Hypothyroidism, especially in older females;
- d. Obesity;
- e. Pregnancy.

C.1.b Physical Exam

No single physical finding is diagnostic of CTS. Final diagnosis is dependent on a correlation of symptoms, physical exam findings, and EDX testing where appropriate, as any of these alone can be false positive or false negative.

The evaluation of any patient with suspected CTS should begin at the neck and upper back and then proceed down to the fingers and include the contralateral region. It should include evaluation of vascular and neurologic status, and describe any dystrophic changes or variation in skin color or turgor. Additional physical exam components may be necessary based on past medical history.

A neurological examination typically includes bilateral assessments of light touch sensation, pinprick, two-point sensation as applicable, motor strength, and reflexes. Similar assessments of the upper extremities, including a vascular assessment, may be performed. Special care to evaluate for polyneuropathic processes such as diabetic neuropathy is recommended.

The clinical diagnosis should be suspected whenever the patient has: 1) a history of paresthesia in one or more of the following digits: thumb, index, and middle finger; and 2) at least one of the physical exam signs listed below.

Provocative tests must recreate symptoms in the median nerve distribution.

- Phalen's sign/reverse Phalen's sign.
- Tinel's sign over the carpal tunnel.
- Compression test.
- Weakness of the abductor pollicis brevis (see discussion EDX studies).
- Thenar atrophy may be present, usually late in the course (see discussion of EDX studies).
- Sensory loss to pinprick, light touch, two-point discrimination or Semmes Weinstein monofilament test in a median nerve distribution.

The performance of clinical exam tests for CTS may include the following .

- Monofilament test A test involving nylon monofilaments that collapse at specific amounts of force when pushed perpendicularly against the palm or fingers. A positive test results when a filament of greater than normal size is required in order for its application to be perceived by the patient.
- Vibration Testing Diminished ability to perceive vibratory sensations using a standard vibrating tuning fork comparing the distal interphalangeal joint of the index finger to ipsilateral fifth finger.
- Weak thumb abduction strength Weakness of resisted abduction (i.e., palm horizontal, thumb lifted as vertically as possible, then patient resists examiner pushing the thumb down towards the index finger).
- Hoffmann-Tinel's Sign ("Tinel's") Up to 6 taps of a reflex hammer or tip of examiner's finger to the soft tissue overlying the carpal tunnel. A positive test occurs when the taps cause paresthesias or shooting pain in the median nerve distribution.

- Phalen Sign As originally described, flexion of the wrist by having the examiner passively flex the wrists of the patient for up to 60 seconds. Clinically, this is more commonly performed by having the patient press the dorsal aspect of both hands together with approximately 90° of flexion for 60 seconds. It is unclear if these two means of performing this sign result in different sensitivities and specificities. A positive test produces paresthesias in the distribution of the affected median nerve.
- Carpal Compression Test The examiner holds the supinated wrist in both hands, flexes the wrist 45° and applies direct, even pressure over the transverse carpal ligament with both thumbs for up to 30 seconds. A positive test is indicated by tingling or paresthesia into the thumb, index finger, and middle and lateral half of ring finger within 30 seconds.

C.1.c Diagnostic Studies

C.1.c.i Electrodiagnostic Studies

In those cases where EDX studies are indicated, they should be conducted in accordance with the CTS practice parameters of the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM).

It is recommended and preferred that EDX in the out-patient setting be performed and interpreted by physicians board-certified in Neurology or Physical Medicine and Rehabilitation.

The EDX study is to include median motor and median sensory nerve conduction velocity results (NCV). If abnormal, then comparison to ipsalateral ulnar motor/sensory and contralateral median motor/sensory should be made. Needle electromyography (EMG) of a sample of muscles innervated by the C5 to T1 spinal roots, including paraspinal muscles and a thenar muscle innervated by the median nerve of the symptomatic limb, is required. EDX findings in CTS reflect slowing of median motor distal latency and sensory conduction (velocity) across the carpal tunnel region due to demyelination or axonopathy (axonal loss). Axonal loss, when present, is demonstrated by EMG abnormality in median-nerve- supplied thenar muscles.

NCS and EMG may be normal particularly in some mild cases of CTS. If EDS are negative, tests may be repeated later in the course of treatment if symptoms persist. It is also important to recognize that electrodiagnostic studies are abnormal in a large proportion of patients who are without symptoms and thus without CTS. Thus, EDS testing in a patient with a low pre-test probability of CTS may result in inappropriate diagnosis of CTS. EDS has not been useful in diagnosing clear-cut CTS cases.

Frequency of NCV/EMG Studies/Maximum Number of Studies

1) Indications for initial testing:

a. Patients with clinically significant CTS who do not improve symptomatically or functionally with conservative measures for CTS over a 3 to 4 week period.

- b. Patients in whom the diagnosis is in question and who are symptomatic for at least 3 weeks.
- c. To rule out other nerve entrapments, or alternative radiculopathy.
- d. Patients for whom surgery is contemplated in accordance with Section F.1.

2) A repeat study may be performed:

- a. At 3 months or longer when the initial studies were normal and CTS is still suspected.
- b. Postoperative 8 to 12 weeks for persistent or recurrent symptoms following carpal tunnel release, unless an earlier evaluation is required by the surgeon.

In patients with CTS where electrodiagnostic confirmation would alter treatment plans, the following EDS studies are recommended:

- To ensure accurate testing, warm the hands if they are <30°C. If possible, it is best to keep the temperatures above 32°C as measured at the hand or fingers.
- 2) Perform a median sensory NCS across the wrist with a conduction distance of 13 to 14cm. If the result is abnormal, compare the result of the median sensory NCS to the result of a sensory NCS of one other adjacent sensory nerve in the symptomatic limb.
- If the initial median sensory NCS across the wrist has a conduction distance greater than 8cm and the result is normal, one of the following additional studies is recommended:
 - a. Comparison of median-sensory- or mixed-nerve conduction across the wrist over a short (7 to 8cm) conduction distance to the ulnar sensory-nerve conduction across the wrist over the identical 7 to 8cm conduction distance, or
 - b. Comparison of median sensory across the wrist with ipsilateral radial or ulnar sensory conduction across the wrist, or
 - c. Comparison of median sensory or mixed nerve conduction through the carpal tunnel to sensory or mixed NCS of proximal or distal segments of the ipsilateral median nerve.
- 4) Motor conduction study of the median nerve recording from the thenar muscle and of one other ipsilateral nerve with distal latency.
- 5) Optional comparisons may include ipsilateral median-ulnar motor nerve distal latencies and median-ulnar motor conduction differences.
- 6) If abnormal in the index limb, then measuring the contralateral limb is helpful for both comparison and for diagnosis of systemic disorders.

C.1.c.i.a Electrodiagnostic Studies

Not Recommended - for initial evaluation of most patients with a clear diagnosis of CTS (confirming history and correlating clinical signs) as it will not alter the treatment plan.

<u>Recommended</u> - to assist in securing a firm diagnosis for those patients without a clear diagnosis of CTS *and to identify the presence or absence of* axonopathies. **<u>Recommended</u>** - to definitively evaluate and objectively secure a diagnosis of CTS prior to surgical release.

Rationale – to assist in the diagnosis, prognosis and management of CTS.

Frequency – A repeat study at three months may be indicated if the first study was not diagnostic and CTS is still suspected. EDS is also indicated at 8-12 weeks post-operatively in cases where results are inadequate and/or symptoms have recurred.

Not Recommended - prior to glucocorticosteroid injection as a good history and clinical suspicion is believed to be sufficient to warrant the intervention which would not likely be altered by EDS.

Not Recommended - use of hand-held automated devices or portable automatic devices are not recommended and not acceptable to confirm a clinical diagnosis of CTS.

<u>Not Recommended</u> - surface EMG not recommended in the diagnostic evaluation of CTS.

C.1.c.i.b Ultrasound (Diagnostic)

Not Recommended - for diagnosing CTS.

<u>Recommended</u> in very select cases where a space occupying lesion is suspected and MRI is contraindicated.

C.1.c.i.c Magnetic Resonance Imaging

<u>Not Recommended</u> - for the evaluation and diagnosis of CTS

<u>Recommended-</u> in very select cases where a space occupying lesion is suspected.

C.1.d Initial Treatment

Initial treatment of CTS should begin with conservative measures including:

- Medications such as over-the-counter nonsteroidal anti-inflammatory drugs (NSAIDs), or other analgesics for symptomatic relief.
- Wrist splint at night.
- Restriction of activities such as forceful gripping, awkward wrist posture, and repetitive wrist motion.

C.1.d.i Wrist Splinting

Splinting is generally effective for milder cases of CTS and can lead to more improvement in symptoms and hand function than watchful waiting alone. Splints may be effective when worn during sleep hours or during portions of the day, depending on work activities. Splints should be loose and soft enough to maintain comfort while supporting the wrist in a relatively neutral position. This can be accomplished by using a soft or rigid splint with a metal or plastic support. Off-the-shelf splints are usually sufficient, although custom thermoplastic splints may provide a better fit for certain patients. Providers should be aware that over-usage is counterproductive and should counsel patients to avoid over-usage.

<u>**Recommended**</u> – nocturnal wrist splinting for treatment of acute, subacute, or chronic CTS.

<u>**Recommended-**</u> intermittent day time splinting for select patients depending on job activities.

Indications – Symptoms consistent with carpal tunnel syndrome.

Frequency/Dose – Wrist splints are recommended to be worn while sleeping for 4 to 6 weeks. Depending on job activities, intermittent daytime splinting can also be helpful. The time to produce effect is 1 to 4 weeks.

Discontinuation – Splints should be revaluated and re-adjusted as indicated if no response within 2 weeks of starting treatment, particularly to assure that the patient is wearing them properly as well as to assess fit. If symptoms persist or if there is no improvement, splints should be discontinued and glucocorticosteroid injection and/or electrodiagnostic testing may be considered.

C.1.d.ii Patient Education

Instruction in self-management techniques, including sleeping postures that avoid excessive wrist flexion; ergonomics; and a home therapy program.

C.1.d.iii Continuation of Activities

Continuation of normal daily activities is an accepted and well-established initial recommendation for CTS with or without neurologic symptoms. Complete work cessation should be avoided if possible.

C.1.d.iv Work Activities

All patients should be encouraged to return to work as soon as possible. This process may be best facilitated with modified duty, particularly when the job demands exceed the patient's capabilities due to the workplace injury. It is recommended that work be restricted to those tasks that do not involve high-force combined with repeated hand gripping or pinching or the use of high acceleration vibrating hand-held tools. Recommendations for ergonomic assessments to evaluate or reduce exposure may be of value for treatment and future intervention/prevention.

Evidence for Work Restrictions

C.1.e Diagnosis

To establish a diagnosis of work-related carpal tunnel syndrome, all of the following are required:

- 1. Exposure: Workplace activities that contribute to or cause CTS, and
- 2. Outcome: CTS that meets the diagnostic CTS criteria as defined in this guideline.
- 3. Relationship to work: This includes a statement of the probability that the illness or injury is work-related. The presence of concurrent disease does not eliminate the possibility of work-relatedness of any specific case.

Work-related CTS is most often associated with activities requiring extensive, forceful, repeated or prolonged use of the hands and wrists, particularly if these potential risk factors are present in combination (e.g., force and repetition or force and posture). Usually, one or more of the following work conditions occurs on a regular basis to support work-relatedness:

- 1. Forceful use, particularly if repeated.
- 2. Repetitive hand use combined with some element of force, especially for prolonged periods.
- 3. Constant firm gripping of objects.
- 4. Moving or using the hand and wrist against resistance or with force.

C.1.f Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.1.f.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic CTS

Recommended - for treatment of acute, subacute, or chronic CTS

Indications – For acute, subacute, or chronic CTS, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects that necessitate discontinuation.

C.1.f.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.1.f.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.1.f.iv Acetaminophen for Treatment of CTS Pain

<u>Recommended</u> - for treatment of CTS pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with CTS pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for CTS

C.1.f.v Systemic Glucocorticosteroids

<u>**Recommended**</u> – in select patients for the treatment of Acute, Subacute or Chronic CTS among patients who decline carpal tunnel injection

Indication – CTS unresponsive to splinting. Most patients should be injected rather than given oral steroids. However, for patients declining injection, oral glucocorticosteroids may be warranted.

Frequency/Dose. It is recommended that one course (10 to 14 days) of oral glucocorticosteroid be prescribed rather than repeated courses. Prescriptions of low rather than high doses are recommended to minimize potential for adverse effects.

Evidence for the Use of Oral Glucocorticosteroids

C.1.f.vi Diuretics

Diuretics have been used to treat CTS, in part due to observations of swelling in some patients.

<u>Not Recommended</u> - for treatment of acute, subacute, or chronic CTS in the absence of fluid retention states.

Evidence for the Use of Diuretics for CTS

C.1.f.vii Opioids

Not Recommended - for acute, subacute, or chronic CTS

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.1.f.viii Vitamins (including pyridoxine)

<u>Not Recommended</u> – for routine treatment of acute, subacute or chronic CTS in patients without vitamin dificiencies.

Evidence for the Use of Pyridoxine for CTS

C.1.f.ix Lidocaine Patches

<u>Recommended</u> in select patients for treatment of acute, subacute, or chronic CTS with pain when other treatable causes of the pain have been eliminated and after more efficacious treatment strategies, such as splinting and glucocorticosteroid injection(s), have been attempted and failed.

Indications for Discontinuation – Resolution, intolerance, adverse effects, lack of benefits, or failure to progress over a trial of at least two weeks.

Evidence for the Use of Topical Lidocaine Patches for CTS

C.1.f.x Gabapentin

Not Recommended – to treat carpal tunnel syndrome.

Evidence for the Use of Gapabentin for CTS

C.1.g Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.1.g.i Therapy - Active

C.1.g.i.a Therapeutic Exercise

Various exercise regimens have been utilized to treat patients with CTS.

<u>**Recommended</u>** - for treatment of chronic CTS in the presence of functional deficits</u>

<u>Recommended</u> - for rehabilitation of post-operative CTS in patients with stiffness and significant deficits

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Evidence for the Use of Exercise for CTS

C.1.g.i.b Yoga

<u>Not Recommended</u> - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Yoga for CTS

C.1.g.i.c Biofeedback

<u>Not Recommended</u> – for the treatment of acute, subacute or chronic CTS.

C.1.g.ii Therapy - Passive

Cryotherapy / Heat

C.1.g.ii.a Ice / Self-Applied Ice

<u>Recommended</u> - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Ice

C.1.g.ii.b Heat / Self-Applied Heat

<u>Recommended</u> - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Heat

C.1.g.ii.c Diathermy

<u>Not Recommended</u> - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Diathermy

C.1.g.iii Manipulation and Mobilization

Not Recommended - for treatment of acute, subacute, or chronic CTS.

C.1.g.iv Manipulation of the Spine for Acute, Subacute, or Chronic CTS

Not Recommended - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Manipulation and Mobilization for CTS

C.1.g.v Acupuncture

Not Recommended - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Acupuncture

C.1.g.vi Devices

C.1.g.vi.a Magnets

<u>Not Recommended</u> - for management of pain from acute, subacute, or chronic CTS.

C.1.g.vi.b Pulsed Magnetic Field Therapy

<u>Not Recommended</u> - for management of pain from acute, subacute, or chronic CTS.

Evidence for the Use of Magnets for CTS

C.1.g.vii Low Level Laser therapy (LLLT)

Not Recommended - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Low-Level Laser Therapy for CTS

C.1.g.viii Massage and Soft Tissue Massage

Not Recommended - for most patients for treatment of acute, subacute, or chronic CTS.

<u>Recommended</u> - for treatment of select patients with acute, subacute, or chronic CTS who have significant myofascial pain.

Indications – Symptoms of carpal tunnel syndrome combined with forearm myofascial pain sufficient for the patient to require treatment. Generally, the patient should have failed other treatments including splints and glucocorticosteroid injection.

Frequency/Dose – Three to four visits. Objective evidence of improvement should be documented. Additional 3 or 4 treatments should be based on incremental improvement in objective measures.

Discontinuation – Resolution, failure to objectively improve, or intolerance.

Evidence for the Use of Massage

C.1.g.ix Therapeutic Touch

Not Recommended - for treatment of acute, subacute, or chronic CTS

Evidence for the Use of Therapeutic Touch for CTS

C.1.g.x Ultrasound

Not Recommended - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Ultrasound for CTS

C.1.g.xi Phonophoresis

Recommended - for treatment of acute, subacute, or chronic CTS.

Indications – CTS that is sufficiently symptomatic to warrant treatment. Patients should generally be given splints and/or a glucocorticosteroid injection prior to considering phonophoresis as a splint or injection are believed to be more effective.

Frequency – 5-15 sessions per week for 4-8 weeks.

Discontinuation – Resolution, failure to objectively improve or intolerance.

Evidence for the Use of Phonophoresis

C.1.g.xii Iontophoresis

Not Recommended – for use for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Iontophoresis for CTS

C.1.g.xiii Injection Therapy

C.1.g.xiii.a Carpal Tunnel Steroid Injections

<u>Recommended</u> - for the treatment of subacute or chronic CTS with mild EMG findings

<u>Recommended</u>- in select patients with moderate to severe EMG findings for temporary relief while awaiting surgery.

Indications – CTS unresponsive to nocturnal wrist splinting, generally with symptoms lasting at least three weeks.

Frequency/Duration – An initial injection with documented improvement, even short-term is believed to have considerable prognostic significance. If the initial steroid

injection provides three to four weeks of partial relief or complete symptom relief but with recurrence of symptoms, a second injection may be indicated. If the second injection provides three to four weeks of partial or complete relief surgical release may be indicated.

Failure to respond, particularly if the median nerve was successfully anesthetized by the injection, should result in a careful re-assessment of the accuracy of the diagnosis of CTS.

Patients who respond to carpal tunnel injections, and develop recurrent symptoms are believed to be candidates for surgical release. If following the first injection, symptomatic relief is followed by recurrent symptoms, the decision to perform a second injection must be weighed against alternative treatments such as surgery.

Surgical release may give more definitive relief of symptoms.

C.1.g.xiii.b Carpal Tunnel Steroid Injections for Treatment of Acute, Traumatic CTS without Fracture

<u>Recommended</u> for treatment of acute CTS (without fractures) unresponsive to conservative management with symptoms lasting at least 3 weeks.

Acute CTS with fractures should be referred for potential emergent surgical release.

C.1.g.xiii.c Carpal Tunnel Steroid Injections for Treatment of Non Traumatic CTS Due to Acute, Repetitive Overload Injury

Recommended- for treatment of non traumatic CTS due to acute, repetitive overload injury. In patients who decline injection oral steroids may be an alternative (see **C.1.f.ii Systemic Oral Steroids**)

Evidence for the Use of Glucocorticosteroids (Oral and Injection) for CTS

C.1.g.xiii.d Intramuscular Injections

<u>Not Recommended</u> - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Intramuscular Injections for CTS

C.1.g.xiii.e Insulin

Not Recommended - for treatment of acute, subacute, or chronic CTS.

Evidence for the Use of Insulin Injections for CTS

C.1.g.xiii.f Botulinum Injections

<u>Not Recommended</u> – for treatment of acute, subacute or chronic CTS.

Evidence for the Use of Botulinum Injections for CTS

C.1.h Surgery

Surgical consultation may be indicated for CTS patients who:

- Have red flags of a serious nature;
- Fail to respond to non-surgical management including worksite modifications; or
- Have clear clinical and special study evidence of a lesion that has been shown to benefit, in both the short and long term, from surgical intervention.

Surgical considerations depend on the confirmed diagnosis of the presenting hand or wrist complaint. If surgery is a consideration, counseling regarding likely outcomes, risks, and benefits, and especially expectations is important. The single most important factor in predicting symptomatic improvement following carpal tunnel release is the severity of preoperative neuropathy.

If there is no clear indication for surgery, the patient should be referred for conservative management.

Surgery should be considered as initial therapy in the presence of

1. "Acute Carpal Tunnel Syndome"

In patients who have open injuries, unstable fractures, wrist fractures that result in acute CTS require immediate referral to a surgeon since improvement may only be obtained through surgery, or

- 2. Thenar atrophydue to median nerve compression, or
- 3. In the presence of electrodiagnostic evidence of moderate to severe compressive neuropathy of the median nerve. EMG findings showing evidence of acute or chronic motor denervation suggest the possibility that irreversible damage may be occurring.

For cases with positive EDX findings and with a motor latency less than 5.0 ms, non-surgical treatment may be beneficial in some cases; therefore, conservative management, including job alterations, should be tried over four to six weeks before surgery is considered.

C.1.h.i Surgical Release

<u>Recommended</u> - for patients with sub-acute or chronic CTS and moderate to severe EMG findings.

Recommended - for patients with subacute or chronic CTS with mild EMG findings who / have recurrent symptoms after partial or complete relief of symptoms (3-4 weeks) with glucocortiocosteroid injections. *Rationale/Indications* – Failure of non-operative treatment to include two glucocortosteroid injections. If the initial steroid injection provides 3 to 4 weeks of partial relief or complete symptom relief but with recurrence of symptoms, a second injection may be indicated. If the second injection provides 3 to 4 weeks of partial or complete relief surgical release may be indicated.

Patients who initially respond to corticosteriod injections, and develop recurrent symptoms are believed to be candidates for surgical release. If following the first injection, symptomatic relief is followed by recurrent symptoms, the decision to perform a second injection must be weighed against alternative treatments such as surgery.

Surgical release may give more definitive relief of symptoms.

<u>Recommended</u> - patients who have emergent or urgent indications (e.g., acute compression due to fracture, arthritides, or compartment syndrome with unrelenting symptoms of nerve impairment)

Rationale/Indications - Patients should have an electrodiagnostic study (EDS) consistent with CTS (see Electrodiagnostic Studies). Mild CTS with normal EDS exists, but a clinical impression of moderate or severe CTS with normal EDS is very rare and generally indicates a mistaken diagnosis. Positive EDS in asymptomatic individuals is very common, is not CTS, and suggests the need to carefully select patients for EDS and properly interpret the results.

Re-operation is potentially indicated if there is: (i) recurrence of symptoms after surgical release, (ii) electrodiagnostic findings are supportive at 8-12 weeks after surgical release, (iii) re-exposure to work factors are not explanatory and remediable; those not improving after an initial surgery should undergo a thorough diagnostic workup.

C.1.h.ii Open or Edoscopic Release

<u>**Recommended**</u> – for treatment of subacute or chronic CTS. The procedure utilized is based upon the surgeon's evaluation and discretion.

C.1.h.iii Antibiotics for Patients Undergoing Carpal Tunnel Release

Not Recommended – for routine use.

C.1.h.iv Antibiotics For Post Operative Infection

Recommended - as clinically indicated.

Evidence for the Use of Carpal Tunnel Surgical Release

C.1.i Other Adjunctive Procedures or Techniques for Subacute or Chronic CTS

C.1.i.a Epineurotomy

Not Recommended

C.1.i.b Internal Neurolysis

Not Recommended

C.1.i.c Flexor retinacular lengthening

Not Recommended

C.1.i.d Ulnar Bursal Preservation

Not Recommended

C.1.i.e Altering the Location of the Incision to "Superficial Nerve-Sparing Incision"

Not Recommended

C.1.i.f Ulnar Incisional Approach

Not Recommended

C.1.i.g Flexor Tenosynovectomy

Not Recommended

C.1.i.h Biopsy of Abnormal Tenosynovium

Not Recommended - for treatment of subacute or chronic CTS.

C.2 Triangular Fibrocartilage Complex (TFCC) Tears

Triangular fibrocartilage complex (TFCC) tears are frequent wrist injuries involving the cartilaginous meniscus between the radius and ulna with symptoms often described as occurring on the ulnar side of the wrist joint.

C.2.a Physical Exam

The exam may reveal dorso-ulnar wrist joint tenderness that is not focally tender over an extensor compartment. Swelling is generally not present, although it may be present with an acute, large tear. The examiner should generally attempt to reproduce catching or snapping in the ulnar wrist joint.

C.2.b Medical History

Patients commonly complain of non-radiating ulnar sided pain and clicking. It is important to correlate the symptoms with the physical examination and mechanism of injury since MRI studies suggest TFCC tears are both prevalent while also apparently frequently asymptomatic. Ulnar deviation with axial loading tends to increase pain. A

"click" or "clunk" in the ulnar wrist joint may be reproduced with forearm rotation (supination/pronation). occupational cases will tend toward symptomatic onset after a discrete traumatic event such as a slip and fall.

The history should include ulnar wrist joint pain and a catching, snapping or popping sensation in the wrist with movement. The physical examination should reproduce these symptoms.

C.2.c Initial Assessment

A primary focus of the patient history is ascertaining whether the TFCC is significantly torn, and if so, whether it is sufficiently symptomatic to require intervention(s). Following the patient's symptoms for healing without immediate surgical intervention is generally the most common approach. Some do not heal, continue to be symptomatic and do well with surgical repair or removal.

C.2.d Diagnostic Studies

C.2.d.i X-rays

<u>Recommended</u> - to diagnose triangular fibrocartilage complex (TFCC) tears.

Indications – Suspected TFCC tear and/or to rule out other sources of wrist pain.

Frequency/Duration – Obtaining x-rays once is generally sufficient.

C.2.d.ii MRI

<u>Recommended</u> - to diagnose Triangular Fibrocartilage Complex (TFCC) Tears

C.2.d.iii Arthroscopy

<u>Recommened</u> - In select patinets with continued wrist pain unresponsive to conservative management and the MRI does not reveal etiology.

Diagnostic arthroscopy can be perfomed as a diagnostic procedure or as combined with surgical repair.

C.2.e Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.2.e.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic TFCC Tears

<u>Recommended</u> - for treatment of acute, subacute, or chronic TFCC tears.

Indications – For acute, subacute, or chronic TFCC tears., NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.2.e.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

Recommended – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.2.e.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.2.e.iv Acetaminophen for Treatment of TFCC Tears Pain

<u>Recommended</u> - for treatment of TFCC tears pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with TFCC tears pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.2.e.v Opioids

Not Recommended – for acute, subacute, or chronic TFCC tears.

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.2.f Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.2.f.i Therapy: Active

C.2.f.i.a Therapeutic Exercise <u>Recommended</u>- for select patients

<u>Recommended</u> – Recovery/Post-Operative Phase

Rationale for Recommendation - Exercise is generally not indicated acutely; however, exercise may be needed in the recovery or post-operative phases. Functional goals should include increased grip strength, key pinch strength, range of motion, advancing work abilities.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.2.f.ii Therapy: Passive

C.2.f.ii.a RICE (Rest, Ice, Compression, Elevation)

<u>Recommended</u> – relative rest for treatment of acute, subacute, or chronic triangular fibrocartilage complex (TFCC) tears.

Rationale for Recommendation -relative rest may preclude the need for surgical intervention. Ice and heat may help particularly with more acute symptoms. These treatments may help with symptomatic relief.

C.2.f.ii.b Cryotherapy / Heat

<u>Recommended</u> - Self-application of ice for treatment of acute, subacute, or chronic triangular fibrocartilage complex (TFCC) tears.

C.2.f.ii.c Self-Application of Heat

<u>Recommended</u> - for treatment of acute, subacute, or chronic triangular fibrocartilage complex (TFCC) tears.

C.2.f.iii Immobilization

<u>Recommended</u> - Splinting for treatment of moderate or severe, acute or subacute triangular fibrocartilage complex (TFCC) tears, particularly to reduce forearm rotation.

Rationale for Recommendations - Wrist splints may help avoiding aggravating activities or actions that provoke symptoms and therefore, may be more appropriate for acute or moderate to severe injuries.

Evidence for the Use of Initial Care

C.2.g Surgery

C.2.g.i Surgical Repair (Arthroscopic or Open Surgical Repair)

Recommended - for select patients with instability, concomitant fractures, or symptoms that persist without trending towards resolution despite non-operative treatment and the passage of approximately 3 to 6 weeks.

Rationale for Recommendation - Arthroscopic repair is most typically used although open repairs may be performed.

C.2.g.ii Ulna Shortening and Wafer Procedures for Chronic Triangular Fibrocartilage Complex (TFCC) Tears

<u>Recommended</u> - for select cases of chronic tears for which non-surgical treatment is unsuccessful and there is a demonstrable ulna positive variance.

Rationale for Recommendation in select cases with ulna positive variance and without resolution of considerable or incapacitating symptoms or lacking trending towards resolution, this procedure is recommended.

Evidence for the Use of Surgery

C.3 Crush Injuries and Compartment Syndrome

Crush injuries which include compartment syndrome are usually surgical emergencies. Mild cases of crush injuries, such as contusions may be treated similar to non-specific hand, wrist, forearm pain with particular emphasis on RICE (rest, ice, compression, elevation).

C.3.a Physical Exam

The physical examination ranges from mild abnormalities with mild injuries (e.g., contusions) to severe with fractures, limited range(s) of motion and neurovascular compromise

C.3.b Medical History

Compartment syndrome is an emergency requiring urgent evaluation. Those with vascular compromise may have a cool extremity compared with the unaffected limb. Crush injuries have clear mechanisms of injury on history. However, there are many causes of compartment syndrome including trauma, excessive traction from fractures, tight casts, bleeding disorders, burns, snakebites, intraarterial injections, infusions, and high-pressure injection injuries.

C.3.c Initial Assessment

Patients with more severe injuries present with severe pain and may have vascular compromise. Compartment syndrome is an emergency. The initial assessment should focus on the degree of injury severity and if the injury requires emergent surgical evaluation and treatment. Milder injuries may be managed non-operatively; however, the threshold for surgical consultation should be low. Those with milder injuries should be monitored for neurovascular compromise.

C.3.d Diagnositc Studies

C.3.d.i X-Rays

<u>Recommended</u> - for evaluating patients with crush injuries or compartment syndrome.

*Rationale for Recommendation -*X-rays are essential for evaluating the extent of injuries and identification of fractures.

Evidence for the Use of X-rays

C.3.d.ii MRI/CT

<u>Recommended</u> - for select patients with crush injuries or compartment syndrome.

Rationale for Recommendation - Initial evaluation of crush injuries or compartment syndrome generally does not require MRI or CT. However, some patients require MRI or CT for evaluation of symptoms and extent of injury and are recommended in select cases.

C.3.e Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.3.e.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Crush injuries and Compartment Syndrome

<u>Recommended</u> - for treatment of acute, subacute, or chronic crush injuries and compartment syndrome

Indications – For acute, subacute, or chronic chronic crush injuries and compartment syndrome, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.3.e.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

Recommended – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.3.e.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.3.e.iv Acetaminophen for Treatment of Crush injuries and Compartment Syndrome Pain

<u>Recommended</u> - for treatment of crush injuries and compartment syndrome pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with crush injuries and compartment syndrome pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.3.e.v Opioids - for Pain from Acute, Subacute, Chronic or Post-Operative Crush injuries

<u>Recommended</u> - Limited use of opioids (not to exceed seven days) for the treatment of select patients presenting with severe pain related to acute, subacute or chronic crush injuries. Limited use of opioids for a few days (not to exceed seven days) is also recommended for select patients who have undergone recent surgical intervention.

Frequency/Dose/Duration: Frequency and dose per manufacturer's recommendations; may be taken scheduled or as needed; generally taken for short courses of a few days, with subsequent weaning to nocturnal use if needed, then discontinuation. Total length of treatment usually ranges from a few days to one week. Generally should be utilized to supplement pain relief in addition to an NSAID or acetaminophen to reduce total need for opioid and the consequent adverse effects.

Indications for Discontinuation: Sufficient pain management with other methods such as NSAIDs, resolution of pain, intolerance, adverse effects, lack of benefits, or failure to progress over a couple weeks.

C.3.f Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.3.f.i Therapy: Active

C.3.f.i.a Therapeutic Exercise

<u>Recommended</u> - for the treatment of acute, subacute, chronic, or post-operative crush injuries

Rationale for Recommendation - Exercise is generally not indicated acutely; however, exercise may be needed in the recovery or post-operative phases. Functional goals should include increased grip strength, key pinch strength, range of motion, advancing work abilities.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.3.f.ii Therapy: Passive

C.3.f.ii.a Elevation and Relative Rest

<u>Recommended</u> - for treatment of acute crush injuries without compartment syndrome.

C.3.f.ii.b Self-Application of Ice

<u>Recommended</u> - for treatment of acute crush injuries without compartment syndrome.

C.3.f.iii Immobilization

C.3.f.iii.a Splinting

<u>Recommended</u> - after initial treatment for moderate or severe acute and subacute crush injuries when compartment syndrome has been ruled out.

Rationale for Recommendations . The type of splint required depends on the type of injury and subsequent debility. Splints are recommended particularly for patients with moderate to severe injuries when compartment syndrome has been ruled out.

Evidence for the Use of Initial Care

C.3.g Surgery

C.3.g.i Surgery

<u>Recommended</u> - for treatment of acute or subacute crush injuries or compartment syndrome depending on the nature of the injury. This frequently includes emergency fasciotomy for release of tension from compartment syndromes as well as other surgical procedures to address fractures and other remediable defects.

Rationale for Recommendation - Fasciotomies are particularly essential for treatment of significant neurovascular compromise from compartment syndrome and is a surgical emergency. Other procedures may be required based on remediable defects such as fractures, ligament tears, or other injuries.

Evidence for the Use of Surgery

C.4 Kienböck Disease

Kienböck disease involves changes in the lunate that eventually lead to collapse of the lunate bone, which results in progressive pain and disability. Patients with Kienböck disease often develop chronic pain

C.4.a Diagnostic Studies

C.4.a.i X-Rays

Recommended - to diagnose Kienböck disease.

Rationale for Recommendation, x-rays are used to confirm the diagnosis and should generally be taken of both hands.

Evidence for the Use of X-rays

C.4.a.ii CT

<u>Recommended</u> - to diagnose Kienböck disease when xrays are negative or unclear and MRI is contraindicated.

Rationale for Recommendation - CT is used to assist with diagnosis and management in select patients, where xrays are negative or unclear and MRI is contraindicated.

Evidence for the Use of CT

C.4.a.iii MRI

<u>Recommended</u> - to diagnose Kienböck disease when xrays are negative or unclear.

Rationale for Recommendation- MRIs are used to assist with diagnosis and management, thus they are recommended.

Evidence for the Use of MRI

C.4.a.iv Screening for Systemic Disorders

Recommended - for patients with Kienböck disease.

Rationale for Recommendation - There are multiple disorders that are thought to predispose to Kienböck disease. The threshold for evaluations of systemic metabolic issues (e.g., diabetes, glucose intolerance), alcoholism, and rheumatological studies should be low, particularly as potentially modifiable risks may theoretically slow the rate of progression.

Evidence for the Use of Screening

C.4.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.4.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Kienböck disease

<u>Recommended</u> - for treatment of acute, subacute, or chronic Kienböck disease

Indications – For acute, subacute, or chronic Kienböck disease, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.4.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

Recommended – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.4.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.4.b.iv Acetaminophen for Treatment of Kienböck disease Pain

<u>Recommended</u> - for treatment of Kienböck disease pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with Kienböck disease pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.4.b.v Topical Medications

<u>Recommended</u> – In select patients for treatment of pain associated with acute, subacute, or chronic Kienböck disease. including topical creams, ointments, and lidocaine patches

Rationale for Recommendation - **TOPICAL DRUG DELIVERY** (e.g., capsaicin, topical lidocaine, topical NSAIDs and topical salicylates and nonsalicylates) may be an acceptable form of treatment in selected patients. A topical agent should be prescribed with strict instructions for application and maximum number of applications per day to obtain the desired benefit and avoid potential toxicity. For most patients, the effects of long-term use are unknown and thus may be better used episodically. These agents may be used in those patients who prefer topical treatments over oral medications. Localized skin reactions may occur, depending on the medication agent used. Prescribers should consider that topical medication can result in toxic blood levels.

Capsaicin offers a safe and effective alternative to systemic NSAIDs, although its use is limited by local stinging or burning sensation that typically disappears with regular use. Patients should be advised to apply the cream on the affected area with a plastic glove or cotton applicator to avoid inadvertent contact with eyes and mucous membranes. Long-term use of capsaicin is not recommended.

Topical Lidocaine is only indicated when there is documentation of a diagnosis of neuropathic pain. In this instance, a trial for a period of not

greater than four weeks can be considered, with the need for documentation of functional gains as criteria for additional use.

Topical NSAIDs (e.g. diclofenac gel) may achieve tissue levels that are potentially therapeutic. Overall the low level of systemic absorption can be advantageous, allowing the topical use of these medications when systemic administration is relatively contraindicated (such as patients with hypertension, cardiac failure, peptic ulcer disease or renal insufficiency).

Topical Salicylates or Nonsalicylates (e.g. methyl salicylate) overall do not appear to be more effective than topical NSAIDs. May be used for a short-term course especially in patients with chronic conditions in whom systemic medication is relatively contraindicated or as an adjuvant to systemic medication

Evidence for the Use of Topical Medications

C.4.b.vi Opioids

Not Recommended – for acute, subacute, or chronic Kienböck disease.

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.4.c Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.4.c.i Therapy:Active

C.4.c.i.a Therapeutic Exercise – Acute Phase

<u>Not Recommended</u> – during acute presentations of Kienböck disease

C.4.c.i.b Therapeutic Exercise – Post-Operative/Recovery

Recommended – for patients post-operatively. *Rationale for Recommendation* - Exercise is generally not indicated acutely; however, exercise may be needed in the recovery or post-operative phases. Functional goals should include increased grip strength, key pinch strength, range of motion, advancing work abilities.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.4.c.ii Therapy: Passive

C.4.c.i Self-Application of Ice

<u>Recommended</u> - for treatment of acute, subacute, or chronic Kienböck disease.

C.4.c.ii Self-application of Heat

<u>Recommended</u> - for treatment of acute, subacute, or chronic Kienböck disease.

C.4.c.iii Splints

<u>Recommended</u> - for treatment of select patients with acute, subacute, or chronic Kienböck disease.

Rationale for Recommendations - A trial may be helpful to assess whether splinting provides symptomatic relief. However there are concerns over long term use regarding the potential for accelerated debility disuse and weaknesss of the wrist.

Evidence for the Use of Initial Care

Evidence for the Use of Exercise

C.4.d Surgical Treatment

<u>Recommended</u> - as an option for patients with moderate to marked impairment if not improved eight weeks post-injury or after six weeks of non-operative treatment due to Kienböck disease. The choice of surgery is dependent upon staging of disease and discretion of the surgeon.

Evidence for the Use of Surgery

C.5 Wrist Sprains

Wrist sprains (which are partially or totally disrupted ligaments) typically occur with acute traumatic events and comonnly result from slips, trips and falls. Wrist sprain is often a diagnosis of exclusion among patients with pain in the setting of trauma in the absence of a fracture. Sprains may also occur in conjunction with fracture.

C.5.a Diagnostic Studies

C.5.a.i X-Rays

<u>Recommended</u> - to determine whether a fracture is present, particularly for patients with scaphoid pain or scaphoid tubercle tenderness.

Evidence for the Use of X-rays

C.5.a.ii CT Scan

<u>Recommended</u> - to determine whether a fracture is present, particularly for patients with scaphoid pain or scaphoid tubercle tenderness with negative x-rays.

Evidence for the Use of CT Scans

C.5.a.iii MR Arthrography

<u>Recommended</u> - for patients without improvement in wrist sprains after approximately 6 weeks of treatment.

Rationale for Recommendations - MR arthrograms are especially helpful to identify ligamentous issues such as scapholunate, lunotriquetral, and TFCC tears that may be diagnosed as simple sprains. Thus, MR arthrography is recommended after approximately 6 weeks of clinical management without patient improvement.

Evidence for the Use of MR Arthrography

C.5.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.5.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Wrist Sprain

Recommended - for treatment of acute, subacute, or chronic wrist sprain

Indications – For acute, subacute, or chronic wrist sprain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.5.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.5.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.5.b.iv Acetaminophen for Treatment of Wrist Sprain Pain

<u>Recommended</u> - for treatment of wrist sprain pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with wrist sprain pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.5.b.v Opioids

<u>Recommended</u> - for the treatment of select patients with pain from severe wrist sprains.

Indications – Select patients with severe pain from severe wrist sprains with insufficient control from other means, including acetaminophen and NSAIDs or with contraindications for NSAIDs. Considerable cautions are recommended concerning opioids and minimum numbers of doses should be prescribed as duration of treatment for wrist sprains is usually limited.

Frequency/Dose – As needed dosing. Among the few patients requiring opioids, most require at most a few days to not more than seven days of

treatment and then generally have insufficient pain for further treatment with opioids.

Indications for Discontinuation – Resolution of pain sufficiently to not require opioids, consumption that does not follow prescription instructions, adverse effects.

Rationale for Recommendation - Most patients do not require opioids. Some patients, particularly with more severe sprains may require opioids. They are recommended for limited duration (not more than seven days) use in select patients with wrist sprains.

C.5.c Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.5.c.i Therapy - Active

C.5.c.i.a Therapeutic Exercise - for treatment of moderate or severe acute or subacute wrist sprains.

<u>Recommended</u> - for the treatment of moderate or severe acute or subacute wrist sprains.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.5.c.ii Therapy - Passive

C.5.c.ii.a	Relative Rest
	Recommended - for treatment of acute wrist sprains.
C.5.c.ii.b	Ice – Self-application
	Recommended - for treatment of acute wrist sprain.
C.5.c.ii.c	Heat – Self-appliation
	Recommended - for treatment of acute wrist sprain.

C.2.c.ii.d Mobilization / Immobilization

<u>Recommended</u> - Splinting for treatment of moderate or severe acute or subacute wrist sprains.

Evidence for Initial Care

Evidence for the Use of Exercise

C.5.d Surgery

Not recommended - for treatment of acute or subacute wrist sprain in the absence of a remediable defect.

Evidence for the Use of Surgery

C.6 Mallet Finger

Mallet finger is a common occupational injury, although it may occur with minimal apparent trauma. The injury involves rupture of the extensor mechanism of a digit at the distal upper extremity joint with or without fracture of the distal phalangeal segment

Mallet finger is readily diagnosed based on the presentation of inability to extend the distal interphalangeal joint, generally in the context of trauma or distal interphalangeal joint arthrosis.

C.6.a Diagnositc Studies

C.6.a.i X-Rays

<u>Recommended</u> - in most cases of mallet finger to determine if a fracture is present.

Evidence for the Use of X-rays

C.6.a.ii Ultrasound

Not recommended - to diagnose mallet finger.

C.6.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.6.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Mallet finger

<u>Recommended</u> - for treatment of acute, subacute, or chronic mallet finger

Indications – For acute, subacute, or chronic mallet finger, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.6.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.6.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.6.b.iv Acetaminophen for Treatment of Mallet Finger Pain

<u>Recommended</u> - for treatment of mallet finger pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with mallet finger pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.6.b.v Opioids for Treatment of Acute, Subacute, or Chronic Mallet Finger Pain

Not Recommended - for treatment of acute, subacute, or chronic mallet finger pain.

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

Evidence for the Use of Medications

C.6.c Rehabilitation

C.6.c.i Therapy: Active

C.6.c.i.a Therapeutic Exercise

<u>Not Recommended</u> – acutely and most patients with mallet finger do not require participation in an exercise program.

Evidence for the Use of Exercise

<u>Recommended-</u> In select patients with residual deficits, particularly post-operatively.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.6.c.ii Therapy: Passive

C.6.c.ii.a Splints - Extension Splinting With the Joint in a Neutral Position

<u>Recommended -</u> for treatment of acute or subacute mallet finger.

Indications – Acute or subacute mallet finger.

Frequency/Duration – Splinting for six to eight weeks, possible nocturnal use for an additional two to four weeks.

Splints must hold the finger in continuous, full extension for a minimum duration of six weeks. Some protocols involve eight

weeks, while some involve nocturnal use for an additional two to four weeks.

Evidence for the Use of Splints

C.6.c.ii.b Instructions for Splint Wear

<u>Recommended</u> - that careful instructions on splint wear be provided to patients.

Evidence for the Use of Splint Wear

C.6.d Surgery

Not Recommended - In general

<u>Recommended</u> – in select patients with displaced fractures when the DIP joint is subluxed.

C.7 Flexor Tendon Entrapment (Tenosynovitis and Trigger Digit)

Flexor tendon entrapment of the digits is a disorder characterized by snapping or locking of the thumb or fingers (with or without pain). Most cases are secondary to thickening of the digit's A1 pulley, but other pathogeneses are possible.

C.7.a Diagnostic Studies

There are no special tests that are typically performed. X-rays are usually not helpful. The threshold for testing for confounding conditions such as diabetes mellitus, hypothyroidism and connective tissue disorders should be low particularly to prevent other morbidity.

Evidence for the Use of Diagnostic Studies

C.7.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.7.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Flexor tendon entrapment

<u>Recommended</u> - for treatment of acute, subacute, or chronic flexor tendon entrapment

Indications – For acute, subacute, or chronic flexor tendon entrapment, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.7.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.7.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.7.b.iv Acetaminophen for Treatment of Flexor Tendon Entrapment Pain

<u>Recommended</u> - for treatment of flexor tendon entrapment pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with flexor tendon entrapment pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.7.b.v Opioids

Not Recommended – for acute, subacute, or chronic flexor tendon entrapment.

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.7.c Treatments

C.7.c.i Injection Therapy

C.7.c.i.a Glucocorticosteroid Injections

<u>Recommended</u> - for treatment of acute, subacute, or chronic flexor tendon entrapment.

Indications – Triggering digit or symptoms of pain over the A-1 pulley thought to be consistent with stenosing tenosynovitis. Injection may be the most appropriate initial intervention.

Frequency/Duration – A single injection and results evaluated to document improvement.

<u>Not Recommended</u> – Ultrasound guidance for glucocorticosteroid injections acute, subacute, or chronic flexor tendon entrapment.

C.7.c.i.b Splint

<u>Recommended</u> - for treatment of select cases (i.e., patients who decline injection) of acute, subacute, or chronic flexor tendon entrapment.

Evidence for the Use of Splints

C.7.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.7.d.i Therapy: Active

C.7.d.i.a Therapeutic Exercise

<u>Not Recommended</u> – for acute cases and for most patients with flexor tendon entrapment.

C.7.d.i.b Therapeutic Exercise – Patients with Residual Deficits

<u>Recommended</u> – particularly post-operatively,

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Evidence for the Use of Exercise for Trigger Digit

Evidence for the Use of Glucocorticosteroid Injections for Flexor Tendon Entrapment

C.7.e Surgery

Recommended - for persistent or chronic flexor tendon entrapment (Trigger Finger) in patients who have been partially or temporarily responsive to two glucocorticosteroid injections. Those without any response should be evaluated carefully for possible alternate conditions. If there is no therapeutic response to two glucocortisteroid injections in the presence of an obvious trigger finger, surgery may be appropriate

Evidence for Surgery for Flexor Tendon Entrapment

C.8 Extensor Compartment Tenosynovitis (Including de Quervain's Stenosing Tenosynovitis and Intersection Syndrome)

De Quervain's stenosing tenosynovitis may be occupational when jobs require repeated forceful gripping or sustained wrist extension. However, most cases are not likely occupational. De Quervain's is the most common of the extensor compartment tendinoses.

C.8.a Diagnostic Studies

There are no special tests that are typically performed for extensor compartment tenosynovitis.

C.8.a.i X-Rays

<u>Not Recommended</u> - are usually not helpful and therefore are not recommended. The threshold for testing for confounding conditions such as diabetes mellitus and hypothyroidism should be low.

Evidence for the use of Special Studies - Extensor Compartment Tenosynovitis

C.8.a.ii MRI

<u>Not Recommended</u> - to diagnose extensor compartment tenosynovitis.

<u>Recommended-</u> in select circumstances where there is unclear diagnosis, and/or lack of appropriate response to clinical treatments, especially injection

Evidence for the Use of MRI to Diagnose Extensor Compartment Tenosynovitis

C.8.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.8.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Extensor Compartment Tenosynovitis

<u>Recommended</u> - for treatment of acute, subacute, or chronic extensor compartment tenosynovitis.

Indications – For acute, subacute, or chronic , NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.8.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

Recommended – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.8.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.8.b.iv Acetaminophen for Treatment of Wrist compartment Tendinoses Pain

<u>Recommended</u> - for treatment of wrist compartment tendinoses pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with wrist compartment tendinoses pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.8.b.v Opioids

<u>Not Recommended</u> – for acute, subacute, or chronic extensor compartment tenosynovitis.

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.8.c Treatment

Initial care usually involves limitation of the physical factors thought to be contributing. Thumb spica splints for de Quervain's and wrist braces for the other compartment tendinoses are generally believed to be helpful. Thumb spica splints have been widely used for treatment of wrist compartment tendinoses while nonspica wrist splints have been used for treatment of other compartment tendinoses. NSAIDs are often prescribed for initial treatment.

C.8.c.i Mobilization / Immobilization

C.8.c.i.a Thumb Spica and Wrist Splints for Acute and Subacute Thumb Extensor Compartment Tenosynovitis

<u>Recommended</u> - for treatment of acute and subacute thumb extensor compartment tendinoses, and non-spica wrist splints for treatment of other extensor compartment tendinoses.

Frequency/Duration – Generally recommended to be worn while awake.

Indications for Discontinuation – Failure to respond or resolution.

Evidence for the Use of Splints - Extensor Compartment Tenosynovitis

C.8.c.ii Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a workrelated injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels. Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.8.c.ii.a Therapy: Active

C.8.c.ii.a.i Therapeutic Exercise – Acutely

<u>Not Recommended</u> – as most patients with externsor tendon entrapment do not require an exercise program.

C.8.c.ii.a.ii Therapeutic Exercise – Residual Defects

Recommended – particularly post-operatively.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.8.c.ii.b Therapy: Passive

C.8.c.ii.b.i Iontophoresis for Acute and Subacute Extensor Compartment Tenosynovitis

Recommended – using glucocorticosteroids and sometimes NSAIDs for select patient with wrist compartment tendinoses. who either fail to respond adequately to NSAIDs, splints, and activity modifications or decline injection.

Frequency/Duration – Generally two or three treatments to ascertain efficacy; an additional four to six treatments may be scheduled if efficacious. If improvements continue at 6treatments, additional four to six treatments are reasonable.

Indications for Discontinuation – Failure to respond, development of adverse effects, resolution.

C.8.c.iii Other Passive Interventions

<u>Not Recommended</u> - Other Non-operative Interventions Including Manipulation and Mobilization, Massage, Deep Friction Massage, or Acupuncture for Acute, Subacute, or Chronic Extensor Compartment Tenosynovitis

Evidence for the Use of Acupuncture - Extensor Compartment Tenosynovitis

Evidence for the Use of Exercise - Extensor Compartment Tenosynovitis

C.8.c.iv Injection Therapy

C.8.c.iv.a Glucocorticosteroid Injections

<u>Recommended</u> - for treatment of acute, de Quervain's or other wrist compartment tendinosis.

Indications – Wrist compartment symptoms of pain over a compartment. Generally at least one week of non-invasive treatment to determine if condition will resolve without invasive treatment. It is reasonable to treat cases with an initial injection.

Frequency/Duration – It is recommended that a single injection be scheduled and the results evaluated to document improvement. Failure of a response or suboptimal response within two to three weeks should result in reconsideration of the diagnosis and consideration of second injection. Recurrence of symptoms may indicate the need for surgery evaluation.

Evidence for the Use of Glucocorticosteroid Injections for Wrist Compartment Tendinoses

C.8.d Surgery

C.8.d.i Surgery – Surgical Release

<u>Recommended</u> - for patients with subacute or chronic extensor compartment tenosynovitis who fail to respond to injection.

Indications – Wrist compartment tenosynovitis that fails to respond to nonoperative interventions generally including 2 glucocorticosteroid injections.

Evidence for the Use of Surgery - Extensor Compartment Tenosynovitis

C.9 Ulnar Nerve Entrapment at the Wrist (Including Guyon's Canal Syndrome and Hypothenar Hammer Syndrome)

Ulnar nerve entrapment involves delayed conduction of the ulnar nerve with associated symptoms. The location of the lesion affecting the ulnar nerve as it crosses through Guyon's canal and the wrist is predictive of clinical symptoms. This canal is dissimilar to the carpal canal in that the tendons and their tenosynovium do not accompany the nerve, thus most of the usual postulated causal mechanisms for carpal tunnel syndrome are not possible. However, use of the hypothenar area of the hand as a hammer is a postulated occupational mechanism.

C.9.a Diagnostic Studies

C.9.a.i Electrodiagnostic Studies

<u>Recommended</u> - to confirm clinical suspicion of ulnar nerve entrapment at the wrist.

Rationale for Recommendation - studies need to be performed by welltrained electrodiagnosticians, preferably certified by the American Board of Electrodiagnostic Medicine.

Evidence for the Use of Electrodiagnostic Studies - Ulnar Nerve Entrapment at the Wrist

C.9.a.ii MRI or Ultrasound

Not Recommended – to diagnose ulnar nerve entrapment at the wrist.

<u>Recommended</u>- for a suspected soft-tissue mass. MRI is generally preferable for soft tissue masses such as ganglion cysts.

Evidence for the Use of MRI and Ultrasound - Ulnar Nerve Entrapment at the Wrist

C.9.a.iii CT

<u>Recommended</u> - to diagnose ulnar nerve entrapment at the wrist if a hook of the hamate fracture is suspected based upon the history, a mechanism of potential fracture, focal pain at the hamate and where there are ulnar nerve symptoms. CT is preferable for evaluation of fractures

Evidence for the Use of CT - Ulnar Nerve Entrapment at the Wrist

C.9.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol)

may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.9.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Ulnar Nerve Compression at the Wrist

<u>Recommended</u> - for treatment of acute, subacute, or chronic ulnar nerve compression at the wrist.

Indications – For acute, subacute, or chronic ulnar nerve compression at the wrist, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.9.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.9.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for

primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.9.b.iv Acetaminophen for Treatment of Ulnar Nerve Compression at the Wrist Pain

<u>Recommended</u> - for treatment of ulnar nerve compression at the wrist pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with ulnar nerve compression at the wrist pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Ulnar Nerve Compression at the Wrist

C.9.b.v Opioids

Not Recommended – for acute, subacute, or chronic ulnar nerve entrapment at the wrist.

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in postoperative patients with primary use at night to achieve sleep postoperatively.

C.9.b.vi Glucocorticosteroids - Oral and/or Injected

Not Recommended - for treatment of acute, subacute, or chronic ulnar nerve compression at the wrist.

Evidence for the Use of Glucocorticosteroids for Ulnar Nerve Compression at the Wrist

C.9.c Treatments

C.9.c.i Splinting

C.9.c.i.a Neutral Wrist Splinting

<u>Recommended</u> – as first-line treatment for acute, subacute, or chronic ulnar nerve compression at the wrist

Evidence for the Use of Splints for Ulnar Nerve Compression at the Wrist

C.9.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.9.d.i Therapy – Active

C.9.d.i.a Therapeutic Exercise

<u>Not Recommended</u> – for acute ulnar nerve compression at the wrist

<u>Recommended</u> – for post-operatively for ulnar nerve compression at the wrist

<u>Recommended</u> – for subacute and chronic ulnar nerve compression at the wrist if functional deficits exist

Rationale for Recommendation - Exercise is generally not indicated acutely; however, exercise may be needed in the recovery or post-operative phases. Functional goals should include increased grip strength, key pinch strength, range of motion, advancing work abilities.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.9.d.ii Therapy - Passive

C.9.d.ii.a Ice – Self-application

<u>Recommended</u> - for treatment of acute, subacute, or chronic radial nerve entrapment.

C.9.d.ii.b Heat – Self-appliation

<u>Recommended</u> - for treatment of acute, subacute, or chronic radial nerve entrapment.

C.9.d.ii.c Manipulation/Mobilization

<u>Not Recommended</u> - - for treatment of acute, subacute, or chronic radial nerve entrapment

- C.9.d.ii.d Iontophoresis Not Recommended- for treatment of acute, subacute, or chronic radial nerve entrapment.
- C.9.d.ii.e <u>Massage, Friction Massage</u> Not Recommended- for treatment of acute, subacute, or chronic radial nerve entrapment.
- C.9.d.ii.f Acupuncture <u>Not Recommended</u> - for treatment of acute, subacute, or chronic radial nerve entrapment

Evidence for the Use of Physical Methods/Rehabilitation for Ulnar Neuropathy at the Wrist

C.9.d.iii Activity Modification

<u>Recommended</u> - with particular avoidance of significant localized mechanical compression of the nerve or use of the hand as a hammer is recommended for treatment of ulnar nerve compression at the wrist.

Evidence for the Use of Activity Modification for Ulnar Nerve Compression at the Wrist

C.9.e. Surgery

C.9.e.i Surgical Decompression

<u>Recommended</u> - for subacute or chronic ulnar nerve compression at the wrist after failure of non-operative treatment or if space-occupying lesions are present

Rationale for Recommendation - It is recommended for select patients who failed trials of other non-operative treatments or if space occupying lesions are present. It may also be preferential in those with diabetes mellitus.

Evidence for the Use of Surgery for Ulnar Neuropathy at the Wrist

C.10 Radial Nerve Entrapment

Radial nerve entrapment usually presents as radial nerve palsies affecting the hand and wrist, most commonly occurring at points along the course of the arm and forearm, well proximal to the wrist. The medical history should include a search for sensory symptoms. Symptoms may also include pain over the course of the nerve, wrist extensor weakness and wrist drop.

C.10.a Medical History

Assessment of motor symptoms, including wrist extensor weakness as well as wrist drop, are also helpful

C.10.b Diagnositc Studies

C.10.b.i Electrodiagnostic Studies

<u>Recommended</u> - to confirm clinical suspicion of a radial nerve motor neuropathy.

Rationale for Recommendation are recommended as an objective test to evaluate radial nerve motor neuropathy. However, studies need to be performed by well-trained electrodiagnosticians, preferably certified by the American Board of Electrodiagnostic Medicine. Evidence for the Use of Electrodiagnostic Studies for Radial Nerve Motor Neuropathy

C.10.b.ii Ultrasound (Diagnostic)

<u>Not recommended</u> - to confirm clinical suspicion of a radial nerve neuropathy.

Evidence for the Use of Ultrasound for Radial Nerve Motor Neuropathy

C.10.c Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.10.c.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Radial Nerve Compression Neuropathy

<u>Recommended</u> - for treatment of acute, subacute, or chronic radial nerve compression at the wrist.

Indications – For acute, subacute, or chronic radial nerve compression neuropathy, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.10.c.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.10.c.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.10.c.iv Acetaminophen for Treatment of Radial Nerve Compression Neuropathy Pain

<u>Recommended</u> - for treatment of radial nerve compression neuropathy pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with radial nerve compression neuropathy pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Radial Nerve Compression Neuropathy

C.10.c.v Opioids

Not Recommended – for acute, subacute, or chronic radial nerve entrapment pain.

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.10.d Treatments

C.10.d.i Splinting

C.10.d.i.a Wrist Extension or Thumb Spica Splint

<u>**Recommended</u>** - for treatment of acute, subacute, or chronic radial nerve compression neuropathy.</u>

Evidence for the Use of Splints for Radial Nerve Compression Neuropathy

C.10.e Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.10.e.i Therapy - Active

C.10.e.i.a Therapeutic Exercise – Acute

<u>Recommended</u> in select patients to keep the paralyzed joints supple while awaiting sponteanous recovery of nerve function.

C.10.e.i.b Therapeutic Exercise – Post -Operative

<u>Recommended</u> – for patients post-operatively to keep the paralyzed joints supple while awaiting recovery of nerve function.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Evidence for the Use of Exercise for Radial Neuropathy

C.10.e.ii Therapy - Passive

C.10.e.ii.a Ice – Self-application

<u>Recommended</u> - for treatment of acute, subacute, or chronic radial nerve entrapment.

C.10.e.ii.b Heat – Self-appliation

<u>Recommended</u> - for treatment of acute, subacute, or chronic radial nerve entrapment.

C.10.e.ii.c Mobilization / Immobilization

Not Recommended - - for treatment of acute, subacute, or chronic radial nerve entrapment

C.10.e.ii.d Iontophoresis

<u>Not Recommended</u> - for treatment of acute, subacute, or chronic radial nerve entrapment

C.10.e.ii.e Acupuncture

<u>Not Recommended</u>- for treatment of acute, subacute, or chronic radial nerve entrapment

C.10.e.ii.f Massage

<u>Not Recommended</u>- for treatment of acute, subacute, or chronic radial nerve entrapment

C.10.f Surgery

C.10.f.i Surgical Release

<u>Recommended</u> - for subacute or chronic cases of radial nerve compression neuropathy that persist despite other interventions.

Rationale for Recommendation It is recommended for select patients who failed trials of other non-operative treatments or if space occupying lesions are present.

C.11 Non-Specific Hand, Wrist and Forearm Pain

Non-specific hand/wrist/forearm pain typically occurs in the absence of discrete trauma. Instead, it frequently occurs in settings of high physical job demands or ill-defined exposures. Most cases will resolve however, if there is no improvement after several weeks of treatment, focused diagnostic testing should be considered. Non-specific pain lasting more than 2 months is fairly rare. The search for a specific diagnosis should include proximal pathology including spine-related (e.g., radiculopathy, spinal tumor, infection) as well as psychological disorders particularly when widespread symptoms are elicited or a pattern or recurrent unexplained illnesses is present

Patients most commonly give a history of gradual onset of pain or other symptoms in the absence of discrete trauma. Symptoms are most often in the forearm, and frequently are not well localized.

C.11.a Diagnostic Studies

C.11.a.i Rheumatological Studies for Arthralgias

<u>Recommended</u> - for evaluation of select patients with persistent unexplained arthralgias or tenosynovitis.

Indications - Persistent unexplained arthralgias or tenosynovitis.

Frequency/Duration – Repeat studies may be required after passage of time as some patients, particularly those with less severe diseases, tend to develop positive anti-bodies after months to years.

C.11.a.ii Arthrocentesis for Joint Effusions

<u>Recommended</u> – in inexplicable joint effusions, particularly for evaluation of infections and crystalline arthropathies

Indications – Joint effusions without a clear diagnosis including suspected infection or crystalline arthropathies.

C.11.a.iii Electrodiagnostic

<u>Recommended</u> - to evaluate non-specific hand, wrist, or forearm pain for patients with paresthesias or other neurological symptoms.

Indications – Persistent tingling and pain, particularly symptoms characteristic of radiculopathies and entrapment neuropathies. Providers are cautioned that the prevalence rate of abnormal electrodiagnostic studies in asymptomatic populations are high and interpretations of abnormal results should be correlated with clinical findings

Frequency/Dose – Should generally be performed at least 3 weeks after symptom onset.

Evidence for the Use of Electrodiagnostic Studies to evaluate non-specific hand, wrist, or forearm pain

C.11.a.iv X-Rays

<u>Recommended</u> - for evaluation of cases in which non-specific hand, wrist, or forearm pain persists.

Indications – Persistent non-specific hand, wrist, or forearm pain.

Evidence for the Use of X-rays for Evaluation of Non-specific Hand, Wrist, or Forearm Pain

C.11.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.11.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Non-specific hand/wrist/forearm Pain

<u>Recommended</u> - for treatment of acute, subacute, or chronic non-specific hand/wrist/forearm pain.

Indications – For acute, subacute, or chronic Non-specific hand/wrist/forearm pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.11.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.11.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.11.b.iv Acetaminophen for Treatment of Non-specific hand/wrist/forearm Pain

<u>Recommended</u> - for treatment of Non-specific hand/wrist/forearm pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with Non-specific hand/wrist/forearm pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day. *Indications for Discontinuation*: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Non-specific hand/wrist/forearm Pain

C.11.b.v Opioids

<u>Not Recommended</u> – for acute, subacute, or chronic non-specific hand, wrist or forearm pain.

C.11.c Treatments

C.11.c.i Relative Rest

<u>Recommended</u> –in select cases of acute non-specific hand, wrist, or forearm pain particularly where there are high ergonomic exposures (high force or high force combined with other risk factors).

Rationale for Recommendation - For patients with high ergonomic exposures, relative rest may be helpful.

Evidence for the Use of Relative Rest for Acute Non-specific Hand, Wrist, or Forearm Pain

C.11.c.ii Splinting

<u>Recommended</u> - for treatment of select patients with acute or subacute non-specific hand, wrist, or forearm pain.

Not Recommended - for chronic use

Rationale for Recommendation - Splinting may at times be helpful, but enforces debility. It is generally not recommended for chronic use.

Evidence for the Use of Splints for Acute or Subacute Non-specific Hand, Wrist, or Forearm Pain

C.11.d Rehabiliation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.11.d.i Therapy - Active

C.11.d.i.a Therapeutic Exercise

<u>**Recommended</u>** - for treatment of acute, subacute, or chronic non-specific hand, wrist, or forearm pain.</u>

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Evidence for the Use of Physical or Occupational Therapy for Acute, Subacute, or Chronic Non-specific Hand, Wrist, or Forearm Pain

C.10.d.i.b Therapeutic Exercise

<u>Recommended</u>- for select patients with acute, subacute or chronic non-specific hand/wrist/forearm pain which does not resolve with initial care

Evidence for the Use of Exercise for Acute, Subacute, or Chronic Non-specific Hand, Wrist, or Forearm Pain

C.11.d.ii Therapy:Passive

C.11.d.ii.a Self-application of Ice or Heat

<u>Recommended</u> - for treatment of acute or subacute nonspecific hand, wrist, or forearm pain. Evidence for the Use of Ice/Heat for Acute or Subacute Nonspecific Hand, Wrist, or Forearm Pain

C.12 Scaphoid Fracture

Scaphoid fractures, also known as wrist navicular fractures, are among the most common fractures of the carpal bones, Most are not occupational, but some clearly are work-related. The primary mechanism of scaphoid injury is a fall on the outstretched hand, or from axial loading with a closed fist such as grasping a steering wheel in an auto accident. Scaphoid fractures are prone to non-union and avascular necrosis, particularly those involving the proximal third of the navicular, and especially if displaced. Healing problems in the proximal third have been attributed to limited blood supply that is disrupted by the fracture plane. The main initial tasks are to confirm a fracture, identify those patients with fractures best treated with surgery, and treat those with a high clinical suspicion of fracture with appropriate splinting. Patients frequently complain of persistent swelling and tenderness near the thumb base in the area of the scaphoid.

C.12.a Diagnostic Studies

C.12.a.i X-Rays

<u>Recommended</u> - for diagnostic purposes that include at least 3 to 4 views including a "scaphoid view."

C.12.a.ii X-Rays – Follow-up in two weeks

<u>Recommended</u> - for evaluation of potential scaphoid fractures,) particularly for patients with a high clinical suspicion of fracture, but negative initial x-rays.

Evidence for the Use of X-rays for scaphoid fractures

C.12.a.iii MRI

<u>Recommended</u> – in select patients for diagnosis of occult scaphoid fractures when clinical suspicion remains high despite negative x-rays.

Indications – Clinical suspicion of scaphoid fracture but negative x-rays.

Rationale for Recommendation - MRI is not required for the majority of scaphoid fractures, but may be indicated for patients with a clinical suspicion of scaphoid fracture, but negative x-rays.

Evidence for the Use of MRI for Scaphoid Fracture

C.12.a.iv CT Imaging

Recommended - to diagnose occult scaphoid fractures when clinical suspicion of fracture remains high with negative x-rays and MRI is contraindicated.

Evidence for the Use of CT Imaging for Diagnosing Scaphoid Fractures

C.12.a.v Bone Scan

<u>Recommended</u> – for select patients to diagnose occult scaphoid fractures when clinical suspicion remains high despite negative x-rays.

Indications – At least 48 hours after the injury with continuing clinic suspicion of scaphoid fracture.

Rationale for Recommendation Bone scans are not required for evaluation of the majority of patients with scaphoid fractures; however, in those patients with a clinical suspicion of scaphoid fracture, but negative x-rays, bone scans may assist in securing an earlier diagnosis that may obviate prolonged splinting in those without a fracture. Thus, bone scans are recommended for these select patients.

Evidence for the Use of Bone Scans for Scaphoid Fractures

C.12.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.12.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Scaphoid Fractures Pain

<u>Recommended</u> - for treatment of acute, subacute, or chronic scaphoid fractures pain.

Indications – For acute, subacute, or chronic Scaphoid fractures pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.12.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding. *Indications*: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.12.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.12.b.iv Acetaminophen for Treatment of Scaphoid Fractures Pain

<u>Recommended</u> - for treatment of scaphoid fractures pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with scaphoid fractures pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Scaphoid Fractures Pain

C.12.b.v Opioids

Limited Use of Opioids for Acute and Post-operative Pain Management

<u>Recommended</u> – for limited use (less than seven days) for acute and post-operative pain management as adjunctive therapy to more effective treatments.

Indications: For acute injury and post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen, elevation, splinting) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.12.c Treatments

C.12.c.i Splinting

C.12.c.i.a Wrist Splinting

Recommended - for treatment of scaphoid tubercle fractures.

Rationale for Recommendation - Splinting may suffice, as these fractures heal well due to adequate blood supply.

C.12.c.i.b Cast Immobilization

<u>Recommended</u> for treatment of stable non displaced scaphoid fractures.

Frequency/Duration – Casting should be performed for 6 to 8 weeks with cast removal clinical revaluation, and re-xray to determine whether additional casting is required.

C.12.c.i.c Thumb Immobilization with Spica Casting

<u>Recommended</u> - concurrent immobilization of the thumb with the wrist for treatment of scaphoid fractures.

Frequency/Duration – Casting should be performed for 6 to 8 weeks with cast removal clinical revaluation, and re-xray to determine whether additional casting is required.

C.12.c.i.d Spica Splint

<u>Recommended</u> - for patients with suspicion of scaphoid fracture, but with negative x-rays.

Duration - 2 weeks, follow up with repeat clinical examination and repeat x-ray. If x-ray is negative consider discontinuation of splint.

Evidence for Casting with Thumb Immobilization for Scaphoid Fractures

C.12.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.12.d.i Therapy:Active

C.12.d.i.a Therapeutic Exercise - for Post-operative Scaphoid Fractures

<u>**Recommended**</u> - for the treatment of post-operative scaphoid fractures

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Evidence for the Use of Physical Methods/Rehabilitation for Scaphoid Fractures

C.12.e Surgery

C.12.e.i Surgical Fixation

Recommended – for displaced scaphoid fractures

Rationale for Recommendation - Displaced fractures are believed to require surgical treatment with fixation.

High-risk scaphoid fractures should be promptly referred to hand or orthopaedic surgical specialists for definitive treatment because of the higher risk of these fractures developing a nonunion, malunion, or degenerative joint disease.

C.12.e.ii Surgical Intervention of Non-Displaced or Minimally Displaced Scaphoid Fractures

Recommended - for select patients requiring earlier functional recovery.

Not Recommended –in general, non displaced fractures are best treated with cast immobilization.

Rationale for Recommendation –Surgical intervention may be appropriate in patients with non-displaced or minimally displaced scaphoid fractures who cannot or do not wish to be treated with an attempt at non-operative treatment. This includes athletes. It also may include patients who are unable to work until the fracture is healed. The decision to surgically treat a non-displaced scaphoid fracture is a decision between the orthopedist and patient with a discussion suggested to include the benefits of earlier functional recovery versus the longer term risks of osteoarthrosis.

Evidence for the Use of Surgery vs. Non-operative Treatment for Scaphoid Fractures

C.12.e.iii Hardware Removal

Recommended- In select cases where there is hardware placed, subsequent hardware removal is indicated, as per doctor / patient preference.

Indications: in cases as per doctor / patient preference where there is 1) protruding hardware, (2) pain attributed to the hardware, (3) broken hardware on imaging, and/or (4) positive anesthetic injection response.

C.13 Distal Phalanx Fractures and Subungual Hematoma

Fingertip or distal phalangeal fractures are frequently cited as the most common fractures of the hand, with the tuft being the most common.

- Tuft fractures are most often usually due to a crush injury of the fingertip, resulting in comminuted or transverse fractures and are a common occupational injury. Often, they are accompanied with nail bed laceration and subungual hematoma. Tuft fractures are generally stable and heal uneventfully because of the soft tissue support of the fibrous septae and nail plate.
- Crush fractures or avulsion fractures involving the proximal base of the distal phalanx however may also involve flexor or extensor tendons and may require surgical intervention.
- Mallet fracture or mallet finger is a common fracture-dislocation injury of the distal phalanx involving loss of continuity of the extensor tendon over the distal interphalangeal joint.
- Subungual Hematoma, blood trapped under the nail after trauma.

C.13.a Diagnostic Studies

C.13.a.i X-rays

<u>Recommended</u> - to diagnose tuft fractures.

Frequency/Duration – Obtaining x-rays once is generally sufficient. Followup x-rays are rarely indicated aside from complicated healing.

Evidence for the Use of X-rays for Diagnosing Tuft Fractures

C.13.a.ii MRI / CT / Ultrasound / Bone Scan Imaging

Not recommended - for diagnosing tuft fractures.

Evidence for the Use of MRI/CT/Ultrasound/Bone Scan Imaging for Diagnosing Tuft Fractures

C.13.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.13.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Tuft Fractures Pain

<u>Recommended</u> - for treatment of acute, subacute, or chronic tuft fractures pain.

Indications – For acute, subacute, or chronic tuft fractures pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.13.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.13.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.13.b.iv Acetaminophen for Treatment of Tuft Fractures Pain

<u>Recommended</u> - for treatment of tuft fractures pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with tuft fractures pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Tuft fractures Pain

C.13.b.v Opioids

Limited Use of Opioids for Acute and Post-operative Pain Management

<u>**Recommended**</u> – for limited use (less than seven days) for acute and post-operative pain management as adjunctive therapy to more effective treatments.

Indications: For acute injury and post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen, elevation, splinting) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.13.b.vi Antiobioitic Prophylaxis

Not Recommended - use of post-trephination antibiotic prophylaxis for open fractures.

Evidence for the Use of Antibiotic Prophylaxis for Open Fractures

C.13.b.vi Tetanus Immunization

<u>Recommended</u> - that tetanus immunization status to be updated as necessary.

Indications – Wounds that are not clean or burns if more than 5 years have elapsed since last tetanus immunization.

Evidence for the Use of Tetanus Immunization

C.13.c Treatments

Tuft fractures associated with nail avulsion may require reduction of the nail plate under the eponychium, or removal if reduction cannot be performed. Orthopedic assistance is usually not required for uncomplicated closures.

Open fractures with extensive soft tissue damage frequently are associated with chronic pain and disability and generally require assistance from an orthopedic or hand surgeon.

C.13.c.i Trephination

Recommended - for management of subungual hematoma.

C.13.c.ii Nail Removal or Nail Bed Laceration Repair

<u>Not Recommended</u> - for the management of subungual hematoma in the absence of nail bed laceration.

<u>Recommended</u>- for the management of subungual hematoma associated with nail bed laceration to avoid future cosmetic defects.

C.13.c.iii Reduction Of The Nail Plate Under the Eponychium

Recommended- in select cases

C.13.c.iv Removal of the Nail Plate Under the Eponychium

Recommended- in slect cases if reduction of the nail plate under the eponychium cannot be performed.

Evidence for the Use of Trephination and Nail Removal or Laceration Repair

C.13.c.v Immobilizaiton:Splinting

C.13.c.v.a Protective splinting of the distal phalanx to the PIP

Recommended - for fractures.

Duration - Approximately 3 weeks.

C.13.c.v.b Finger splinting of tuft fractures

Recommended- splinting the finger to prevent further discomfort or injury.

C.13.c.vi Reduction of (the relatively uncommon) significantly displaced fractures

Recommended- Reduction and splint immobilization

In the small percentage of patients where reduction cannot be achieved, referral to an orthopedic surgeon may be indicated.

C.13.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.13.d.i Therapy: Active

C.13.d.i.a Therapeutic Exercise

<u>**Recommended**</u> – in select cases for treatment of tuft fractures.

Rationale for Recommendation - Joint mobilization therapy may be useful for complicated injuries or post surgical fixation.

Frequency/Dose/Duration – Total numbers of visits may be as few as two to three for patients with mild functional deficits or

up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Evidence for the Use of Physical or Occupational Therpay for tuft fractures

C.13.e Surgery

C.13.e.i <u>Recommended-</u> for fractures that are extremely displaced, unable to be reduced or are unstable.

Rationale for Recommendation- Distal phalangeal diaphyseal fractures rarely require operative fixation, except those that are extremely displaced, unable to be reduced or are unstable. Retrograde percutaneous Kirschner-wire fixation is the preferred internal fixation technique.

C.13.e.ii Hardware Removal

<u>Recommended</u> - In select cases where there is hardware placed, subsequent hardware removal is indicated, as per doctor / patient preference.

Indications: in cases as per doctor / patient preference where there is 1) protruding hardware, (2) pain attributed to the hardware, (3) broken hardware on imaging, and/or (4) positive anesthetic injection response.

Evidence for the Use of Surgery for Distal phalangeal diaphyseal fractures

C.14 Middle and Proximal Phalangeal and Metacarpal Fractures

Fractures of the proximal and middle phalanges represent approximately 46% of fractures of the hand and wrist. Fortunately, most are uncomplicated and are non-surgical cases. Metacarpal fractures comprise roughly 1/3 of hand fractures, with fifth metacarpal neck fractures (sometimes called "Boxer's fracture") accounting for 1/3 to 1/2 of these injuries, and fractures of the thumb constituting another 25%.

Physicians who encounter hand fractures must be able to properly diagnose and manage these hand fractures, as improper management may result in permanent impairment and disability from bone shortening, permanent angulation, joint and finger stiffness, and loss of hand function. Proximal phalangeal fractures particularly have a significant potential for hand impairment particularly if suboptimally managed because of the importance of this bone in longitudinal transfer of axial forces between the carpal and distal phalangeal joints, and the PIP joint for digit mobility. Decisions for surgical intervention should be offered upon careful consideration balancing risk of superior radiographic reduction with higher risk of debilitating stiffness from the post-operative rehabilitative state, with confidence that nonoperative therapy can be improved upon.

C.14.a Diagnostic Studies

C.14.a.i X-Rays

<u>Recommended</u> - for diagnosing phalangeal or metacarpal fractures and should include three projections, including a posteroanterior, lateral, and oblique view. A true lateral projection isolating the involved digit is required.

Evidence for the Use of X-rays for Diagnosing Phalangeal or Metacarpal Fractures

C.14.a.ii MRI, CT, Ultrasound, or Bone Scanning for Diagnosing Phalangeal or Metacarpal Fractures

Not Recommended - for diagnosing phalangeal or metacarpal fractures.

C.14.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.14.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Phalangeal or Metacarpal Fracture Pain

<u>**Recommended**</u> - for treatment of acute, subacute, or chronic phalangeal or metacarpal fracture pain.

Indications – For acute, subacute, or chronic phalangeal or metacarpal fracture pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.14.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.14.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.14.b.iv Acetaminophen for Treatment of Phalangeal or Metacarpal Fracture Pain

<u>Recommended</u> - for treatment of phalangeal or metacarpal fracture pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with phalangeal or metacarpal fracture pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Phalangeal or Metacarpal Fracture Pain

C.14.b.v Opioids

Limited Use of Opioids for Acute and Post-operative Pain Management

<u>**Recommended**</u> – for limited use (less than seven days) for acute and post-operative pain management as adjunctive therapy to more effective treatments.

Indications: For acute injury and post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen, elevation, splinting) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.14.b.vi Antibiotic Prophylaxis

Not Recommended - for open phalangeal fractures.

Evidence for the Use of Antibiotic Prophylaxis for open phalangeal fractures

C.14.b.vii Tetanus Immunization Status for Open Fractures

Recommended - status to be updated as necessary.

Indication – Wounds that are not clean or burns if more than 5 years have elapsed since last tetanus immunization.

Evidence for the Use of Tetanus Immunication for Open Fractures

C.14.c Initial Management

Initial management should include treatment of soft tissue injuries and pain control following completion of physical examination.

Regional anesthesia may be administered as clinically indicated to complete diagnostic assessment (passive range of motion, rotational alignment) and to perform closed reduction of the fracture, although not until neurovascular examination is documented.

Evidence for the Use of Digital Block for Middle and Proximal Phalangeal or Metacarpal Fractures

C.14.c.i Immobilizaiton

Immobilization or fixation technique is dictated by the physical and radiographic findings. More than 90% of phalangeal fractures can be managed non-operatively. Non-operative management techniques include padded aluminum splints, buddy tape, functional splinting, and gutter casting.

C.14.c.i.a Immobilization

<u>Recommended</u> - for treatment of middle and proximal phalanx fractures.

Frequency/Duration – When percutaneous fixation with wire is used, supplemental stabilization with splint or casting for three to four weeks should also be used as the wire does not provide sufficient rigidity.

C.14.c.i.b Non-operative management (immobilization) of nondisplaced and stable transverse diaphyseal fractures of the middle and proximal phalanges

<u>Recommended</u> - as these fractures do not require fixation and can be managed without surgery.

Frequency/Duration – Immobilization of the affected digit with neighboring digit in 70 to 90° of MCP flexion for three weeks

Rationale for Recommendation - These fractures have good results with non-operative management. The tolerance limits for non-operative management after closed reduction are angulation of 10°, shortening less than 2mm, bone apposition of greater than 50%, and no malrotation. Displacement outside these limits should be evaluated for treatment with closed reduction and percutaneous fixation, or upon failure of closed reduction, open reduction and internal fixation.

C.14.c.i.c Non-operative Management of Non-displaced Oblique Fractures of the Middle and Proximal Phalanges

<u>Recommended</u> - as these fractures are usually stable and require rigid immobilization alone.

C.14.c.i.d Closed Reduction with Splinting

Recommended - for base phalanx fractures.

Indications – Involvement of less than 40% of the middle phalanx base.

C.14.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.14.d.i Therapy - Active

C.14.d.i.a Therapeutic Exercise

<u>Recommended</u> - for Post-operative Middle and Proximal Phalangeal and Metacarpal Fractures

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.14.d.ii Therapy: Passive

C.14.d.ii.a Ice, Compression, and Elevation for Acute Metacarpal and Phalangeal Fractures

<u>Recommended</u> - for controlling edema related to acute metacarpal and phalangeal fractures.

C.14.e Management

C.14.e.i Surgery

C.14.e.i.a Surgical Management of Condylar Fractures

<u>Recommended</u> - as these fractures are unstable.

C.14.e.i.b Surgical Management for Malrotated Phalangeal Fractures

<u>Recommended</u> – if malrotation cannot be corrected and stabilized by closed reduction.

Rationale for Recommendation - Surgical management for malrotated phalangeal and metacarpal fractures is recommended, to prevent or reduce rotational deformity that can result in fingers crossing over each other or interfering with hand function, if malrotation cannot be corrected and stabilized by closed reduction.

C.14.e.i.c Metacarpal Fractures

Non-Operative Treatment of Distal Metacarpal Head Fracture using closed reduction and protective immobilization with radial or ulnar gutter splint

<u>Recommended</u> - for fractures with less than 20% of joint involvement.

Rationale for Recommendation - Cases with greater than 20% joint involvement likely require open reduction and internal fixation followed by nearly immediate motion.

C.14.e.ii Non-Operative

C.14.e.ii.a Non-operative Treatment of Distal Metacarpal Neck Fracture with Acceptable Angulation

<u>Recommended</u> - Degree of angulation 30 degrees in the ring finger and 10° in the index and long fingers.

C.14.e.ii.b Non-operative Treatment of Fifth Metacarpal Neck Fractures (Boxer's Fracture)

<u>Recommended</u> - before surgical treatment for most 5th metacarpal neck fractures (less than 45 degrees angulation).

C.14.e.ii.c Use of Functional Therapies (including taping, functional bracing and strapping) for Fifth Metacarpal Neck Fractures

<u>Recommended</u> – rather than casting or ulnar splinting

C.14.e.ii.d X-rays in Follow-up of Non-Operative FifthMetacarpal Neck Fractures

<u>Recommended</u> for patients at risk for displacement after reduction

Rationale for Recommendation -. Follow-up radiographs are indicated if physical examination suggests loss of reduction or instability. Radiographs may be indicated 7 to 10 days after injury to ensure no (further) displacement or malrotation.

C.14.f Shaft Metacarpal Fractures

Shaft metacarpal fractures are usually transverse, oblique, spiral or comminuted.. Decisions for non-operative versus surgical intervention balance acceptance of potential metacarpal shortening with risks accompanying surgical intervention.

C.14.f.i Surgery

C.14.f.i.a Surgical Management of Metacarpal shaft fractures. **Recommended-** fixation (pinning, wire, plate, lag screws). Indication: for fractures that cannot be reduced, are unstable, or have multiple neighboring shaft fractures C.14.f.i.b Surgical Management for Base Fractures of the Proximal Metacarpal **Recommended** - as these fractures are rarely stable. C.14.f.i.c Surgical Management Bennett's Fracture and Rolando's Fracture **Recommended** - for Bennett's and Roland's fractures as these fracture types are unstable. C.14.f.i.d **Surgical Management for Malrotated Phalangeal fractures Recommended** - as deformity and impairment may result. C.14.f.i.e Hardware Removal

<u>Recommended</u>- In select cases where there is hardware placed, subsequent hardware removal is indicated, as per doctor / patient preference.

Indications: in cases as per doctor/patient preference where there is 1) protruding hardware, (2) pain attributed to the hardware, (3) broken hardware on imaging, and/or (4) positive anesthetic injection response.

Evidence for the Use of Surgery for Malrotated Phalangeal Fractures

C.14.f.ii Non-Operative

C.14.f.ii.a Non-operative Management of Metacarpal Shaft Fractures

<u>Recommended</u>- Non-operative management of metacarpal shaft fractures is recommended in select patients.

Indications: If adequate closed reduction is achieved and the fracture is stable, with cast immobilization

C.15 Distal Forearm Fractures

There are several types of distal forearm fractures in adults, the most common being Colles' fracture. The distinguishing feature for Colles' fracture is that fracture fragments are displaced or angulated dorsally on a lateral view x-ray. Other adult distal radial fractures include displaced fracture fragments that have an anterior angulation and displaced fracture fragments that are displaced palmarly and may have an anterior angulation. Despite the severity of these injuries, with proper diagnosis and management most patients will have a satisfactory outcome.

Distal radial fractures are the result of traumatic forces, most commonly related to falling on the outstretched hand. The typical mechanism for Colles' fracture is breaking the fall with the hand outstretched and wrist in dorsiflexion, although a minority occur due to an impact on the dorsal aspect of the hand while the wrist is flexed (jam injury into the dorsum of hand) or a direct blow to the radial stylus.

Wrist injuries associated with significant pain, swelling, ecchymosis, crepitance, or deformity should be considered to be fractured until proven otherwise. Forearm fractures may also result in concomitant vascular, neurological, ligament and tendon injuries. Further, as distal forearm fractures are the result of trauma, careful inspection for other traumatic injuries should be included, such as elbow, shoulder, neck, head, and hip. In general, most distal forearm fractures should be managed by an orthopedic or hand surgeon and consultation is recommended.

C.15.a Diagnostic Studies

C.15.a.i X-ray for Suspected Distal Forearm Fractures

<u>Recommended</u> - as a first-line study for suspected distal forearm fractures; posterior-anterior, lateraland, if available, oblique views are recommended.

<u>Recommended</u>- Contralateral wrist x-ray images should be considered as a comparison that may improve reliability of some radiographic measurements.

Rationale for Recommendation Radiographic evaluation should provide the provider necessary information on location, configuration, displacement, subluxation, likelihood of stability, and concomitant potential of soft tissue injury. Contralateral wrist x-ray images should be considered as a comparison that may improve reliability of some radiographic measurements, particularly for a more accurate determination of stability and provide greater guidance on indication for treatment.

Evidence for the Use of X-rays for Suspected Distal Forearm Fractures

C.15.a.ii MRI

<u>Recommended</u> - to diagnose suspected soft-tissue trauma after x-ray images confirm a complex displaced, unstable, or comminuted distal forearm fractures.

Indication – X-ray confirmation of complex displaced, unstable, or comminuted distal forearm fracture.

Rationale for Recommendation - Upon confirmation of displaced, comminuted or unstable fracture, MRI may be an important diagnostic technique for the evaluation of suspected injuries of soft tissues related to distal radius fractures, such as to the flexor and extensor tendons or the median nerve. Other potential indications include identification of triangular fibrocartilage complex perforations, ruptures of carpal ligaments, and demonstration of contents of the carpal tunnel.

Evidence for the Use of MRI for Diagnosing Distal Forearm Fractures

C.15.a.iii CT

<u>Recommended</u> - for investigation of occult and complex distal forearm fractures to gain greater clarity of fracture displacement, articular involvement, and subluxation of the distal radioulnar joint.

Indication - Negative x-rays with occult fracture strongly suspected.

Rationale for Recommendation - In contrast to MRI, CT should be considered when x-ray images are negative but on the basis of physical findings an occult fracture is strongly suspected. CT may also be useful for evaluation of complex comminuted fractures, providing superior depiction of distal radial articular surface involvement, fragment positioning, and diagnosis of subluxations of the distal radioulnar joint

Evidence for the Use of CT for Diagnosis and Classification of Occult and Complex Distal Forearm Fractures

C.15.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol)

may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.15.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Distal Forearm Fractures Pain

<u>Recommended</u> - for treatment of acute, subacute, or chronic distal forearm fractures pain.

Indications – For acute, subacute, or chronic distal forearm fractures pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.15.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.15.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

Recommended - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for

primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.15.b.iv Acetaminophen for Treatment of Distal Forearm Fractures Pain

<u>**Recommended</u>** - for treatment of distal forearm fractures pain, particularly in patients with contraindications for NSAIDs.</u>

Indications: All patients with distal forearm fractures pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Distal Forearm Fractures Pain

C.15.b.v Opioids

Limited Use of Opioids for Acute and Post-operative Pain Management

<u>**Recommended**</u> – for limited use (less than seven days) for acute and post-operative pain management as adjunctive therapy to more effective treatments.

Indications: For acute injury and post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen, elevation, splinting) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-operative patients with primary use at night to achieve sleep post-operatively.

C.15.c Treatments

Recommendations for treatment should be based upon the following criteria: is a fracture open or closed, stable or unstable, or likely to become unstable.

Non Displsaced Distal Radial Fracture

C.15.c.i Immobilization

C.15.c.i.a Cast Immobilization for *Non-displaced* or Minimally Displaced Distal Radius Fractures

Recommended - Cast immobilization for 6 weeks.

Evidence for Immobilization/Fixation for Non-displaced Colles' Fracture

Displaced Distal Radial Fracture

Distal radial fractures with radiographic measurements of 10° or more of dorsal angulation, more than 2 mm of radial shortening or with any degree of unstable fractures are defined as fractures with bone loss or bone involvement that will not allow for structural integrity without the use of internal or external fixation of the bone.

C.15.c.i.b Closed Reduction and Casting for Displaced Distal Radial Fractures

<u>Recommended</u> – reduction and casting of fractures which are stable on reduction

Evidence for the Use of Closed Reduction Technique for Distal Radial Fractures

C.15.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.15.d.i Therapy - Active

C.15.d.i.a Therapeutic Exercise after Cast Removal for Acute Colles' Fracture

<u>Recommended</u> – for patients with functional deficits or those unable to return to work

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.15.d.i.b Education after Cast Removal for Acute Colles' Fracture

<u>Recommended</u> – for select patients

C.15.d.ii Therapy - Passive

C.15.d.ii.a Low Frequency Electromagnetic Fields to Stimulate Bone Healing of Distal Radial Fractures

Not Recommended - to stimulate bone healing in patients with non-displaced fractures

Evidence for the Use of Electromagnetic Fields for Distal Radial Fractures

C.15.e Surgery

C.15.e.i Closed Reduction

<u>Recommended</u> - for treatment of severely displaced extra-articular fractures which are stable on reduction

C.15.e.ii Medullary Pinning (k-wire) or Intramedullary Fixation Techniques

Recommended - In select patients

C.15.e.iii Open Reduction and Internal Fixation

<u>Recommended</u> - if fracture remains unstable by other treatment methods.

C.15.e.iv Triangular Fibrocartilage Complex (TFCC) Repair for Distal Radial Fractures

<u>Not Recommended</u> - Triangular Fibrocartilage Complex (TFCC) Repair for Distal Radial Fractures.

C.15.e.v Hardware Removal

Recommended- In select cases where there is hardware placed, subsequent hardware removal is indicated, as per doctor / patient preference.

Indications in cases as per doctor / patient preference where there is 1) protruding hardware, (2) pain attributed to the hardware, (3) broken hardware on imaging, and/or (4) positive anesthetic injection response.

Evidence for Surgery for Displaced Distal Forearm Fractures

C.15.e.vi Cast Immobilization

<u>Recommended</u> - for treatment of extra-articular fractures or distal forearm fractures that include moderately displaced extra-articular fractures, which are stable on reduction non-comminuted or nondisplaced intra-articular fractures.

C.16 Ganglion Cyst

Ganglion cysts occur in nearly any joint of the hand and wrist, they account for 50 to 70 % of all wrist masses identified and most are asymptomatic. Other causes include giant cell tumors also known as localized nodular tenosynovitis and fibrous xanthoma, epidermal inclusion cysts and fibromas.

C.16.a Diagnostic Studies

Generally, diagnosis is based on physical examination findings. Diagnosis is usually confirmed upon aspiration of mucinous fluid from the mass.

C.16.a.i X-Rays

Recommended - to diagnose dorsal or volar wrist ganglia in select patients

Indications –to evaluate patients with ganglia occurring in the context of trauma (fractures, dislocations, and sprains)

Frequency/Duration – Obtaining x-rays once is generally sufficient.

<u>Not Recommended</u> – for routine use to evaluate non traumatic dorsal or volar wrist ganglia

Evidence for the Use of X-rays for Diagnosis of Wrist Ganglia

C.16.a.ii MRI

Not Recommended – for routine evaluation of wrist pain with suspected occult dorsal or volar wrist ganglia.

<u>Recommended</u> - for select patients who have had persistence of pain lasting at least three weeks, unresponsive to treatment (injections or splinting) where an occult ganglion cyst is suspected.

Rationale for Recommendation- MRI may be useful in distinguishingsynovitis from ganglion, which may be helpful in determining the course of treatment.

Evidence for the Use of MRI for Evaluation of Wrist Pain with Suspected Occult Dorsal or Volar Wrist Ganglia

C.16.a.iii Ultrasound

Not Recommended – is generally not recommended for the evaluation of chronic wrist pain with suspected occult dorsal or volar wrist ganglia.

<u>Recommended</u>- for the evaluation of chronic wrist pain with suspected occult dorsal or volar wrist ganglia in whom an MRI is contraindicated (MRI is preferred).

Evidence for the Use of Ultrasound for Evaluation of Chronic Wrist Pain with Suspected Occult Dorsal or Volar Wrist Ganglia

C.16.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.16.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Wrist Ganglia Pain

<u>Recommended</u> - for treatment of acute, subacute, or chronic wrist ganglia pain.

Indications – For acute, subacute, or chronic wrist ganglia pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.16.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.16.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.16.b.iv Acetaminophen for Treatment of Wrist Ganglia Pain

<u>Recommended</u> - for treatment of wrist ganglia pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with wrist ganglia pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.16.b.v Opioids

Not Recommended – for acute, subacute, or chronic radial nerve entrapment pain.

C.16.c Treatments

C.16.c.i Conservative Management for Acute Asymptomatic Wrist and Hand Ganglia

<u>Recommended</u> - as first-line management for asymptomatic ganglia as the natural history for spontaneous resolution is more than 50%, and in recognition of the high recurrence rate of most other treatment strategies.

Rationale for Recommendation - In the asymptomatic patient, it is reasonable to provide patients reassurance that the mass is benign, and that the natural course is for most to resolve without treatment, making waiting a reasonable option.

Evidence for Non-Operative Management for Acute Asymptomatic Wrist and Hand Ganglia

C.16.c.ii Aspiration (without Other Intervention) for Ganglia Related Pain

<u>Recommended</u> - as it may result in immediate of ganglia related pain.

Duration – One aspiration is recommended. There is no recommendation on how many times aspiration should be attempted before advancing to other interventions..

Evidence for Aspiration for Acute Cosmetic and Ganglia Related Pain

C.16.c.iii Aspiration with Steroids

Not Recommendation - the addition of steroids with aspiration.

Evidence for Aspiration with Steroids

C.16.c.iv Aspiration and Multiple Punctures of Cyst Wall

Not Recommended - as it does not provide improved benefit over simple aspiration.

Rationale for Recommendation

C.16.c.v Immobilization

C.16.c.v.a Splinting after Aspiration for Acute or Subacute Dorsal or Volar Wrist Ganglia

Not Recommended - after aspiration for the treatment of acute or subacute dorsal or volar wrist ganglia.

Evidence for use of Splinting after Aspiration for Treatment of Dorsal or Volar Wrist Ganglia

C.16.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.16.d.i Therapy: Active

C.16.d.i.a Therapeutic Exercise – Acute

Not Recommended - for acute ganglion cyst

Rationale for Recommendation - Exercise is generally not indicated acutely; however, exercise may be needed in the recovery or post-operative phases. Functional goals should include increased grip strength, key pinch strength, range of motion, advancing work abilities.

C.16.d.i.b Therapeutic Exercise – For Residual Deficits

Recommended – particularly post-operatively

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Evidence for the Use of Exercise for Upper Extremity Ganglia

C.16.e Injection Therapy

C.16.e.i Hyaluronidase Instillation after Aspiration

Not Recommended – installation of hyaluronidase into the cystic structure after aspiration.

Evidence for Installation of Hyaluronidase into Cystic Structure

C.16.e.ii Aspiration and Sclerosing Agents

<u>Not Recommended</u> – use of sclerosing agents such as phenol and hypertonic saline, which when instilled are intended to result in scarring and closure of the cystic potential space

Evidence for Use of Aspiration and Sclerosing Agents

C.16.f Surgery

C.16.f.i Surgical Excision for Subacute or Chronic Wrist-Ganglia

<u>Recommended</u> – in select patients for the treatment of subacute or chronic wrist ganglia.

Evidence for Surgical Excision of Upper Extremity Ganglia

Evidence for Arthroscopic versus Open Excision for Ganglia

C.17 Hand / Arm Vibration Syndrome (HAVS)

The term "hand arm vibration syndrome (HAVS)" has been used since the 1980s to describe the constellation of adverse physiological responses causally associated with high-amplitude vibratory forces, such as those experienced through the use of various hand tools including pneumatic drills, riveters and chain saws or from vibratory rich activities such

as driving off-road vehicles. Other terms commonly used to describe these responses include Raynaud's phenomenon of occupational origin, white fingers, dead fingers, traumatic vasospastic disease (TVD), and "vibration-induced white finger."

The adverse effects of HAVS are characterized by circulatory disturbances associated with digital arteriole sclerosis and manifest as vasospasm with local finger blanching; sensory and motor disturbances manifest as numbness, loss of finger coordination and dexterity, clumsiness and inability to perform intricate tasks; and musculoskeletal disturbances manifest as swelling of the fingers, bone cysts and vacuoles. There are also several reports of association of CTS with HAVS and exposure to vibration.

Epidemiologic evidence indicates there is a latency period of from 1 to 16 years of exposure before onset of HAVS, with a trend for decreasing prevalence as changes in work-practice and anti-vibratory tools and dampening actions have been implemented.

The pathophysiologic changes related to vibration are initially reversible, but with increasing duration and intensity of exposure, the disorder may continue to progress or become permanent.

C.17.a Diagnostic Studies

C.17.a.i Cold Provocation Test, Cold Stress Thermography (Finger Skin Temperature, Infrared, Dynamic Infrared, Laser Doppler Imaging), Finger Systolic Blood Pressure, Vibrotactile Threshold Testing, Thermal Aesthesiometry, or Nerve Conduction Velocity Studies to Diagnose Hand Arm Vibration Syndrome

Not Recommended – to diagnose HAVS

Evidence for Special Studies for HAVS

C.17.a.ii Serologic Tests (Thrombomodulin, Soluble Intracellular Adhesion Molecule 1 [s1-CAM 1]) to Diagnose Hand Arm Vibration Syndrome

Not Recommended - to diagnose HAVS.

C.17.a.iii Testing for Connective Tissue Disorders

Not Recommended - to diagnose HAVS.

Rationale for Recommendations - There does not appear to be any serologic tests that currently provide objective evidence or staging of HAVS.

Evidence for the Use of Serologic Testing or Connective Tissue Disorders Testing

C.17.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol)

may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.17.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic HAVS Pain

Recommended - for treatment of acute, subacute, or chronic HAVS pain.

Indications – For acute, subacute, or chronic HAVS pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.17.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.17.b.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

Recommended - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.17.b.iv Acetaminophen for Treatment of HAVS Pain

<u>Recommended</u> - for treatment of HAVS pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with HAVS pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.17.b.v Opioids

Not Recommended – for acute, subacute, or chronic HAVS pain.

C.17.c Treatments

The most prudent form of treatment is to first remove or reduce the exposure to vibration. Smoking has been identified as a risk factor for HAVS.

C.17.c.i Smoking Cessation

Recommended – smoking is identified as a risk factor.

Other common advice based on the proposed pathophysiology of vasospasm includes avoidance of beta-blockers, sympathetic stimulants including caffeine, decongestants and amphetamines as they may act as potential triggers. Further, maintenance of hand and body temperature in cold environments may help avoid or reduce the risk of symptoms.

C.17.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective

functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.17.d.i Therapy:Active

C.17.d.i.a Therapeutic Exercise

<u>Recommended</u> - for the treatment of functional deficits related to HAVS.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

Evidence for the Use of Exercise for HAVS

C.17.e Work Activities

C.17.e.i Vibration Exposure Work Restrictions for HAVS

<u>Recommended-</u> For patients with HAVS, it is recommended that their work be restricted to those tasks that do not involve high-amplitude, low-frequency vibration exposures from hand-held tools.

Indications – HAVS from high-amplitude, low-frequency vibration exposures through vibrating hand-held tools.

C.17.e.ii Cold Exposure Work Restrictions for HAVS

<u>Recommended-</u> for select patients with HAVS, it is recommended that their work be restricted to those tasks that do not involve cold exposures.

Indications – HAVS that is not controlled through avoidance of vibration exposures, or patients having recurring problems with vasospasm or other complications that are unresolved with other treatments.

C.18 Laceration Management

The primary purpose of wound and laceration management is to avoid infection, detect if a nerve injury has occurred, manage tendon lacerations, and achieve a cosmetically acceptable result with the highest degree of function and patient satisfaction.

C.18.a Diagnostic Studies

C.18.a.i X-Rays

<u>Recommended</u> - for the evaluation of traumatic injury resulting in skin lacerations to rule out fracture or if a radiopaque foreign body is suspected.

Evidence for the Use of X-ray for Evaluation of Lacerations with Suspected Fracture or Foreign Body

C.18.a.ii Ultrasound

<u>Recommended</u> - for evaluating suspected radiolucent materials or as an alternative test when radiopaque foreign body is suspected but not detected on x-ray images.

Evidence for the Use of Ultrasound for Evaluation of Suspected Superficial Foreign Bodies

C.18.a.iii CT

Not Recommended - for suspected superficial foreign bodies.

<u>Recommended</u>- for the evaluation of suspected radiolucent materials and as an alternative test when radiopaque foreign body is suspected but is not detected on x-ray images or ultrasound.

Evidence for the Use of CT for Evaluation of Suspected Superficial Foreign Bodies

C.18.b Medications

C.18.b.i Antibiotic Prophylaxis

Not Recommended - for uncomplicated hand and forearm lacerations.

Evidence for the Use of Antibiotic Prophylaxis

C.18.b.ii Non-Steroidal Anti-Inflammatory Drugs/Acetaminophen

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.18.b.iii Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Upper Extremity Post-Laceration Repair Pain

<u>Recommended</u> - for treatment of acute, subacute, or chronic upper extremity post-laceration repair pain.

Indications – For acute, subacute, or chronic upper extremity postlaceration repair pain, NSAIDs are recommended for treatment. Over-thecounter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.18.b.iv NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.18.b.v NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.18.b.vi Acetaminophen for Treatment of Upper Extremity Post-Laceration Repair Pain

<u>Recommended</u> - for treatment of upper extremity post-laceration repair pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with upper extremity post-laceration repair pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Upper Extremity Post-Laceration Repair Pain

C.18.b.vii Opioids

Limited Use of Opioids for Acute and Post-Laceration Repair Pain Management

<u>Recommended</u> – for limited use (less than seven days) for acute and post-laceration repair pain management as adjunctive therapy to more effective treatments.

Indications: For acute injury and post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen, elevation) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in post-laceration repair patients with primary use at night to achieve sleep post-laceration repair.

C.18.c Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.18.c.i Therapy:Active

C.18.c.i.a Therapeutic Exercise

<u>Recommended</u> - for the treatment of functional deficits related to lacerations.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.19 Human Bites, Animal Bites and Associated Lacerations

Although most bites occur from animals known to the victim, occupations that may be at higher risk for animal bites include veterinarians, animal handlers, police officers, utility services personnel who access private property, mail carriers, and other similar professions. Human bites are common in care givers, educators, law enforcement officers,

and in instances of accident or workplace violence that may involve the fist or hand being cut by contact with teeth.

Other than deep destruction of tissue requiring reconstruction, risk of infection is the primary concern for animal bites. There also are other zoonotic diseases such as rabies, cat scratch fever, and human blood borne pathogens exposures that should also be considered. Rates may be higher for wounds of the hand, depth of penetration into the skin, and length of time before wound is irrigated and cleaned. For purposes of this guideline, discussion and recommendations are made based on bites and/or contact with saliva regarding rabies risk to the extremities or trunk as well.

C.19.a Physical Exam

A careful history for time and location of the bite and/or contact with saliva should be obtained as it will help guide clinical decisions regarding prophylaxis. If possible, information about the type of animal and its health status as well as the circumstances related to why the bite occurred should be obtained. Tetanus and rabies immunization status should be established and prophylaxis given if indicated.

A detailed medical history pertaining to tetanus and in the case of animal bites, exposure to saliva, rabies immunization status, and underlying medical conditions such as diabetes mellitus or other immune-compromising conditions is important. Tetanus immunization (per CDC recommendations) and rabies prophylaxis (per CDC recommendations) should be given if indicated. Most wounds are puncture wounds, but some wounds may be considered for suturing.

C.19.b Diagnostic Studies

C.19.b.i Routine Wound Culture and Sensitivity of Animal and Human Bites

Not Recommended - as it has not been shown to be an effective predictor for infection or subsequent treatment of infected wounds.

Evidence for the Use of Bite Wound Cultures and Sensitivity of Animal and Human Bites

C.19.c Medications

C.19.c.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Animal or Human Bites Pain

<u>Recommended</u> - for treatment of acute, subacute, or chronic animal or human bites pain

Indications – For acute, subacute, or chronic wrist sprain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.19.c.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.19.c.iii NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.19.c.iv Acetaminophen for Treatment of Animal and Human Bites Pain

<u>Recommended</u> - for treatment of animal and human bites pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with animal and human bites pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

C.19.c.v Opioids

Not Recommended – for the treatment of animal and human bites pain

C.19.d Treatments

C.19.d.i Initial Care

C.19.d.i.a Blood Borne Pathogen Protocol for Human Bites

<u>Recommended</u> - exposures that could be considered high risk for viral blood borne pathogen transmission be evaluated and treated according to blood borne pathogen protocols.

Rationale for Recommendation- Exposures that could be considered high risk for transmitting viral blood borne pathogens (HIV, HBV, HCV), such as a traumatic bite lacerations should be considered for testing and prophylaxis according to standard protocols particularly as injuries with HIV contaminated blood carry substantially reduced risk of transmission if prophylactic anti-virals are administered in a timely manner.

C.19.d.i.b Prophylactic Antibiotics for Dog Bite Wounds

<u>Recommended</u> - for treatment of dog bite wounds.

Indication – All dog bites.

Dose/Frequency – Different antibiotics have been used in the quality studies, including penicillin VK, cloxacillin, dicloxacillin, erythromycin, co-trimoxazole, cephalexin, and amoxicillin/clavulnate. Strong Gram positive coverage is required

Evidence for the Treatment of Dog Bites

C.19.d.i.c Prophylactic Antibiotics for Treatment of Human Bite Wounds.

Recommended - for treatment of human bite wounds.

Rationale for Recommendation - Given the reported higher incidence of wound infections related to human bites, the balance of evidence suggests prophylactic treatment is appropriate. Pathogens are usually gram-positive bacteria; prophylactic coverage from a broad-spectrum oral antibiotic is suggested to cover most typical staphylococcal and streptococcal species.

Evidence for the Treatment of Human Bites

C.19.d.i.d Prophylactic Antibiotics for Treatment of Cat Bite Wounds.

<u>Recommended</u> - for treatment of cat bite wounds.

Rationale for Recommendation - Reported incidence rates of infections from cat bites is 20 to 40%, and complications related to cat bites may be more significant. Therefore, broad spectrum antibiotics that include coverage for Pasteurella multocida, which is the most common pathogen contracted from cat bites, may be indicated.

Evidence for the Use of Prophlactic Antibiotics for Cat Bite Wounds

C.20 Hand / Finger Osteoarthrosis

For most purposes, a history and physical examination is sufficient but sometimes x-rays are used. X-rays may be used to document the degree and extent of involvement. However, x-rays can be negative in those with symptomatic osteoarthrosis or may demonstrate evidence of disease among those who are asymptomatic.

C.20.a Diagnostic Studies

C.20.a.i X-Rays to Evaluate Hand Osteoarthrosis

 $\underline{\textbf{Recommended}}$ – in select patients to define objective evidence of the extent of hand osteoarthrosis.

Rationale for Recommendation - Most patients do not require x-rays for diagnosis and can be managed clinically. However, in select cases, x-rays are helpful and may assist in diagnosing and treating the condition.

Evidence for the Use of X-rays for Hand/Finger Osteoarthrosis

C.20.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol)

may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.20.b.i Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic upper Hand Osteoarthrosis Pain

<u>Recommended</u> - for treatment of acute, subacute, or chronic hand osteoarthrosis pain.

Indications – For acute, subacute, or chronic hand osteoarthrosis pain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.20.b.ii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

Recommended – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.20.b.iii NSAIDS for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for

primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.20.b.iv Acetaminophen for Treatment of Hand Osteoarthrosis Pain

<u>Recommended</u> - for treatment of hand osteoarthrosis pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with hand osteoarthrosis pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the Use of NSAIDs and Acetaminophen for Hand Osteoarthrosis

C.20.b.v Topical NSAIDs

May achieve tissue levels that are potentially therapeutic. Overall the low level of systemic absorption can be advantageous, allowing the topical use of these medications when systemic administration is relatively contraindicated (such as patients with hypertension, cardiac failure, peptic ulcer disease or renal insufficiency).

Recommended - to control pain associated with hand osteoarthrosis.

Indications – Mild, moderate, or severe hand osteoarthrosis.

Frequency/Duration – See manufacturer's recommendation.

Indications for Discontinuation – Resolution, intolerance, adverse effects, or lack of benefits.

Evidence for the Use of Topical NSAIDs for Hand Osteoarthrosis

C.20.b.vi Opioids - Oral, Transdermal, and Parenteral (Includes Tramadol)

<u>Not Recommended</u> – for acute, subacute, or chronic hand/finger osteoarthrosis pain.

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in postoperative patients with primary use at night to achieve sleep postoperatively.

Complimentary / Alternative Therapies

C.20.b.vii Complimentary/ Alternative Therapies

Not Recommended - Glucosamine, chondroitin sulfate, methyl-sulfonyl methane, diacerein (diacerhein, diacetylrhein), harpagophytum, avocado soybean unsaponifiables, ginger, oral enzymes, and rose hips are often classified as complementary and alternative therapies that are sometimes used by patients for treatment of osteoarthrosis.

C.20.b.viii Capsaicin

<u>Recommended</u> - for treatment of chronic hand osteoarthrosis or acute flares of osteoarthrosis.

Indications – Hand osteoarthrosis pain or acute flares (study has also included rheumatoid arthritis patients).

Frequency/Duration – Up to 4 times a day.

Dose – See manufacturer's recommendation.

Indications for Discontinuation – Excessive burning of the skin or other intolerance. Not recommended for continual use, rather periods without use have been recommended.

Evidence for the Use of Complementary and Alternative Therapies for Hand Osteoarthrosis

C.20.c Treatment

C.20.c.i Splinting

<u>Recommended</u> - for acute flares or chronic hand osteoarthrosis.

Indications – Hand osteoarthrosis symptoms insufficiently treated with NSAIDs, acetaminophen, and/or topical medications.

C.20.c.ii Injection Therapy

C.20.c.ii.a Intraarticular Glucocorticosteroid Injections

<u>Recommended</u> – in select patients for the treatment of subacute or chronic hand osteoarthrosis.

Indications – Moderately severe or severe hand osteoarthrosis pain with insufficient control with NSAID(s), acetaminophen, and potentially splinting and/or exercise. Its usual purpose is to gain sufficient relief to either resume medical management or to delay operative intervention.

Frequency/Duration – One injection should be scheduled, rather than a series of three.

Indications for Discontinuation – In patients who respond with a pharmacologically appropriate several weeks of temporary partial relief of pain, but who then have worsening pain and function, a repeat injection is an option. If there has not been a response to a first injection, a second injection is not recommended. However, if the physician believes the medication was not well placed and/or if the underlying condition is so severe that one steroid bolus could not be expected to adequately treat the condition, a second injection may be indicated. There are not believed to be benefits beyond approximately three injections in a year.

Rationale for Recommendations - Intraarticular Glucocorticosteroid Injections are a short to imtermediate intervention with approximately three months of benefit. They are recommended as an option for treatment of hand OA patients particularly after inadequate results from NSAID trials or other non-operative interventions.

C.20.c.ii.b Intraarticular Hyaluronate Injection

<u>Recommended</u> – in select patients for the treatment of subacute or chronic hand osteoarthrosis where other treatments have failed.

Indications –Hand osteoarthrosis pain with insufficient control with NSAID(s), acetaminophen, and potentially splinting and/or exercise. Its usual purpose is to gain sufficient relief either to resume medical management or to delay operative intervention.

Dose/Frequency – See manufacturer's recommendations.

Indications for Discontinuation – Sufficient relief to not require additional injection(s), failure to improve, or allergic reactions.

Evidence for the Use of Intraarticular Injections for Hand Osteoarthrosis

C.20.c.ii.c Prolotherapy Injections

Not Recommended - the use of prolotherapy injections for treatment of subacute or chronic hand osteoarthrosis.

Evidence for the Use of Injections for Hand Osteoarthrosis

C.20.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.20.d.i Therapy - Active

C.20.d.i.a Therapeutic Exercise

<u>Recommended</u> - for treatment of acute flares or chronic hand osteoarthrosis.

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.20.d.ii Therapy - Passive

C.20.d.ii.a Self-Application of Ice

<u>Recommended -</u> for chronic hand osteoarthrosis.

C.20.d.ii.b Self-Application of Heat

 $\underline{\textbf{Recommended}}$ - for acute flares or chronic hand osteoarthrosis.

Indications – Hand osteoarthrosis symptoms insufficiently treated with NSAIDs, acetaminophen, and/or topical medications.

Frequency/Dose – Self-applications of heat, most commonly 15 to 20 minutes, 3 to 5 times a day.

C.20.d.ii.c Low-level laser therapy

Not Recommended - for treatment of hand osteoarthrosis.

Evidence for the Use of Low-Level Laser Therapy for Hand Osteoarthrosis

Evidence for Splinting and Exercise for Hand Osteoarthrosis

C.20.e Surgery

Various surgical procedures are utilized to treat patients with hand osteoarthrosis. Among these are arthrodesis, arthroplasty and various other reconstructive procedures.

C.20.e.i Reconstructive Surgery

<u>Recommended</u> - for treatment of select patients with trapeziometacarpal arthrosis.

C.20.e.ii Trapeziectomy

<u>Recommended</u> - for treatment of thumb CMC joint osteoarthritis. The alternative approaches are at the discretion of the surgeon.

C.20.e.iii Fusion

Recommended - for treatment of select patients with hand osteoarthrosis

Rationale for Recommendation - Joint fusion is generally helpful for patients under age 40 with significantly symptomatic osteoarthrosis and vigorous work activities, who fail to achieve sufficient relief from other treatments.

C.20.e.iv Hardware Removal

<u>Recommended</u> - In select cases where there is hardware placed, subsequent hardware removal is indicated, as per doctor / patient preference.

Indications: in cases as per doctor / patient preference where there is 1) protruding hardware, (2) pain attributed to the hardware, (3) broken hardware on imaging, and/or (4) positive anesthetic injection response.

C.21 Dupuytren's Disease

There is insufficient evidence relating Dupuytren's disease to occupational activities

Dupuytren's disease is a disorder of the hand involving the formation of fibrosis (scar tissue) in the palm and digits with subsequent contractures. It has strong age and inheritance patterns. Purported risks include the use of alcohol, smoking, diabetes mellitus, and epilepsy. There are some reported associations with both heavy and manual work. To help provide improved care for patients, this disorder is included as an appendix to the Hand, Wrist, and Forearm Disorders Guideline.

C.21.a Treatments

C.21.a.i Injection Therapy

C.21.a.i.a Collagenase Injections

<u>Recommended</u> – in select patients for treatment of Dupuytren's disease.

Indications – Dupuytren's contractures sufficient to result in impairment,

Frequency/Dose – Clostridial collagenase 10,000 U injection; repeat injection(s) at 4 to 6 week intervals for up to 3 injections.

Discontinuation – Resolution of contracture, adverse effects.

Evidence for the use of Collagenase Injections for treatment of Dupuytren's disease

Evidence for the Use of 5-Flourouracil for Dupuytren's Disease

C.21.b Medications

For most patients, ibuprofen, naproxen, or other older generation NSAIDs are recommended as first-line medications. Acetaminophen (or the analog paracetamol) may be a reasonable alternative to NSAIDs for patients who are not candidates for NSAIDs, although most evidence suggests acetaminophen is modestly less effective. There is evidence that NSAIDs are as effective for relief of pain as opioids (including tramadol) and less impairing.

C.21.b.i Non-Steroidal Anit-Inflammatory Drugs (NSAIDs)

<u>Recommended</u> - to treat post-operative swelling from surgery for Dupuytren's disease.

C.21.b.ii Non-Steroidal Anti-inflammatory Drugs (NSAIDs) for Treatment of Acute, Subacute, or Chronic Dupuytrens' disease Pain

<u>Recommended</u> - for treatment of acute, subacute, or chronic Dupuytrens' disease pain

Indications – For acute, subacute, or chronic wrist sprain, NSAIDs are recommended for treatment. Over-the-counter (OTC) agents may suffice and should be tried first.

Frequency/Duration: As needed use may be reasonable for many patients.

Indications for Discontinuation: Resolution of symptoms, lack of efficacy, or development of adverse effects, that necessitate discontinuation.

C.21.b.iii NSAIDs for Patients at High Risk of Gastrointestinal Bleeding

<u>Recommended</u> – for concominent use of cytoprotective classes of drugs: misoprostol, sucralfate, histamine Type 2 receptor blockers, and proton pump inhibitors for patients at high risk of gastrointestinal bleeding.

Indications: For patients with a high-risk factor profile who also have indications for NSAIDs, cytoprotective medications should be considered, particularly if longer term treatment is contemplated. At-risk patients include those with a history of prior gastrointestinal bleeding, elderly, diabetics, and cigarette smokers.

Frequency/Dose/Duration: Proton pump inhibitors, misoprostol, sucralfate, H2 blockers recommended. Dose and frequency per manufacturer. There is not generally believed to be substantial differences in efficacy for prevention of gastrointestinal bleeding.

Indications for Discontinuation: Intolerance, development of adverse effects, or discontinuation of NSAID.

C.21.b.iv NSAIDs for Patients at Risk for Cardiovascular Adverse Effects

Patients with known cardiovascular disease or multiple risk factors for cardiovascular disease should have the risks and benefits of NSAID therapy for pain discussed.

<u>Recommended</u> - Acetaminophen or aspirin as the first-line therapy appear to be the safest regarding cardiovascular adverse effects.

<u>Recommended</u> - If needed, NSAIDs that are non-selective are preferred over COX-2 specific drugs. In patients receiving low-dose aspirin for primary or secondary cardiovascular disease prevention, to minimize the potential for the NSAID to counteract the beneficial effects of aspirin, the NSAID should be taken at least 30 minutes after or 8 hours before the daily aspirin.

C.21.b.v Acetaminophen for Treatment of Acute, Subacute or Chronic Dupuytrens' disease Pain

<u>Recommended</u> - for treatment of Dupuytrens' disease pain, particularly in patients with contraindications for NSAIDs.

Indications: All patients with animal and human bites pain, including acute, subacute, chronic, and post-operative.

Dose/Frequency: Per manufacturer's recommendations; may be utilized on an as-needed basis. There is evidence of hepatic toxicity when exceeding four gm/day.

Indications for Discontinuation: Resolution of pain, adverse effects or intolerance.

Evidence for the use of NSAIDs and Acetaminophen for Post-Op Dupuytren's Disease

C.21.b.vi Opioids

<u>Recommended</u> – for limited use (not more than seven days) for postoperative pain management as adjunctive therapy to more effective treatments.

Indications: For post-operative pain management, a brief prescription of opioids as adjuncts to more efficacious treatments (especially NSAIDs, acetaminophen) is often required, especially nocturnally.

Frequency/Duration: Prescribed as needed throughout the day, then later only at night, before weaning off completely.

Rationale for Recommendation: Some patients have insufficient pain relief with NSAIDs, thus judicious use of opioids may be helpful, particularly for nocturnal use. Opioids are recommended for brief, select use in postoperative patients with primary use at night to achieve sleep postoperatively.

C.21.c.Other

C.21.c.i Radiotherapy

Not Recommend - to prevent the progression of Dupuytren's disease.

Evidence for use of Radiotherapy for Prevention of Progression of Dupuytren's Disease

C.21.d Rehabilitation

Rehabilitation (supervised formal therapy) required as a result of a work-related injury should be focused on restoring functional ability required to meet the patient's daily and work activities and return to work; striving to restore the injured worker to pre-injury status in so far as is feasible.

Active therapy requires an internal effort by the patient to complete a specific exercise or task. Passive therapy are those interventions not requiring the exertion of effort on the part of the patient, but rather are dependent on modalities delivered by a therapist. Generally passive interventions are viewed as a means to facilitate progress in an active therapy program with concomitant attainment of objective functional gains. Active interventions should be emphasized over passive interventions.

The patient should be instructed to continue both active and passive therapies at home as an extension of the treatment process in order to maintain improvement levels.

Assistive devices may be included as an adjunctive measure incorporated into the rehabilitation plan to facilitate functional gains.

C.21.d.i Therapy: Active

C.21.d.i.a Therapeutic Exercise - for Post-operative Dupuytren's disease

Recommended - for the treatment of post-operative Dupuytren's disease crush injuries

Frequency/Dose/Duration –Total numbers of visits may be as few as two to three for patients with mild functional deficits or up to 12 to 15 with more severe deficits with documentation of ongoing objective functional improvement.

When there are ongoing functional deficits, more than 12 to 15 visits may be indicated if there is documentation of

functional improvement towards specific objective functional goals (e.g., increased grip strength, key pinch strength, range of motion, advancing ability to perform work activities). As part of the rehabilitation plan a home exercise program should be developed and performed in conjunction with the therapy.

C.21.e Surgery

C.21.e.i Surgery for Treatment of Dupuytren's Contracture

<u>Recommended</u> - using the technique of regional or selective fasciectomy for contracture due to Dupuytren's disease.

C.21.e.ii Percutaneous Needle Fasciotomy (aka Needle Aponeurotomy)

Recommended - for patients with contractures due to Dupuytren's disease. However there is a higher recurrence rate with fasciotomy.

C.21.e.iii "Firebreak" Full-thickness Skin Graft for Dupuytren's Contracture, Extensive Fasciectomy, or Dermofasciectomy for Treatment of Dupuytren's Contracture

<u>Not Recommended</u> - for routine Dupuytren's contracture surgery.

<u>Recommended</u>- in select patients for severe_recurrent cases of Dupuytren's Contracture.

Evidence for Dupuytren's Disease – Surgery

Appendix One - Evidence Tables

Evidence for the Use of Ergonomic Interventions

There is 1 high-(365) and 5 moderate-quality(342, 362, 363, 366, 370) RCTs incorporated into this analysis. There are 4 low-quality RCTs(372, 388-390) in Appendix 2.

Author/Year	Score (0-	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	11)					
Rempel 2012	8.0	N = 110 (100)	Heavy Instrument, Narrow	Mean (SEM) adjusted score change	"To prevent or reduce arm pain,	Data suggest use of wider handled and
		females/10 males)	Handle (34g, 8mm diameter	shoulder pain: Heavy instrument 0.19	practitioners should consider using	lighter instrument associated with
Cluster RCT		dentists and dental	handle) $(n = 56)$ vs. Light	(0.16) vs. light instrument 0.52 (0.17); p	lightweight instruments with large	improved pain scores for distal upper
		hygienists. Mean±SD	Instrument, Wide Handle (14g	= 0.02. Mean (SEM) adjusted score	diameters when performing scaling and	extremity and shoulder.
Sponsored in part by grant		age: narrow handle	(curette tips and 11mm-	change wrist/hand pain: Heavy	root planning procedures."	
from National Institute for		42.9±10.8 years; wide	diameter handle) $(n = 54)$.	instrument 0.14 (0.17) vs. light 0.40		
Occupational Safety and		handle 46.6±9.8 years.	Follow-up for 4 months.	(0.18); p = 0.15.		
Health (CDC). No mention						
of COI.						
Rempel 1999	7.5	N = 20 (13 females/7)	Keyboard A- Protouch	Pain ratings significantly lower (p =	"We conclude that use of keyboard A	Small sample size. Keyboard associated
		males) with hand or	keyboard, Key Tronic	0.05) for keyboard A (6 weeks: 2.7 vs.	for 12 weeks led to a reduction in hand	with fewer symptoms required modestly
RCT		wrist symptoms who	Corporation) $(n = 12)$ vs.	2.9; 12 weeks: 1.9 vs. 4.3).	pain and an improved physical	greater force (0.71N vs. 0.58N) and
		used keyboard ≥10	Keyboard B-MacPro Plus		examination finding when compared	greater displacement (1.69mm vs
Sponosred by Northwest		hours per week. Mean	keyboard with 2-ounce rubber		with keyboard B."	0.58mm) to activate. Suggests lower
Trade Adjustment		age 42.6 years.	domes, Key Tronic Corporation			typing force may not be helpful.
Assistance Center and by			(n = 12). Both keyboards were			
Key Tronic Corporation. No			of conventional layout (101			
mention of COI.			keys). Follow-up for 3 months.			
Rempel 2006	5.5	N = 182 (173 females	Ergonomic Training only:	Sixty-three (63) participants diagnosed	"Providing a large forearm support	Dropout rate 31.3%. Return on
		and 8 males) customer	included conventional	with 1 or more incident MSDs. 12	combined with ergonomic training is an	investment estimated at 10.6 months.
RCT		service works who	recommendations such as chair	month incidence rates for any upper	effective intervention to prevent upper	
		perform 20 hours or	height and position $(n = 46)$ vs	body MSD by intervention group	body musculoskeletal disorders and	
Sponosred in part by a grant		more of computer	Ergonomic training and	(47.7% vs. 35.7% vs. 29.5% vs. 31.8%).	reduce upper body pain associated with	
(RO1 OH04253) from		work per week. No	trackball ($n = 45$) vs Ergonomic	Adjusted hazard rate ratios for armboard	computer work among call centre	
Centers for Disease		neck, shoulder or	training and arm board-arm	for neck/shoulder disorders (HR = 0.49 ,	employees."	
Control/National Institutes		upper extremity	board is wraparound, padded	95% CI 0.24 to 0.97), reduced		
for Occupational Safety and		workers compensation	arm support that attaches to top,	neck/shoulder pain ($p = 0.01$) and right		
Health. COI: Dr Rempel has		claims. Mean Age was	front edge of work surface (n =	upper extremity pain ($p = 0.002$).		
done consulting work for		40.02 years.	46) vs Ergonomic training and			
Logitech Corp., company			trackball and arm board (n =			
which markets trackball			45). Follow-up for 1 year.			
tested in the study.						
Conlon 2008	5.0	N = 206 (57	Conventional Mouse Group (n =	No significant differences for use of an	"In engineers who use a computer for	No meaningful differences in outcomes
		females/149 males)	52) vs. Alternative Mouse	alternative mouse or use of forearm	more than 20 h per week, a forearm	between conventional mouse and
RCT		engineers who worked	Group- neutral forearm posture	ergonomic support board vs. use of	support board may reduce right upper	experimental mouse designs.
		at a computer for at	(n = 52) vs. Board and	conventional mouse for both crude and	extremity discomfort attributed to	-
		least 20 hours per	conventional mouse- Forearm	adjusted hazard ratios ($p > 0.05$).	computer use."	

NYS WCB MTG – Hand, Wrist and Forearm Injuries 142

No mention of sponsorship		week. Mean Age 42.87	support board $(n = 51)$ vs. Board	Unadjusted model showed significant		
or COI.		years.	and alternative mouse- Forearm	decrease in discomfort score in right		
			support board ($n = 52$). Follow-	upper extremity using forearm support		
			up for 1 year.	board; -0.41 (-0.83 to -0.001) ($p \le 0.05$).		
Gerr 2005	4.5	N = 362 (279	Group A: Alternate Intervention	Among other differences, alternative	"This study provides evidence that two	Suggests 90° posture not superior.
		females/83 males)	based on protective factors for	involved greater elbow extension and	specific workplace postural	
RCT		workers who operated	both neck/shoulder and	keyboard position further recessed from	interventions are unlikely to reduce the	
		a computer for at least	hand/arm ($n = 122$) vs. Group B:	edge of desk. No significant differences	risk of upper extremity musculoskeletal	
Sponsored by the US		15 hours or more per	Conventional Intervention based	in distal upper extremity or	symptoms among computer users."	
National institute for		week. Age ≥18 years.	on recommendations from	neck/shoulder symptoms (p >0.05).		
Occupational Safety and			OSHA, NIOSH and private			
Health. No COI.			industry ($n = 125$) vs. Group C-			
			Control group, no intervention			
			(n = 115). Follow-up for 6			
			months.			
Tittiranonda 1999	4.5	N = 80 (46 females/34	Placebo Group- Standard	High dropouts among keyboard that was	"These results provide evidence that	CTS and tendinitis were combined.
	ч.5	males) with CTS	Keyboard (slope 8.0°) (n = 20)	completely split in two with sharply	keyboard users may experience a	Dropouts high in keyboard group with
RCT		and/or tendonitis.	vs. Keyboard 1- Apple	angled, but somewhat adjustable slopes.	reduction in hand pain after several	widely separated hands and more steeply
iter i		Mean age 43.65.	adjustable keyboard (slope 3.8	Changes in overall pain severity:	months of use of some alternative	angled surfaces.
No mention of sponsorship		intenir uge teteet	to 7.0°) (n = 20) vs. Keyboard 2-	placebo (-0.29 ± 1.5) vs. split1 (0.52 ± 2.0)	geometry keyboards."	
or COI.			Comfort Keyboard System	vs. split/sharply angled (0.84 ± 1.9) vs.		
			(slope -44.0 to 38.5°) (n=20) vs.	split2 (1.21 ± 3.1) , p = 0.11. More		
			Keyboard 3- Microsoft natural	differences present in tendonitis		
			keyboard (slope 5.5 or -2.6°) (n	subgroup ($p = 0.088$) than CTS ($p =$		
			= 20). Follow-up for 6 months.	0.57).		

Evidence for the Use of Return-to-Work Programs

There is 1 moderate-quality RCT incorporated into this analysis.(394) There is one other study(395) in Appendix 2 (see Chronic Pain Guideline for additional studies).

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	(0-11)					
Abasolo 2007	4.0	N = 13,077 (gender not	Multifaceted intervention	Mean durations of temporary work	"The implementation of this type of	Scored for CTS patients within trial.
		specified) workers on	program vs non-interventional	disabilities for CTS patients $(n = 74)$	specialist-run, protocol-based early	Overall participation rate 62.8%.
RCT		sick leave with	control	100.4 in controls vs. 27.8 days in	intervention program would be very	
		diagnossi of MSD.		intervention group ($p < 0.001$).	beneficial in the treatment of patients	
Sponsored by grants from		Mean age for			with work disability related to MSDs,	
Fondo de Investigaciones		intervention and control			except for those with knee pain	
Sanitarias of the Spanish		groups: 40.8 and 40.6.			(excluding osteoarthritis)."	
Ministry of Health. No						
mention of COI.						

Evidence for Work Restrictions

There are 5 moderate-quality RCTs incorporated into this analysis. (342, 362, 363, 366, 370) There are 2 low-quality RCTs in Appendix 2.(389, 390)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: work restriction, ergonomics, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, burning, tingling, itching, numbness, hand, palm, finger, pain controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 37 articles in PubMed, 609 in Scopus, 13 in CINAHL, and 45 in Cochrane Library. We considered for inclusion 3 from PubMed, 3 from Scopus, 1 from CINAHL, 0 from Cochrane Library and 6 from other sources. Of the 13 articles considered for inclusion, 7 randomized trials and 6 systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Rempel 1999 RCT Sponsored by Northwest Trade Adjustment Assistance Center and by Key Tronic Corporation. No mention of COI.	7.5	N = 20 (13 females/7 males) with hand or wrist symptoms who used a keyboard ≥ 10 hours per week. Mean age 42.6 years.	Keyboard A- Protouch keyboard, Key Tronic Corporation) (n = 12) vs.Keyboard B-MacPro Plus keyboard with 2-ounce rubber domes, Key Tronic Corp. (n = 12). Both keyboards conventional layout (101 keys). Follow-up for 3 months.	Pain ratings significantly lower (p = 0.05) for keyboard A (6 weeks: 2.7 vs. 2.9; 12 weeks: 1.9 vs. 4.3).	"We conclude that use of keyboard A for 12 weeks led to a reduction in hand pain and an improved physical examination finding when compared with keyboard B."	Small sample size. Keyboard associated with fewer symptoms required modestly greater force (0.71N vs. 0.58N) and greater displacement (1.69mm vs 0.58mm) to activate. This suggests lower typing force may not be helpful.
Rempel 2006 RCT Sponosred in part by grant from Centers for Disease Control/National Institutes for Occupational Safety and Health. COI: Dr Rempel has done consulting work for Logitech Corp., company which markets trackball tested in study.	5.5	N = 182 (173 females/8 males) customer service works who perform 20 hours or more of computer work per week. No neck, shoulder or upper extremity workers compensation claims. Mean age 40.02 years.	Ergonomic Training only: Included conventional recommendations such as chair height and position $(n = 46)$ vs. Ergonomic training and trackball $(n = 45)$ vs. Ergonomic training and arm board- arm board is a wraparound, padded arm support that attaches to the top, front edge of work surface $(n =$ 46) vs. ergonomic training and trackball and arm board. Follow-up for 1 year.	Sixty-three (63) participants diagnosed with 1 or more incident MSDs. 12 month incidence rates for any upper body MSD by intervention group (47.7% vs. 35.7% vs. 29.5% vs. 31.8%). Adjusted hazard rate ratios for armboard for neck/shoulder disorders (HR = 0.49, 95% CI 0.24 to 0.97), reduced neck/shoulder pain (p = 0.01) and right upper extremity pain (p = 0.002).	"Providing a large forearm support combined with ergonomic training is an effective intervention to prevent upper body musculoskeletal disorders and reduce upper body pain associated with computer work among call centre employees."	Dropout rate 31.3%. Return on investment estimated at 10.6 months.
Conlon 2008 RCT No mention of sponsorship or COI.	5.0	N= 206 (57 females/149 males) engineers who worked at computer for at least 20 hours per week. Mean age 42.87 years.	Conventional Mouse Group- (n = 52) vs. Alternative Mouse Group- neutral forearm posture (n = 52) vs. Board and conventional mouse- Forearm support board (n = 51) vs. Board and alternative mouse- Forearm support board (n = 52). Follow-up for 1 year.	No significant differences for use of alternative mouse or forearm ergonomic support board vs. use of conventional mouse for crude and adjusted hazard ratios (p>0.05). Unadjusted model showed significant decrease in discomfort score in right upper extremity using forearm support board; -0.41 (-0.83 to -0.001) (p ≤ 0.05).	"In engineers who use a computer for more than 20 h per week, a forearm support board may reduce right upper extremity discomfort attributed to computer use."	No meaningful differences in outcomes between conventional mouse and experimental mouse designs.
Gerr 2005 RCT Sponsored by US National institute	4.5	N = 362 (279) female/83 male) workers who operated a computer at least 15 hours or more per week. Age ≥ 18 years.	Group A: Alternate Intervention- based on protective factors for both neck/shoulder and hand/arm (n = 122) vs. Group B: Conventional Intervention based on recommendations from OSHA, NIOSH and	Among other differences, alternative involved greater elbow extension and keyboard position further recessed from edge of desk. No significant differences in distal upper extremity or neck/shoulder symptoms (p>0.05).	"This study provides evidence that two specific workplace postural interventions are unlikely to reduce the risk of upper extremity musculoskeletal symptoms among computer users."	Suggests 90° posture not superior.

			private industry ($n = 125$) vs.			
			Group C- Control group, no			
			intervention ($n = 115$). Follow-			
			up for 6 months.			
Tittiranonda 1999	4.5	N = 80 (46 female/34)	Placebo Group- Standard	High dropouts among keyboard that was	"These results provide evidence that	CTS and tendinitis were combined.
		male) with CTS	Keyboard (slope 8.0°) (n = 20)	completely split in two with sharply	keyboard users may experience a	Dropouts were high in the keyboard
RCT		syndrome and/or	vs. Keyboard 1: Apple	angled, but somewhat adjustable slopes.	reduction in hand pain after several	group with widely separated hands and
		tendonitis. Mean age	adjustable keyboard (slope 3.8-	Changes in overall pain severity: placebo	months of use of some alternative	more steeply angled surfaces.
No mention of sponsorship		43.65 years.	7.0°) (n = 20) vs. Keyboard 2:	(-0.29±1.5) vs. split1 (0.52±2.0) vs.	geometry keyboards."	
or COI.			Comfort Keyboard System	split/sharply angled (0.84±1.9) vs. split2		
			$(slope -44.0-38.5^{\circ}) (n = 20) vs.$	(1.21 ± 3.1) , p = 0.11. More differences		
			Keyboard 3: Microsoft natural	present in tendonitis subgroup (p =		
			keyboard (slope 5.5 or -2.6°) (n	0.088) than CTS (p = 0.57).		
			= 20). Follow-up for 6 months.			

Evidence for the Use of Electrodiagnostic Studies

There are 20 moderate-quality studies incorporated into this analysis.(319, 445, 451-453, 455, 456, 459-471) There are 4 low-quality studies in Appendix 2.(472-475)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: electrodiagnostic studies, nerve conduction study (NCS), electromyography (EMG); carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median neuropathy; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, systematic, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 96 articles in PubMed, 371 in Scopus, 23 in CINAHL, and 23 in Cochrane Library. We considered for inclusion 20 from PubMed, 30 from Scopus, 5 from CINAHL, 6 from Cochrane Library and 30 from other sources. Of the 91 articles considered for inclusion, 67 trials and 7 systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Population/ Case Definition	Investigative Test	Gold Standard / Comparative Test	Results	Conclusion	Comments
Dale 2015 Diagnostic Sponsored by CDC/NIOSH and Washington University Institute of Clinical and Translational Sciences Award (CTSA) grant from NCATS of NIH. No COI.	7.0	N = 62 (19 females and 43 males) subjects that originally underwent NC-Stat automated NCS; mean age 33.66 (9.43).	NC-Stat an automated Nerve Conduction Studies (NCS) machine	Traditional NCS using a NeuroMax 1002 device in an electrodiagnostic lab.	Higher agreement between Median nerve parameter rather than Ulan nerve parameter. Highest reciever operating curve (ROC) area 0.97 and 0.96 for median nerve parameter. 100% sensitivity and 74% specificity for Ulnar Distal Motor latency and Distal sensory latency. Highest specificity in median ulnar sensory difference, 100%.	"In conclusion, the NC-stat device has been previously shown to have excellent agreement with traditional methods of median nerve testing in clinical populations; this study shows that this excellent agreement extends to use in a general worker population with low prevalence of disease."	Study reports automated nerve conduction study was comparable to the traditional EDS for detection of median nerve conduction abnormalities in a general worker population.
Buch-Jaeger 1994 Diagnostic No mention of sponsorship or COI.	7.0	N = 112 with signs of carpal tunnel, 60 bilaterally. Patients confirmed through clinical analysis.The mean age of 52 years, ranging from 29-81 years.	Nerve Conduction studies (NCS), positive when distal motor latency in the abductor brevis muscle was greater than 4ms.	Clinical evaluation focusing on 11 different criteria including paraesthesiae in territory of median nerve, occasional pain, nocturnal recrudescene of symptoms, numbness leading to clumsiness of hand, Phalen's test, Tinel's test, dealt, Vibratory sensibility, Thershold sensibility, Gilliat's test, McMurthry's sign, Static 2- point discrimination.	NCS positive in 68 cases (61%) and negative in remaining 44 cases (39%). Of negative NCS patients, 10 spontaneously recovered, 4 unchanged, 5 had symptoms after heavy tasks, 3 thought to be malingering, and 20 diagnosed with other disease. Of NCS confirmed CTS group 33 had surgical findings; 40 (93%) had complete disappearance and intervention.	"Our findings suggest that typical clinical features and positive provocation tests are not sufficient to lead a surgeon to decompress the carpal tunnel, and we feel that electrodiagnostic examination is necessary in every case."	Study supports nerve conduction studies to be a key component in diagnosis of CTS as other clinical tests have fair sensitivity and specificity.

Atroshi 2003	7.0	N = 125	Bilateral Nerve	Patients clinically diagnosed	Receiving operating Characteristic (ROC)	"Using the clinical diagnosis of CTS as	Study suggests nerve conduction study to
7405111 2005	7.0	(gender not	Conduction Tests	using Phalen's Test, Tinels	area under curve Median-ulnar nerve SL	the criterion standard, nerve conduction	diagnose CTS had only modest sensitivity
Diagnostic		specified)	including median nerve	Test, recurrent numbness or	difference test (Area (95% CI)): 0.80	tests had moderate sensitivity and	and specificity and measuring the median-
Diagnostic		CTS group	distal motor latency	tingling, and filled out a hand	(0.01-0.08) (p=0.004). Median-ulnar	specificity and a low positive predictive	ulnar sensory latency difference was a
Sponsored by		and	(M) DML. Long	diagram.	nerve digit-wrist SL difference had a	value in population-based CTS.	better predictor of true CTS diagnosis.
research grants			Finger-wrist sensory	diagram.	sensitivity of 70%, specificity of 82%, a	Measurement of median-ulnar sensory	better predictor of true CTS diagnosis.
-		symptomatic			Positive predictive value of 19%, and a		
from the Skåne		controls with	latency, and sensory			latency difference had the highest	
and Kristianstad		possible/unli	conduction velocity		negative predictive value of 98%.	diagnostic accuracy."	
County Councils.		kely CTS (n	(SCNV) in forearm,				
No mention of		= 155) and	wrist-Palm, and palm				
COI.		asymptomati	digit segments. Also an				
		c Control	ulnar nerve small				
		group (n =	finger-wrist sensory				
		124) no signs	latency.				
		of CTS $(n =$					
		124) Mean					
		age 51±14.					
		All					
		participants					
		collected					
		from 3,000					
		sample in					
		Sweden.					
		Mean age 52					
		± 13.					
Leffler 2000	6.5	N = 75	An automated electro	A conventional diagnostic	Linear regression showing AEND and	"This study demonstrated that the	Study suggests MNW diagnosis is
		symptomatic	diagnostic device	device conducted within a lab	conventional results correlation was 0.90	Distal Motor latency provided by an	improved with addidtion of AEND as
Diagnostic		hands	(AEND).	by a neurologists.	(p <0.001). AEND sensitivity for very	AEND is highly correlated with the	compared to modeling based solely on
		referred to			symptomatic hands 89% specificity 90%.	Distal Motor Latency obtained by	clinical findings.
		electrophysio			Lower severe had sensitivity of 87%, also	conventional testing."	
		logical lab;			90% specificity.		
		Mean age 49			yoro specificity.		
		± 12 vs. n =					
		22					
		asymptomati					
		c volunteers.					
		e volumeers.					

Graham 2008 Diagnostic	6.5	N = 143 clinically diagnosed with with CTS	Standard electrodiagnostic tests, Sensory nerve conduction by technician and evaluated by neurologist, use of stringent and Lax criteria used to confirm CTS.	CTS-6 evaluation which is a clinical diagnosis aid.	Using CTS-6 the pretest probability was 0.81 ± 0.22 . After the Stringent Criteria posttest probability was 0.91 and Lax was 0.83 . Average change in probability was -0.02 ± 0.10 with stringent and -0.06 ± 0.16 with lax.	"For the majority of patients who are considered to have carpal tunnel syndrome on the basis of their history and physical examination alone, electrodiagnostic tests do not change the probability of diagnosing this condition to an extent that is clinically relevant."	Study suggests if there is a high CTS probability based on history and physical exam, electrodiagnostic tests do not change the probability of this diagnosis to a clinically meaningful extent.
Pastare 2009 Diagnostic	6.5	N = 66 consecutive patients investigated for sensory hand symptoms. Mean Age; 51 years	Nerve Conduction Studies vs. Ultrasound	Clinical Diagnosis of CTS	Nerve Conduction studies showed greater diagnostic sensitivity than ultrasound; 54 wrists 82% vs. 41 62% for highly likely clinical diagnosis of CTS.	"In summary, our study shows that NCS have better sensitivity in supporting a diagnosis of CTS. However, because of its high positive predictive value, lack of discomfort, and ease of use, US can be used as a screening method for CTS."	Reports nerve conduction studies superior to sonography in detecting CTS. But, sonography may be used as first-line screening tool if clinical index of suspicion for CTS is high.
Nathan 1993 Diagnostic	6.5	N = 2,334 hands of industrial workers, workers' compensatio n patients, and students. Mean age 40.6 years.	Maximum latency difference (MLD) determined by centimetric technique.	Clinical diagnosis of CTS. MLD was compared with 8-cm latency (S8) and 14-cm latency (S14).	MLD most sensitive measurement (86%) and had greatest efficiency of correct classification (84%). The S14 was most specific measurement (94%)	"Based on these findings, we recommend that confirmatory nerve conduction studies be performed in all cases where CTS is suspected."	Controls younger than CTS group. Study reports maximum latency difference (MLD) most reliable measurement for prediciting CTS. Study recommends nerve conduction studies be performed when high index of suspicion for CTS.

Lee 2009 Diagnostic	6.0	N = 153 with clinically suspected CTS. Mean age 52.5±12.3 vs. 100 clinically healthy volunteers; mean age 48.5±11.4.	Electrodiagnostic testing including Median Terminal latency differences, motor conduction study and sensory conduction study.	Clinical criteria and diagnosis was used as the parameter to test for sensitivity.	Sensitivity of top EDX testing: Wrist- Palm Sensory Conduction Velocity (SCV): 90.5%, Distal-Proximal ratio SCV 92.3%, Wrist-Digit 2 SCV 89.1%, Wrist- Digit 3 89.1%. Terminal Latency ratio of Wrist-Palm Motor conduction 81.8%.	"The terminal latency ratio of the wrist to the palm is a valuable technique for the diagnosis of carpal tunnel syndrome, and it requires only a simple additional stimulus compared to existing methods."	Study suggests median terminal latency ratio in the third finger as the most sensitive thechnique for detection of CTS.
Concannon 1997 Diagnostic	6.0	N = 349 (460 hands) patients who underwent carpal tunnel release.	Electrodiagnostic Studies	N/A	398/460 hands had positive electrodiagnostic studies. 60 clinical CTS diagnosis but normal electro-diagnostic studies. Phalen's only significant test with regression coefficient: -0.91; OR 0.40 CI: 0.17 - 0.96 (p = 0.04). Indicated model predicts higher probability of negative electromyogram than positive electromyogram. 76% (n = 348) of affected hands had mild to moderate electrodiagnostic findings, 11% had severe CTS (n = 50), and 13% had normal electrodiagnostic findings. Patients who were older teneded to have severe electrodiagnostic findings (p = 0.0001). Significant association between gender and maximal electrodiagnostic findings (p = 0.02). Patients with severe CTS had highest incidence of muscle wasting (22%, p <0.02).	"[E]lectrodiagnostic studies in suspected carpal tunnel syndrome should be reserved for use in the patient with equivocal findings and should not be considered a necessary criterion when history and clinical examination provide this diagnosis."	Approximately 13% of patients receiving electrodiagnostic studies only to diagnose CTS would be excluded and should be used only in cases of equivocal findings.

Chang 2006 Diagnostic	6.0	N = 280 suspected CTS patients (360 hands).	Median wrist–palm motor conduction velocity (W–P MCV)	Standard sensory conduction techniques	Abnormal hand number, sensitivity (%), and specificity (%) of Motor DL/ Sensory DL (D1)/ Sensory DL (D2)/ Sensory DL (D4)/ W–P MCV/ W–P SCV/ W–P SCT/ median–radial sensory latency difference/ median–ulnar sensory latency difference were: 234, 65, and 99.3/ 289, 80.3 and 98.7/ 261, 72.5 and 99.3/ 276, 76.7 and 100/ 294, 81.7 and 100/ 265, 73.6, and 100/ 291, 80.8 and 100/ 312, 86.7 and 98.7/ 314, 87.2 and 96.7	"W–P MCV is a valuable motor conduction technique for the diagnosis of CTS and it is confirmed again that W–P MCV is equal to or more sensitive than W–P SCV and W–P SCT."	Data suggest W-P-MCV as being a tool for electrodiagnosis of CTS with reported comparable sensitivity to W-R-SCV and W-P-SCT.
Wang 2013 Diagnostic	6.0	N = 162 CTS patients (248 hands) and 83 controls (166 hands).	Median-to-ulnar comparative Nerve conduction studies: Sensory median-ulnar difference (MS-US), Mixed median-ulnar palm latency difference (PM-PU), and Distal latency differences between second lumbrical and interossei (2L-INT).	N/A	168/248 (67.7%) hands had abnormal findings. 80 (32.3%) hands received 2L- INT, MS-US, and PM-PU additional tests. 88.3% symptomatic hands had at least an abnormal findings. The sensitivity of MS- US/ 2L-INT/ PM-PU were: >0.5 ms in 21.3% of hands/ >0.4 ms in 27.5% of hands/ >0.4 ms in 47.5% of hands. MP- UP had the greatest sensitivity in contrast to L2-INT and MS-US ($p = 0.014$ and p<0.001). Conventional EDX with PM- PU had a sensitivity of 83%.	"For CTS patients with normal results from the standard methods, PM-PU is a good additional comparative test to further improve diagnostic rate."	Data suggest PM-PU may be beneficial in testing CTS patients who tested normal from traditional testing methods to further identify true positives.

Lew 2005 Diagnostic	5.5	control healthy hands; Mean Age 44.0 ± 12.9 (n = 44) vs. symptmatic hands suspected of CTS; Mean Age 51.5 ± 18.2 (n = 136).	Nerve Conduction Studies varying in segment length. Sensory Nerve conduction velocity of Long segment from wrist to Digiti 1, 2, 3, and 4. transcarpal mixed nerve conduction velocity of Short segement palm to wrist. Transcarpal sensory Nerve Conduction Velocity wrist-digit and palm to digit difference.	Nerve Conduction Study (NCS) results from control group.	Average Sensitivity of the different segment lengths: Long segment 39.5%. Short segment 56%. Two segment 40.5%	"Our Study showed that among the 8 median NCV tests, the short, segment, onset latency-based transcarpal NCV was most sensitive in diagnosing CTS. This study also suggests that direct measurement of a single nerve segment is superior to either long-segment studies or differential subtraction between 2 segments of the same nerve."	3:1 matched study suggests a single short nerve segment measurement was superior to both long segment studies or differential subtraction between 2 segments of the same nerve for CTS diagnosis.
Kuntzer 1994 Diagnostic	5.5	N = 75 healthy subjects with no symptoms of CTS vs. 102 patients suspected on clinical grounds of having CTS	19 different sensorimotor and sympathetic parameters in electrodiagnostic studies.	Normal control group values for different electrophysiological tests. (EDX)	Specificity (%) and Sensitivity (%) of the following EDX tests: Median Motor Distal Latency 98.6 and 47. Thenar CMAP amplitude 100 and 15. Median Nerve Palm to wrist velocity 97 and 83. Median nerve digit to wrist velocity, 100 and 49. Median nerve digit to wrist amplitude 100 and 61. Median-Ulnar digit to wrist latency difference 100 and 10. Median sensory distal index, 99 and 69. SSR amplitude ratio, 100 and 10.	"The results obtained in this study demonstrate that patients with CTS form a heterogeneous group with a wide variation in a specific nerve conduction parameter between individual patients, reflecting the different degrees of nerve pathology. It is therefore not recommended to use a specific procedure for the evaluation of each patients suspected of CTS, but (i) to use only sensitive parameters with high specificity as an optimal routine for the investigation of the average CTS patient, (ii) to perform needle EMG in forearm and arm muscles for each patient suspected to have CTS with radiating pain to the arm, and (iii) to perform ulnar motor and sensory nerve conduction studies in order to exclude superimposed peripheral neuropathy."	Data suggest median sensory nerve conduction studies appear abnormal compared to motor nerve conduction studies in CTS patients. Study does not recommend use of a specific procedure for all suspected CTS patients.

Bodofsky 2005	5.5	Patients	(Median Sensory -	Other Electrodiagnostic	MSUMLD had a median value of 0.4	"[T]he results in this study strongly	Data suggest median sensory ulnar latency
-		randomly	Ulnar Motor) Latency	techniques including, Median	msec in group 1, 1.0 msec in group 2, 2.0	suggest that, in patients with symptoms	is obtainable and yields a good sensitivity
Diagnostic		sampled from	difference (MSUMLD)	Sensory Latency, Ulnar sensory	in group 3 (p<0.0001). 95% CI for	and signs of CTS, the (Median	and specificity in the detection of mild
		electrodiagno	as a more sensitive and	latency, Ulnar Motor Latency,	MSUMLD in normal group is 0.1-0.7	Sensory-Ulnar Motor) Latency	CTS.
		stic studies.	specific diagnostic tool	(Median-Ulnar) Sensory	msec. 83% of group 2 patients were added	difference is an easy simple, highly	
		Divided into	for CTS.	Latency Difference.	to diagnostically confirmed CTS. 100% of	sensitive and specific test."	
		3 groups. 1)			group 3 were diagnosed with CTS using		
		Normal			MSUMLD. Sensitivity and Specificity of		
		Patients			MSUMLD is 95% and 100%,		
		(Confirmed			respectively.		
		using					
		physical					
		exam,					
		history, EMG					
		and NCS) 2)					
		Probable					
		CTS					
		(Symptoms,					
		Physical					
		Exam					
		consistent					
		with CTS.					
		Normal EMG					
		and NCS) 3)					
		Definite CTS					
		(Symptoms,					
		Physical					
		Exam					
		consistent					
		with CTS.					
		EMG and					
		NCS also					
		consistent					
		with CTS)		1		1	

Khosrawi 2013	5.0	N = 100 healthy hand	Electrodiagnostic tests (EDX) including	Clinical Diagnosis of Carpal Tunnel Syndrome. Also	Sensitivity and Specificity (%) (95% CI) of EDX tests: SDL 87.3 (83.6-89.1) and	"It seems that, in mild cases of CTS which traditional NCS shows	Data suggest in mild CTS cases, RL may be a tool to demonstrate the effect on the
Diagnostic		volunteers and 64 hands of patients with clinical symptoms of CTS	Sensory Distal Latency (SDL), Distal Motor Latency (DML), Motor Nerve Conduction velocity (MNCV), Residual Latency (RL)	comparison of values of Electrodiagnostic readings in control vs diagnosed patients.	91.2 (89-95.6), DML 70.3 (65.6-71.9) and 100 (96.5-100), MNCV 97.2 (94.4-98.6) ad 90.4 (88.5-94.2), RL 85.9 (84.4-87.5) and 91.1 (87.8-92.2). Median-Ulnar DML difference 84.0 (82.6-85.1) and 89.9 (89- 91.1). Median and Ulnar SDL 90.5 (88.1- 93.4) and 93.7 (90.2-95.6).	abnormalities only in sensory studies, RL may better demonstrate the effect on median nerve motor fibers."	median nerve motor fibers thus increasing the sensitivity of NCS.

Zagnoli 1999	5.0	N = 20	Electrodiagnostic	MRI	33/40 wrists showed abnormal	"When electrodiagnostic abnormalities	Small sample size. Data suggest MRI is
		patients (40	Studies (Vickers HME		electrodiagnostic findings. 11 had isolated	suggest more severe disease than	useful in diagnosing more severe CTS
Diagnostic		wrists) with	device)		sensory abnormalities, and 13 cases	expected otherwise discordant with	diseases after electrodiagnostic
		CTS. Mild (n			showed sensory and motor abnormalities.	clinical findings, demonstration by	abnormalities have been found.
		= 13),			2 symptomatic wrists showed normal	magnetic resonance imaging of high	
		moderate (n			electrodiagnostic findings (sensitivity	median nerve signal and/or median	
		= 12), severe			94%) and 2 asymptomatic wrists showed	nerve enlargement may help to select	
		(n = 8).			mild to moderate findings (specificity	those patients most likely to benefit	
		Follow-up at			94%). 32 cases (94%) had sensory	from surgical treatment."	
		31 months.			abnormalities, 25 had decreased sensory		
					nerve conduction velocity, 29 had		
					decreased sensory nerve potential		
					amplitude. MRI: 20 control wrists normal,		
					9 clinical symptoms of CTS, 10 had		
					electrodiagnostic abnormalities. 73%		
					sensitivity and 92% specificity of MRI for		
					the diagnosis of CTS. Of 26 MRI studies,		
					70% had bowing of the transverse carpal		
					ligament. There were 55% of median		
					nerve enlargement and 57% of high		
					median nerve signal. These were		
					correlated with moderate or severe CTS (p		
					<0.001).		

Violante 2004 Diagnostic	5.0	114 meat workers (228 hands) at risk of CTS; mean age 38.0±10.0 years.	median nerve conduction studies (NCS)	N/A	Significant difference between symptomatic and asymptomatic hands in WSL, SCV-WP, WML, MCV-WP, and the SCV-WP/SCV-EW ratio (all p <0.001). NCS parameters and symptoms had more agreements in non-dominant hand, which was shown in WSL (95% CI: 0.31–0.82) and SCV-WP (95% CI: 0.22– 0.59), (p <0.001 and p <0.001).	"Given the importance of the dominant hand in working populations, these data support use of SCV-WP (or WSL) as an informative NCS parameter for occupational studies on CTS."	Study population of meat workers with no prior diagnosis of CTS found use of SCV- WP (WSL) a useful NCS parameter for occupational CTS studies in the dominant hand of these workers.
Sheu 2006 Diagnostic	5.0	N = 131 hands of CTS patients and 136 hands of controls. Mean age 49.5 years.	Nerve conduction studies	Carpal tunnel diagnosis.	The distoproximal latency ratio (DPLR) of the median nerve showed the highest sensitivity (77%) but had a misclassification rate of 6.9%). The sensitivity of DPLR was not significantly greater than D1M-D1R (p>0.05).	"Optimal transformation of NCS data is mandatory to diminish the effect of skewness and enhance the diagnostic accuracy. As compared to the comparative tests, the segmental study of the median nerve is more easily applied and yields higher sensitivity in detecting mild CTS."	Data suggest segmental study of median nerve has application ease and has a higher sensitivity when detecting mild CTS.
Aydin 2004 Diagnostic	4.5	N = 525 (818) hands) with suspected CTS confirmed through electrophysiol ogic evaluation. Mean age 49.1 ± 11.7 years.	Compared sensitivity of first 3 digital branches of median nerve.	Electrophysiological testing was used as the standard diagnostic test in this study.	Most common abnormal physiological findings in Sensory Nerve Conduction Velocity over palm-wrist segment and Digit 1-Wrist segment with sensitivity of 98.5% and 95.4%, respectively.	"The sensory nerve conduction velocity test of the digit 1-to-wrist segment has the most sensitivity among the three digital branches of the median sensory nerve, and it may be used more widely in the electrodiagnosis of carpal tunnel syndrome."	Data suggest sensory nerve conduction velocity test if digit 1 to the wrist segment is the most sensitive among the 3 digital branches of the median sensory nerve.

Elkowitz 2005 4	4.0	N = 72 who had	A portable Electrodiagnostic	Traditional Electrodiagnostic testing as the ccomparison.	All patients who underwent both types of testing indicated that NC-Stat more	"This portable electrodiagnostic device provides a reliable, convenient, and	Data suggest portable NC-Stat is reliable and convenient for diagnosing, evaluating
Diagnostic			testing device 9NC- Stat)		(p<0.001) linear relationship between Distal motor latencies.	relatively inexpensive way to obtain objective data and that can be used in diagnosing, evaluating, and terating CTS."	and treating CTS.

Evidence for the Use of Ultrasound

There are 4 moderate-quality studies incorporated into this analysis. (465, 488-490) There are 3 low-quality studies in Appendix 2.(475, 491, 492)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: ultrasound diagnostic studies; carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, pain; diagnostic, sensitivity and specificity, positive predictive value, negative predictive Value, Predictive Value of Tests, efficacy, efficiency. We found and reviewed 304 articles in PubMed, 370 in Scopus, 4 in CINAHL, and 13 in Cochrane Library. We considered for inclusion 35 from PubMed, 15 from Scopus, 3 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 53 articles considered for inclusion, 43 diagnostic studies and 10 systematic review met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Ν	Area of Upper Extremity	Diagnoses	Type of Ultrasound	CT used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Ziswiler 2005 Diagnostic No mention of sponsorship or COI.	7.0	N=74 (gender not specified) (107 wrists).	Wrist	CTS. Mean age 51±16 years.	5-12 MHz linear array transducer (ATL 3500, Philips Medical System)		-			-	-	-	-	CTS present wrists: 81. CTS absent wrists: 26. ROC curve area under the curve: 0.89 (95% CI 0.82, 0.96); cutoff value 10 mm ² ; sensitivity 82%; specificity 87%. Likelihood ratios (LR): cutoff of 8 mm ² satisfactory power to rule out CTS, fitted- negative LR 0.13 for cross-sectional areas <8 mm ² ; cutoff of 12 mm ² excellent power to rule in CTS, fitted-positive LR 19.9 for areas \geq 12 mm ² .	"Depending on setting and purpose, different cutoff values for the largest cross-sectional area may be used to accurately rule in or rule out CTS."	Data suggest high correlation between sonography and nerve conduction studies with almost equal sensitivity and specificity.

Pastare 2009 Diagnostic No mention of sponsorship or COI.	6.5	N = 66 (gender not specified) consecutiv e patients investigat ed for sensory hand symptoms . Mean age 51 years.	W	Carpal tunnel Syndro me	Ultrasound was performed using a 12- MHz lineararray transducer	-	-	-	+	-	-	+	-	Nerve Conduction studies showed greater diagnostic sensitivity than ultrasound; 54 wrists 82% vs. 41 62% for highly likely clinical diagnosis of CTS.	"In summary, our study shows that NCS have better sensitivity in supporting a diagnosis of CTS. However, because of its high positive predictive value, lack of discomfort, and ease of use, US can be used as a screening method for CTS."	Data suggest nerve conduction studies are superior to sonography in detecting CTS.
Visser 2008 Diagnostic No mention of sponsorship . No COI.	6.0	N= 168, N=137 volunteer controls. 53 men and 84 women. Mean age at onset, 52 (± 14).	Forea rm ,Wris t	CTS based on clinical signs and sympto ms without previou s splintin g or surgical treatme nt for CTS. Mean age 52±14 years, control s 46±15 years.	5-12 mHz linear-array transducer									Sensitivity/specificity (%, 95% CI) Sonography – wrist: cross-sectional area >0.1 cm ² : 78 (70-84)/91 (86-95). Sensitivity/specificity (%, 95% CI) EMG: DSL digit 4 >3.2 msec 54 (46-62)/ 97 (89– 100); Median-ulnar digit 4 difference >0.4 msec 82 (75–88)/ 88 (78–95); DML median nerve >3.8 msec 74 (66–81)/ 97 (88–100).	"In patients with a clinical diagnosis of CTS, the accuracy of sonography is similar to that for EMG."	Data suggest sonography is comparable to EMG in patients with a clinical diagnosis of CTS but study states EMG should still be first diagnostic test utilized in patients with atypical symptoms.

Wang 2008	6.0	N = 37	Wrist	Classic	Sequoia 512	-	-	-	-	-	-	-	-	Cross-sectional area at	"CTS can be diagnosed by	Small sample
		(20		or	with 8-15									pisiform level (P-CSA):	HRUS. The most useful	suggesting HRUS can
Diagnostic		controls).		probabl	MHz broad									ROC curve area under	diagnostic criterion is a	be useful in
		Mean age		e	line									curve (AUC) = 0.901	median nerve CSA of	diagnosing CTS. The
No mention		CTS		sympto	transducer									(p<0.001); optimal cut-	$\geq 9.875 \text{ mm}^2$ at the	most useful criterion is
of		patients		ms of										off of 9.875 mm ² ;	pisiform level."	when the median
sponsorship		(44±9.4		CTS										sensitivity 82%;		nerve CSA is of \geq
or COI.		years) and		for 1-										specificity 87.5%.		9.875 mm ² at pisiform
		healthy		60										Longitudinal		level.
		subjects		months										compression sign		
		(43.7 ±												(LCS): ROC curve		
		12.91												AUC = 0.842		
		years).												(p<0.001); optimal cut-		
														off value ≥ 1.5 ;		
														sensitivity 50%;		
														specificity 95.8%.		
														Retinacular bowing:		
														ROC curve AUC =		
														0.781 (p<0.001);		
														optimal cut-off ≥2.11		
														mm; sensitivity 77%;		
														specificity 75%.		

Evidence for the Use of Magnetic Resonance Imaging and Diffusion Tensor Imaging

There are 6 moderate-quality studies incorporated into this analysis. (469, 544-548) There are 5 low-quality studies in Appendix 2. (475, 549-552)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: magnetic resonance imaging, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy,; diagnostic, sensitivity and specificity, positive predictive value, negative predictive value, predictive value of tests, efficacy, efficiency. We found and reviewed 287 articles in PubMed, 383 in Scopus, 8 in CINAHL, and 5 in Cochrane Library. We considered for inclusion 66 from PubMed, 6 from Scopus, zero from CINAHL, zero from Cochrane Library and 3 from other sources. Of the 75 articles considered for inclusion, 68 diagnostic studies and 1 systematic review met the inclusion criteria.

Author/Year Study Type	Score	Number	Area of Upper Extremity	Diagnoses	Type of MRI used	Type of CT used	T1 weighted images	T2 weighted images	X-ray	Myelography	More than one rater	Surgery Performed	Clinical outcomes assessed	Long term follow-up	Results	Conclusion	Comments
Jarvik	7.0	N = 120	W	CTS	MRI	-	+	+	-	-	+	-	-	-	Intrareader reliability was substantial to	"The reliability of MRI is	Study used a mixed cohort (both men and
2002		(gender			using										near perfect (kappa = $0.76 - 0.88$).	high but the diagnostic	women) to anhance diagnostic accuracy
		not			1.5										Interreader lower but still substantial	accuracy is only moderate	(those who were true positive for CTS)
Diagnostic		specified) with			Tesla Magnet										(kappa = $0.60 - 0.67$). Sensitivity of MRI was greatest for the overall impression of	compared with a research- definition reference	using high resolution MRI. Data suggest MRI has a "moderate" diagnostic accuracy
Sponsored by		clinically			s										the images (96%) followed by increased	standard."	at best compared to the reference standard
Royalty		suspecte													median nerve signal (91%) and with lower		for CTS. Also, assumption that a high STIR
Research Fund,		d CTS.													specificities (33 - 38%).		signals within the palmar bursa as being a
University of		Age <18															marker for CTS was likely incorrect as
Washington.		or >70															normal signals within palmar bursa were
No mention of		years.															associated with CTS presence.
COI.																	

Bulut 2014 Diagnostic No mention of sponsorship or COI.	5.5	N = 120 (90 females and 30 males) with CTS. The mean ages of the CTS and control, $43.07 \pm$ 7.40 (25–57) and $41.85 \pm$ 7.81 (31–55).	W	Carp al Tunn el Synd rome	1.5-T whole- body MRI system was used for all MRI examin ations.	-	+			-	-	-		-	significant correlations with electrophysiological studies (EPS). DTI parameter (Fractional anisotropy-FA and apparent diffusion coefficients (ADC))help The ADC EPS	TI parameters can provide [pful information for CTS. e correlations of FA and OC measurements versus 'S measurements based on verity were significant."	Data suggest significant differences between all subgroups for mean FA and ADC suggesting FA and ADC threshold values could be useful for diagnosing and grading CTS. The DTI parameters well significant versus EPS for assessment of severity.
Uchiyama 2005 Diagnostic	5.5	105 wrists of 105 women. 36 wrists of 36 female volunteer s.	W	Idiop athic CTS	1.5 Tesla with a circular extremi ty coil.	-	+	+	-	_	-	+	-	-	distal TCL level than other levels. Cross sectional area larger in mild to moderate group vs. controls at DRUJ/ pisiform/hook of hamate/distal TCL levels: $14.1 (4.8)$ vs. 9.0 (2.5)/14.6 (4.8) vs. $9.1 (2.3)/10.8 (3.0)vs. 8.8 (1.8)/10.9 (3.2) vs. 8.3 (2.0); (p<0.05 all levels). Severe and extremegroups cross sectional area progressivelylarger from hook of hamate level, had highsignal intensity. At pisiform and hook ofhamate, correlation between average of in the$	everity of the disease ald be judged by aluating not only agitudinal changes of nal intensity and nfiguration of the median rve, but also palmar wing of the TCL. creased palmar bowing of the TCL was found to be cociated with an increase the area of the carpal mel."	Data suggest disease severity associated with palmar bowing of TCL as well as longitudinal changes of signal intensity and median nerve confirmation as study found bowing of TCL in CTS group larger than in controls. Studied only female subject as CTS more prevalent in females.
Zagnoli 1999 Diagnostic	5.0	20	W	Carp al tunne	MRI vs. electrod iagnosi	-	+	+	-	-	-	+	-	3 1 m	33/40 wrists showed abnormal "Wh electrodiagnostic findings. 11 cases showed abno	/hen electrodiagnostic normalities suggest more /ere disease than expected	Small sample size. Data suggest MRI may detect abnormalities after electrodiagnostic abnormalities have been found.

				l syndr ome	c (Vicker s HME device)									o nt hs	t ss east a ann (('(') d d v v v n c c s s s e e s s d d h h 5 5 c c c c c c	showed sensory and motor abnormalities. 2 symptomatic wrists showed normal electrodiagnostic findings (sensitivity 94%) and 2 asymptomatic wrists showed mild to moderate findings (specificity 94%). 32 (94%) had sensory abnormalities, 25 had decreased sensory nerve conduction welocity and 29 had decreased sensory nerve potential amplitude. In MRI, 20 control wrists normal, 9 had clinical CTS symptoms and 10 wrists had electrodiagnostic abnormalities. 73% sensitivity and 92% specificity of MRI for diagnosis of CTS. Of 26 MRI studies, 70% had bowing of transverse carpal ligament. 55% of median nerve enlargement and 57% of high median nerve signal. These were correlated with moderate or severe CTS (p <0.001).	otherwise discordant with clinical findings, demonstration by magnetic resonance imaging of high median nerve signal and/or median nerve enlargement may help to select those patients most likely to benefit from surgical treatment."	
Brienza 2014 Diagnostic	4.5	30 Subjects, 15 with CTS and 15 healthy controls.	W	Carp al tunne l syndr ome	3-Tesla magnetic resonan ce imaging with diffusio n tensor imaging (DTI)	-	-	-	-	-	+	-	-	_				Results do not reflect MRI, focused only on Electroneurography. Data suggest a high degree of correlation between DTI and ENG of the peripheral nervous system.
Wang 2012 Diagnostic	4.0	40, 21 patients and 19 asympto matic volunteer s.	W	Carp al tunne l syndr ome	Diffusi on tensor (DTI). 1.5-T whole body with a microsc opy coil.	-	+	+	-	-	-	-	-	-	 	Overall results of FA and ADC at different levels (distal radius, pisiform bone, middle of tunnel, and hamate bone) were similar. Only CTS had significant effects on FA and ADC ($p < 0.05$). Linear correlation between distal latency of motor conduction velocity of median nerve (MNDL) and length of abnormal intensity of median nerve (N_Len). If N_Len >15mm used as criteria for CTS, there was 1 false negative case and no false positive cases (r^2 = 0.529, p <0.001).	"FA and ADC measurements at the distal radius, pisiform bone, in the carpal tunnel and at the hamate bone were independent of the finger posture in symptomatic patients and healthy volunteers. Mean FA was decreased while mean ADC was increased by CTS. The correlations of FA and ADC versus EPS parameters were significant."	Small study population (n = 40). Data suggest FA and ADC were independent of finger posture and measuring location. Mean FA was decreased by CTS and ADC was increased by CTS. Study reports DTI imaging of FA and ADC were significant as compared with EP for CTS.

Evidence for the Use of Exercise for CTS

There are 5 moderate-quality RCTs incorporated into this analysis.(610, 611, 621-623) There are 4 low-quality RCTs in Appendix 2.(624-627)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: gliding exercise, tendon-gliding, tendon gliding, nerve-gliding, nerve gliding, neurodynamic mobilization, upper limb tension test, ULTT; carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 26 articles in PubMed, 19 in Scopus, 8 in CINAHL, and 31 in Cochrane Library. We considered for inclusion 13 from PubMed, 1 from Scopus, 1 from CINAHL, 1 from Cochrane Library and 1 from other sources. Of the 17 articles considered for inclusion, 10 randomized trials and 4 systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0- 11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Brininger	6.0	N = 61 (41 females	Neutral wrist and meta-carpophalangeal	All groups saw significant decrease in	"Our results provide further evidence of	Small group numbers. No table or
2007		and 10 males) with a positive Tinel sign or	(MCP) splint, custom splint positioning MCP joints from 0° to 10° of flexion,	CTS symptoms (no p-value reported).	the effectiveness of splinting, designed to target an underlying anatomic problem,	graphic for results. Baseline comparability for group strength
RCT		Phalen maneuver and complaints of	NW/MCP (n =17) vs. neutral wrist and MCP exercise group (tendon and nerve		for reducing symptoms and improving functional status in patients with mild-to-	different between groups.
Sponsored by the School of		nocturnal numbness	gliding exercises 3 to 5 times a day with		moderate CTS."	
Health and Rehabilitation		and tingling. Mean age	10 repetitions in each position, and to hold			
Science Development Fund,		50 years.	each position for 5 seconds), NW/MCP-X			
School of Health and			(n=16) vs. wrist cock-up splint			
Rehabilitation Sciences, University of Pittsburg, PA.			prefabricated that immobilized the wrist in 20° of extension, WCU (n=12) vs. wrist			
No COI.			cock-up splint and exercise, WCU-X			
			(n=16). All groups wore the splint during			
			sleep for 4 weeks and received and			
			educational brochure on CTS.			
			Assessments at baseline, 4 weeks, and 8			
Baysal 2006	5.5	N = 36 females EDS	weeks.	Pain score before treatment/after	"The result of this study emphasizes the	All groups were colisted precluding
Baysal 2006	5.5	N = 30 remains EDS confirmed CTS, all	Group I: tendon- and nerve-gliding exercises 5 sessions daily, each exercise	treatment I/after treatment II: Group I:	efficacy of conservative treatment in CTS.	All groups were splinted precluding judgment of utility of splinting. Unclear
RCT		bilateral, all right	repeated 10 times/session for 3 weeks plus	4.8±2.3/3.3±2.9/ 2.6±2.8; Group II:	In all patients groups, the treatment	if there is an independent effect of
		handed. Mean age:	splinting full-time for 3 weeks $(n = 12)$ vs.	5.7±2.7/ 2.2±1.9/ 2.5±2.8; Group III:	combinations were significantly effective	exercise.
No mention of sponsorship or		Group I 47.8±5.5	Group II: ultrasound 15 minutes per	5.6±3.5/ 1.3±1.8/ 0.8±0.9. Functional	immediately and 8 weeks after the	
COI.		years, Group II:	session to palmar carpal tunnel at	status score: Group I:	treatment."	
		50.1±7.3 years, Group	frequency pf 1 MHz and intensity of 1.0	20.6±7.8/14.8±7.5/ 14.9±6.6; Group II:		
		III: 51.4±5.2 years.	W/cm ² once a day 5 days a week, 3 weeks	21.9±9.1/16.1±8.5/ 16.1±8.7; Group		
			plus splinting (n = 12) vs. Group III: ultrasound, splinting and tendon-nerve-	III: 20.5±7.1/11.7±3.6/ 12.6±3.4. NS		
			gliding exercises ($n = 12$). Follow-up at	between groups.		
			end of treatment at after 8 weeks.			

Bialosky 2009	5.5	N = 40 females with >12weeks signs and	Neurodynamic technique ($n = 20$) vs. Sham technique ($n = 20$). Assessment at	Values for between-group comparisons of clinical pain and disability were not	"Collectively, these findings suggest that NDT specific to the median nerve in	Few differences between treatment arms were seen. Relatively short follow-up
RCT		symptoms of CTS.	baseline and 3weeks. No long-term	reported.	individuals with CTS is no more effective	time (3 weeks).
		Mean age:	follow-up.		than a sham technique that produces	
No sponsorship. No mention		46.90+10.25 years.			adequate blinding and similar expectations	
of COI.					for treatment effect over a 3-week period."	
Schmid 2012	4.5	N = 21 with mild to	Nerve and tendon gliding exercise home	No significant differences present	"The findings of this study suggest that a	Small sample size (N=21). Data suggest
		moderate CTS. Mean	program (n = 11) vs. Night splinting (n =	between groups. Within group	reduction in intraneural edema is a	no differences.
RCT		age: 53.9 years.	10). Follow-up at 1-week.	Baseline vs. Follow-up – Exercise:	therapeutic mechanism of both nerve and	
				Pain intensity VAS (0.7 vs. 0.8;	tendon gliding exervises and splinting	
No sponsorship or COI.				p>0.16). Numbness VAS (1.5 vs. 1.6;	there seems to be no preference for	
				p >0.16). Splinting: Pain intensity VAS	splinting or nerve and tendon gliding	
				(1.2 vs. 1.1; p>0.16). Numbness VAS	exervises."	
				(2.3 vs. 1.9; p >0.16).		
Akalin 2002	4.0	N = 28 EDS confirmed	Full-time splint (n=14) vs. full-time splint	Grip strength (mean ± SD) – Pre-/post-	"Although the results in group 2 were	No clear evidence of benefit.
		CTS. Mean age	plus nerve tendon gilding exercises 5	treatment: Group I (splint): 38.44±14/	better than group 1, the difference was not	
RCT		51.93±5.1 years.	sessions daily with each exercise repreated	49.88±15.3; Group II (exercise +	statistically significant. Further	
			1- times per session $(n=14)$ for 4 weeks.	splint): 38.61±13.8/54.94±17 p	investigations are required to establish the	
No mention of sponsorship or			Follow-up 8 weeks after treatment.	(between groups) = 0.14 . Symptom	role of nerve and tendon gliding exercises	
COI.			_	severity score (mean \pm SD): Group I:	in the treatment of carpal tunnel	
				36.11±9.0/21.88 ±8.8; Group II:	syndrome."	
				35.9±6.0/18.2±5.85 p (between		
				groups) = 0.210		

Evidence for the Use of Yoga for CTS There is 1 moderate-quality RCT incorporated into this analysis.(628)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: yoga and carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, tingling, controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective studies, prospective studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 16 articles in PubMed, 183 in Scopus, 7 in CINAHL, 17 in Cochrane Library and zero in other sources. We considered for inclusion 2 from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library and zero from other sources. Of the 2 articles considered for inclusion, 1 randomized trials and 1 systematic studies met the inclusion criteria.

Author/Year	Score (0-	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	11)					
Garfinkel 1998	6.0	male) with CTS, EDS	Standard splint to supplement current treatment $(n = 26)$ vs. Iyengar yoga focused on upper	Grip strength yoga (161.6±70.4 to 187.4±68.8) vs. splint (183.9±69.5 to 190.5±68.2mm Hg). Pain reduced (p =	"In this preliminary study, a yoga-based regimen was more effective than wrist	Grip strength improvement may be from activity in yoga as comparison
RCT		confirmed. Median age 52 years.	body, 1-1.5 hour, 2x a week for 8 weeks; current treatment not described ($n = 25$). Follow-up at 8	0.02). Median nerve sensory conduction yoga $(4.40\pm1.5\text{ms to } 3.97\pm1.5)$ vs. splint $(4.66\pm1.4 \text{ to } 3.97\pm1.5)$	splinting or no treatment in relieving some symptoms and signs of carpal tunnel	was presumably an inactive splint which may have caused greater
Sponsored by Commonwealth of			weeks.	4.36±1.6ms) (NS).	syndrome."	improvement not related to CTS. Lack of description of controls limits
Pennsylvania. No mention of COI.						interpretations.

Evidence for the Use of NSAIDs and Acetaminophen for CTS There are 2 high-(639, 640) and 5 moderate-quality(631, 636-638, 641) RCTs incorporated into this analysis. There is 1 low-quality RCT in Appendix 2.(642)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: anti-inflammatory agents, non-steroidal, nonsteroidal, anti-inflammatory, NSAIDS, aspirin, diflunisal, salsalate, ibuprofen, dexibuprofen, naproxen, fenoprofen, ketoprofen, dexketoprofen, flurbiprofen, oxaprozin, loxoprofen, indomethacin, tolmetin, sulindac, etodolac, ketorolac, diclofenac, nabumetone, piroxicam, meloxicam, tenoxicam, droxicam, lornoxicam, isoxicam, celecoxib, etodolac, etoricoxib, lumiracoxib, meclofenamic acid, mefenamic acid, nimesulide, parecoxib, rofecoxib, tolfenamic acid, valdecoxib; carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, burning, tingling, itching, numbness, hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 41 articles in PubMed, 302 in Scopus, 10 in CINAHL, and 2 in Cochrane Library. We considered for inclusion 11 from PubMed, 0 from Scopus, 1 from CINAHL, 0 from Cochrane Library and 1 from other sources. Of the 13 articles considered for inclusion, 9 randomized trials and 1 systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0- 11)	Sample Size	Comparison Group	Results	Conclusion	Comments
			<u> </u>]	NSAIDs vs. Placebo		
Chang 1998 RCT Sponsored by NSC 86-2314-B- 075B-012 to Ming-Hong Chang. No mention of COI.	7.0	N = 73 (53 female/20 male) with clinical signs and symptoms of CTS, EDS confirmed without abnormalities in radial and ulnar nerves. Mean age diuretic 45.7 \pm 4.8 years, NSAID-SR 47.4 \pm 5.7 years, steroid 45.4 \pm 5.2, placebo 44.2 \pm 5.4.	Trichlor-methiazide (diuretic), 2mg daily for 4 weeks (n = 16) vs. Tenoxicam-SR (NSAID-SR), 20mg daily for 4 weeks (n=18) vs. prednisolone (steroid) 20mg/day for 2 weeks, then 2-week dose of 10mg daily (n = 23) vs. placebo for 4 weeks (n = 16). Assessments at baseline, 2 weeks and 4 weeks.	Mean±SD global symptom score (GSS) baseline/2 weeks/4 weeks: placebo $22.9\pm5.9/21.6\pm6.4/20.8\pm6.6$ vs. diuretics $26.0\pm3.8/22.3\pm5.5/21.6\pm6.3$ vs. NSAID- SR 29.7 $\pm8.4/24.7\pm8.6/24.0\pm9.7$ vs. steroid $27.9\pm6.9/15.0\pm6.8/10.0\pm7.5$ (p <0.0005 at week 2 steroid vs. other treatment groups; p <0.00001 at week 4 steroid vs. placebo).	"For patients with mild to moderate CTS who opt for conservative treatment, corticosteroids are of greater benefit."	Suggests oral steroids effective but diuretic and NSAID are not effective compared with placebo.
		•	NSAI	ID vs. Other Treatments		
Yildiz 2011 RCT No mention of sponsorship or COI.	8.0	N = 51 (43 females/8 males) with signs and symptoms of CTS for more than a month and mild-to-moderate CTS after electrodiagnostic test confirmation. Age range 39-66 years.	Group 1: sham ultrasound (US), ultrasound in off mode 15 minute sessions 1x a day, 5x a week for 2 weeks plus splinting with neutral custom-molded thermoplastic volar wrist splint at night and during day for 8 weeks (n = 17, 25 median nerves) vs. Group 2: US, pulse mode (1:4) with gel without medication at 1 MHz frequency and 1 W/cm ² intensity plus splinting (n = 17, 26 median nerves) vs. Group	Mean±SD VAS (baseline/2 weeks/8 weeks): Group 1, 5.76±2.45/2.72±2.07/3.28±2.74 vs. Group 2, 4.96±2.50/2.41±2.43/2.77±2.74 vs. Group 3, 6.04±2.40/3.03±1.96/0.98±1.65 (p = 0.002, Group 3> Group 1; p = 0.004, Group 3 > Group 2).	"Our results suggest that ketoprofen PH in addition to splinting is superior to the combination of US and splinting with respect to pain only in middle term patients with CTS."	Ultrasound plus splinting not superior to splinting alone. Ketoprofen plus splinting was associated with a reduction in pain at 8 weeks.

			3: ketoprofen phonophoresis (PH),			
			US pulse mode (1:4) with 2.5%			
			ketoprofen gel at 1 MHz frequency			
			and 1 W/cm ² intensity plus			
			splinting (n = $17, 25$ median			
			nerves). Follow-up for 8 weeks.			
Chang 1998	See above.					
Jarvik 2009	7.0	N = 116 (62 female/54	Surgery group: open surgery or	Primary outcome was Carpal Tunnel	"Overall, these data indicate that, in	At 12 months, surgical group was
		male) considering	endoscopic surgery depending on	Syndrome Assessment Questionnaire	patients with carpal tunnel syndrome	significant for impoved symptoms and
RCT		surgery for diagnosed	surgeon's preference $(n = 57)$ vs.	(CTSAQ). Surgical group showed	without denervation, surgery modestly	function.
		carpal tunnel syndrome.	non-surgical therapy group: 6 visits	significantly lower CTSAQ function score	improves hand function and symptoms	
Sponsored by the Intramural		Mean age 50.7 years.	with hand therapist focused on	vs. non-surgical group at 6 months; 1.91	by 3 months compared with a	
Research Program of the NIH		Wear age 50.7 years.	ligament stretching, tendon gliding,	vs. 2.44 ($p = 0.0006$) and at 12 months;	multimodality non-surgical treatment	
Clinical Center. No COI.			and review of splint use (splint use	1.74 vs. 2.17 (p = 0.0081). Secondary	regimen, and this benefit is sustained	
Clinical Center. No COI.			at night) plus prescribed NSAIDS,	outcome of CTSAQ symptoms was also	through 1 year."	
					tillough i year.	
			ibuprofen 200mg 3x a day. If no	significantly lower in surgery group vs.		
			improvement after 6 weeks,	non-surgical group at 6 months; 2.02 vs.		
			received 12 sessions (2-4 per week	2.42 (p = 0.018) and 12 months; 1.74 vs.		
			for up to 6 weeks) of focused	2.07 (p = 0.036).		
			ultrasound at 1 Mhz, 1.0 W/cm^2 in			
			pulsed mode 1:4, 15 minutes each			
			(n = 59). Follow-up at 3, 6, 9, 12			
			months.			
Celiker 2002	5.5	N = 23 with unilateral or	Group A: acemetacine 120mg a day	VAS pain scores (baseline/2nd week/8th	"Both splinting combined with the use of	Not placebo controlled. Suggests
		bilateral CTS, EDS	with splints at night, light-weight,	week): NSAID plus splint	a nonsteroidal anti-inflammatory drug	splinting and NSAID may be as effective
RCT		confirmed. Mean age	neutral-positioned (n=11) vs. Group	7.9±1.4/4.3±0.9/1.7±1.0 vs. injection	and steroid injection into the carpal	as injection.
		Group A 49.6±15.3	B: 40mg methylpred-nisolone	7.0±2.2/3.1±2.5/1.8±1.9 (p>0.05).	tunnel resulted in significant	
No mention of sponsorship or		years, Group B	acetate 1ml (n=12). Follow-up at 2	Symptom severity scale results similar.	improvement in carpal tunnel	
COI.		46.9±10.0 years.	weeks and 8 weeks.		syndrome."	
Davis 1998	5.0	N = 91 with self-	Ibuprofen (800mg 3x a day for 1	CTS outcome assessment physical distress	"Carpal tunnel syndrome associated with	Baseline did not exclude prior ibuprofen
		reported symptoms of	week, then 2x a day for 1 week, then	(mean±SD) baseline to end of study: IBU	median nerve demyelination but not	use or manipulation, but prior use of these
RCT		CTS and EDS confirmed	PRN 7 weeks) and nocturnal cock-	and splint 14.66±9.89 to 5.74± 6.28 vs.	axonal degeneration may be treated with	treatments is likely differential between
		CTS. Mean age	up wrist supports ($n = 46$) vs. high	ultrasound and manipulation 12.47±8.07	commonly used components of	the 2 groups and is a potentially fatal
Sponsored by a grant from the		ibuprofen group 38±5	velocity, low amplitude manual	to 9.25 ± 8.14 (p = 0.0132). CTS outcome	conservative medical or chiropractic	study flaw. Ibuprofen use was PRN after
National Chiropractic Mutual		year, manipulation group	thrust procedures: manipulation to	assessment mental distress (mean±SD)	care."	2 weeks and subject contact differed
Insurance Company. No		36 ± 6 years.	upper extremity and spine (3	baseline to end of study: IBU and splint		between groups, providing bias in favor
mention of COI.		- J	treatments a week for 2 weeks; 2	33.61 ± 12.02 to 14.94 ± 11.33 vs.		of manipulation/ultrasound. High dropout
			treatments a week for 3weeks: 1	ultrasound and manipulation 28.94±11.69		rates. Study mainly compares variable
			treatments a week for 4 weeks) plus	to 17.29 ± 13.24 (p = 0.0085). No		dose ibuprofen vs. manipulation plus
			ultrasound applied over carpal	significance between group difference in		ultrasound as both splinted. Since
			tunnel for half of chiropractic	EDS.		ibuprofen not effective and evidence that
			treatment visits, 1 MHz and 1.0-1.5			ultrasound is, results suggest
			W/cm at 50% duty cycle for 5			manipulation is not effective.
	l		w/cill at 50% utily cycle 101 5			manipulation is not effective.

Nalamachu 2006 MedGenMed RCT Sponsored by Endo Pharmaceuticals. COI, Nalamachu received research grants and consulting fee from Endo Pharmaceuticals. PharmD is employed by Endo Pharmaceuticals as Senior Director, Medical Affairs, and receives annual stock options from Endo. Gould is employed by Endo Pharmaceuticals as Associate Director, Medical Affair, and receives annual stock options from Endo.	4.5	N = 100 age 18-75 with CTS, clinical and EDS confirmed. Mean age lidocaine patch 55.7±16.0 years, naproxen 51.5±11.8 years.	minutes plus nocturnal wrist supports (n = 45). Study duration 9 weeks. Assessments at baseline and end of study. Lidocaine patch 5% up to a maximum of 3 patches, 420 cm ² , per day (n=52) vs. naproxen 500 mg twice daily (n = 48) for 6 weeks. Assessments at baseline after 1, 3, and 6 weeks of treatment.	Brief Pain Inventory (BPI) scores reduced between baseline and Week 6 for both lidocaine patch 5% ($p < 0.0001$) and naproxen 500 mg twice daily ($p = 0.0004$), but no between group differences ($p = 0.083$). Clinical Global Impression of Improvement (CGI-I) scores also favored patch (51.1% vs. 24.3%, $p = 0.016$). Percentages satisfied or very satisfied 71.8% lidocaine patch vs. 63.2% naproxen (NS).	"This study demonstrates that the lidocaine patch 5% is effective in significantly relieving the pain associated with CTS and is well tolerated. The patch may offer patients an effective, non-systemic, noninvasive treatment for the management of their symptoms. Further controlled studies are warranted."	More diabetics in naproxen group (23.59% vs. 9.6%). Severity (39.69% vs. 32.7%) and mean pain intensity somewhat worse in naproxen group (4.9±2.6 vs. 4.5±2.5). Excluded pain patch use, but not prior NSAID use. All appears to bias in favor of patch. Potential other painful diagnoses being treated appear possible.
				ost-operative NSAIDs		
Husby 2001 RCT No mention of sponsorship or COI.	8.0	N = 77 who underwent surgery for CTS of Dupuytren's contracture (DC). Mean age 59 years.	Post-op naproxen 500mg BID (n = 26) vs. paracetamol 1,000mg QID (n = 26) vs. placebo tablets (n = 25) for 3 days immediate post-op carpal tunnel release surgical treatment; 2nd trial included 35 with Dupuytren's contracture. Opioid analgesic allowed for supplementary analgesic. No mention of follow-up time.	Postoperative CTS swelling as a percentage of preoperative volume 3.5 ± 3.3 vs. 4.6 ± 3.2 vs. 3.8 ± 2.6 . For Dupuytren's contracture releases: 5.6 ± 3.8 vs. 6.9 ± 3.7 vs. 8.2 ± 5.1 . Additional analgesics used were 0, 2, and 8 in naproxen, paracetamol, and placebo groups.	"Naproxen might have a clinical relevant effect on swelling when used on minor surgery in the hand, unlike paracetamol. Naproxen might be a useful analgesic during the immediate post-operative phase."	Results suggest a beneficial effect of naproxen over paracetamol, which is superior to placebo, which the studies were not powered to detect.

Evidence for the Use of Oral Glucocorticosteroids See Intracarpal Tunnel Glucocorticosteroid Injections ("Steroid Injections") Section.

Evidence for the Use of Diuretics for CTS There are 2 moderate-quality RCTs incorporate into this analysis. (636, 652)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Diuretics, Trichlormethiazide, Hydrochlorothiazide, carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, tingling, wrist, hand, palm, finger, pain, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective studies, and prospective studies. We found and reviewed 14 articles in PubMed, 1556 in Scopus, 3 in CINAHL, 27 in Cochrane Library and 2 in other sources. We considered for inclusion 2 from PubMed, 1 from Scopus, 0 from CINAHL, 1 from Cochrane Library and 2 from other sources. Of the 6 articles considered for inclusion, 2 randomized trials and 4 systematic studies met the inclusion criteria.

Author/Year	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type						
Conflict of Interest (COI)						
Chang 1998	7.0	N = 91 (53 female/20 male) with	Trichlor-methiazide, $2mg$ daily (n = 16)	No significant reduction from baseline GSS	"For patients with mild to moderate	Suggests oral steroids effective but
		confirmed CTS via	vs. Tenoxicam-SR, 20mg daily (n = 18)	seen at 2nd and 4th weeks in placebo,	CTS who opt for conservative	diuretic and NSAID are not.
RCT		electrodiagnosis; Mean (±SD) age	vs. 2 weeks prednisolone at 20mg daily,	NSAID-SR, and diuretic groups. However,	treatment, corticosteroids are of	
		44.2 (\pm 5.4) for placebo group,	followed by 2-week dose 10mg daily (n	mean score at 4 weeks in steroid group	greater benefit."	
Sponsored by the National		45.7 (\pm 4.8) for diuretic group,	= 23) vs. Placebo or control group (n =	decreased significantly from a baseline of		
Science Council Grants. No		47.4 (±5.7) for NSAID-SR group	16). Assessments at baseline, 2 and 4	27.9 ± 6.9 to 10 ± 7.54 , (p < 0.00001).		
mention of COI.		and 45.4 (\pm 5.2) for steroid group.	weeks.			
Pal 1988	6.0	N = 48 (43 female/5 male) with	Bendrofluazide 5 mg a day ($n = 23$; 41	No significant difference in clinical	"Bendrofluazide 5mgm daily for one	Study suggests no short or long-
		CTS diagnosed via nerve	hands) vs. Placebo (N =25; 40 hands) for	improvement outcomes between the two	month does not confer additional	term benefit.
RCT		conduction tests; Mean (±SD) age	4 weeks. Assessments at baseline, 4	groups at follow-up assessments.	clinical benefit in the idiopathic CTS,	
		41 (±13) for Bendrofluazid group	weeks and 6 months.		but further trials with stronger diuretics	
No mention of sponsorship or		and 53 (± 13) for placebo control			and/or longer periods of treatment are	
COI.		group.			warranted."	

Evidence for the Use of Pyridoxine for CTS

There is 1 high-quality RCT(745) and 1-moderate-quality randomized crossover trial(743) incorporated into this analysis. There is 1 low-quality RCT in Appendix 2.(746)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: vitamin B6, Vitamin B12, Pyridoxine, carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, tingling, controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, random*, randomized, randomization, randomly; systematic, systematic review, retrospective studies, prospective studies, epidemiological studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 15 articles in PubMed, 3,114 in Scopus, 6 in CINAHL, 251 in Cochrane Library and 0 in other sources. We considered for inclusion 4 from PubMed, 0 from Scopus, 1 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 5 articles considered for inclusion, 3 randomized trials and 2 systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
---------------------------	--------------	-------------	------------------	---------	------------	----------

Conflict of Interest (COI)						
Spooner 1993	8.5	N = 35 (22 female/ 13	200mg pyridoxine once	Mean score (SD) of night discomfort symptoms in treatment	"Our findings do not support	No statistical differences.
		male) with CTS, EDS	daily $(n = 18)$ vs. Placebo	group: Entrance: 2.4 (1.4); 12 weeks: 1.9 (1.2) vs. control:	the use of pyridoxine for	Symptoms trended in favor of
RCT		confirmed; mean age 42.5	(N = 17) for 12 weeks.	Entrance 2.6(1.3); 12 weeks: 2.4 (1.3), NS. Mean score of	treating carpal tunnel	pyridoxine.
		years.	Assessments at 6 and 12	median palmar distal latency (ms) in treatment group: Entrance	syndrome."	
Sponsored by the Clinical			weeks.	2.5(0.6); 12 weeks: 2.6(0.4) vs. control: Entrance 2.8 (0.6); 12		
Teaching and Research Fund of				weeks: 2.7 (0.4), NS. Mean (SD) swelling treatment: entrance		
the College of Medicine at the				2.1 (1.6); 12 weeks: 1.3 (1.4) vs. control: entrance 2.6 (1.3); 12		
University of Saskatchewan in				weeks: 2.3 (1.2) (p <0.05). Mean (SD) movement discomfort		
Saskatoon. No mention of COI.				treatment: 3.1 (1.2); 1.7 (1.4) vs. control 3.1 (1.3); 2.7 (1.3) (p		
				<0.001).		
Ellis 1982	6.5	N = 7 males with evidence	Pyridoxine 50mg vs	Aggregate mean symptom scores control 53 ± 10 (n = 4) vs.	"Clinical improvements of the	Small sample size. Variable
		of entrapment of median	Placebo for 12 weeks.	pyridoxine 11 ± 6 (n = 7), p <0.001.	syndrome with pyridoxine	timeframes for measurements
RCT Crossover Trial		nerve, symptoms in ulnar			therapy may frequently obviate	limit strength of conclusions.
		nerve region with or			hand surgery."	-
Sponsored by Rovert A Welch		without evidence of				
Foundation. No mention of		entrapment of median				
COI.		nerve. Age 43-77.				

Evidence for the Use of Topical Lidocaine Patches for CTS

There are 2 moderate-quality RCTs incorporated into this analysis. There are 2 low-quality RCTs in Appendix 2.(753, 754)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: lidocaine or lidocaine patch, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, meadian nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, systematic, retrospective, and prospective studies. We found and reviewed 56 articles in PubMed, 14 in Scopus, 2 in CINAHL, and 40 in Cochrane Library. We considered for inclusion 3 from PubMed, 1 from Scopus, 0 from CINAHL, Cochrane Library and other sources. Of the 4 articles considered for inclusion, 4 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type Conflict of Interest (COI)						
Nalamachu	4.5	N = 40 (28 female/12	Lidocaine patch 5%, up to	Reductions in API scores between baseline and	"This study demonstrates that the	More diabetics in naproxen group (23.59% vs.
MedGenMed		male) neuropathic pain	3, every 24 hours $(n = 52)$	Week 6 for both lidocaine patch 5% (p	lidocaine patch 5% is effective in	9.6%) suggest potential randomization failure and
2006		associated with CTS.	vs. Naproxen 500mg twice	<0.0001) and naproxen (p = 0.0004), but no	significantly relieving the pain	subsequent confounding. Severity (39.69% vs.
		Age 18-75.	daily for 6 weeks $(n = 48)$.	differences between treatments ($p = 0.083$).	associated with CTS and is well	32.7%) and mean pain intensity somewhat worse
RCT			Follow-up for 6 weeks.	Significant difference in CGI-I for lidocaine	tolerated."	in naproxen group (4.9±2.6 vs. 4.5±2.5).
				patch 5% (51.1%) compared with naproxen		Excluded pain patch use, but not prior NSAID
No mention of sponsorship or				500mg 2x daily (24.3%) (p = 0.016); 71.8%		use. All appear to bias in favor of patch.
COI.				lidocaine patch patients "satisfied" to "very		Potentially, may have included treatment of other
				satisfied" vs. 63.2% naproxen (NS).		painful confounding diagnoses.

Nalamachu	4.5	N = 40 (28 female/12	Lidocaine patch 5% ($n =$	Not significant between-group differences. Mean	"This pilot trial demonstrated that the	Unclear whether patients had other painful
J Fam Prac 2006		male) electrodiagnostic	20) vs methylprednisolone	pain scores at 4 weeks: 2.2 patch vs2.1 injection	lidocaine patch 5% was efficacious in	diagnoses that explained the results.
DOT		evidence of CTS	acetate 40mg depot	(NS). Global improvements 88% patch vs. 74%	reducing pain associated with CTS."	
RCT		included median motor	injection ($n = 20$). Follow-	injection.		
Sponsored by Endo		nerve distal latency	up for 4 weeks.			
Pharmaceuticals. Dr. Nalamachu		>4.10m sec. Mean age				
has served as consultant to Endo,		48.				
Dr. Crockett is a statistician for						
B&B Clinical Innovations.						

Evidence for the Use of Gapabentin for CTS There is 1 high-quality RCT incorporated into this analysis.(755)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Gabapentin, Neurontin, Fanatrex, Gabarone, Neupentin, Neogab, Horizant, Gralise, carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, tingling, wrist, hand, palm, finger, pain, controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, random*, randomized, randomization, randomly; systematic, systematic review, retrospective studies, and prospective studies. We found and reviewed 7 articles in PubMed, 627 in Scopus, 1 in CINAHL, 41 in Cochrane Library and 0 in other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 1 articles considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type						
Conflict of Interest (COI)						
Hui 2011	8.0	N = 140 (114 males/26	Gabapentin group	During 2 and 8 weeks assessment, no significant	"As gabapentin appears to have	Gabapentin not effective.
		males) with diagnosed	receiving 300mg daily	difference reported between groups for global	limited efficacy and would be	
RCT		CTS lasting >3 months;	for first week, 600mg	symptom scores reduction. Both groups showed	required to be taken for a long time	
		Mean (SD) age 52.3	daily 2nd week and	improvement from baseline.	(because the majority of patients	
Sponsored by Pfizer, Inc. No		(10.6) for gabapentin	900mg daily remaining		symptoms persist if left untreated),	
COI.		group and 51.0 (8.3) for	treatment weeks $(n = 71)$		current evidence does not support its	
		placebo.	vs. Placebo control group		routine use for CTS"	
			(n = 69). Assessments at			
			baseline, 2 and 8 weeks.			

Evidence for the Use of Magnets for CTS

There are 1 high-(757) and 2 moderate-quality RCTs incorporated into this analysis.(756, 758) There are 3 low-quality RCTs in Appendix 2.(759-761)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Magnet, pulsed magnetic field therapy, carpal tunnel syndrome, CTS, median nerve neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, tingling, controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies.

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
			Magnet vs. Placebo			
Carter 2002	6.0	N = 30 (26 female/4 male) with wrist pain attributed to CTS. Mean age magnet 50.7±15.5 years, placebo	Placebo magnet (N=15) vs. 1,000 gauss magnet (N=15); 45 minute treatment. Follow-	Magnet mean (SD) vs. placebo mean (SD): Post-treatment pain: 3.6(3.1) vs.	"The use of a magnet for reducing pain attributed to carpal tunnel syndrome	Short-term study. Data
RCT		48.5±11.7 years.	up at 2 weeks.	2.6(2.7), NS; Pain at 2 weeks follow-up: 4.3(2.9) vs. 4.3(3.5), NS.	was no more effective than use of the placebo device."	suggest lack of efficacy.
Sponsored by The Oklahoma Center for Family Medicine Research. No mention of COI.						
	1		Static Magnetic Field Therapy	I]	1
Colbert 2010 RCT	8.5	N = 60 (45 female/15 male) with clinical evidence of carpal tunnel syndrome. Mean age: 50 years.	All magnets neodymium magnetized to deliver Static Magnetic Field (SMF). All devices applied at night. 15 mT ($n = 20$) vs. 45 mT ($n = 20$) vs. 0 mT aluminum disk (control) ($n = 20$) vs. 0 mT alu	No significant differences between groups for symptom severity or functional status at either 6 weeks (end treatment) or 12 weeks post-treatment.	"Participants in the active magnet groups and the control group experienced clinically relevant improvement after 6 weeks of	Data suggest lack of efficacy as groups (including
Sponsored by National Institutes of Health and Oregon Clinical and Translational Research Institute. No COI.			20). Outcomes measured after 6 week treatment period and 12 week no-treatment period.		treatment, but no significant between- group differences in outcome measures were shown."	sham) showed similar results.
Weintraub 2000	5.0	N = 8 (4 females/1 male) hands from 6 patients with moderately severe carpal tunnel syndrome. Mean age:	Static (sub-maximal) magnetic field therapy applied 24hrs/day for 4 weeks (n = 8 hands)	Magnet vs. Placebo – Mean neuropathic pain score improvement: 57% vs. 13% (p	"In conclusion, this novel treatment has the potential to positively influence	Small sample size (n=8). Pilot
RCT Crossover		62.5 years for females and 75 years for males.	vs. Placebo device applied 24 hrs/day for 4 weeks ($n = 8$ hands). No long-term follow-up.	= 0.046).	mild cases of acroparesthesias of hands secondary to carpal tunnel syndrome and 57% of moderately advance cases."	study
No sponsorship or COI.						

We found and reviewed 34 articles in PubMed, 33 in Scopus, 9 in CINAHL, and 865 in Cochrane Library. We considered for inclusion 8 from PubMed, 0 from Scopus, 2 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 10 articles considered for inclusion, 6 randomized trials and 4 systematic studies met the inclusion criteria.

Evidence for the Use of Wrist Splinting for CTS

There is 1 high-(763) and 18 moderate-quality(387, 611, 622, 628, 631, 647, 764-766, 774, 775, 777-783) RCTs incorporated into this analysis. There are 9 low-quality RCTs and 1 prospective randomized blinded trial(614, 626, 767, 768, 784-789) in Appendix 2.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: wrist joint, wrist, wrists, splints, splint, splinting, nocturnal splint; carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, burning, tingling, itching, numbness, hand, palm, finger, pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, and systematic review. We found and reviewed 71 articles in PubMed, 499 in Scopus, five in CINAHL, and 77 in Cochrane Library. We considered for inclusion 27 from PubMed, eight from Scopus, zero from CINAHL, zero from Cochrane Library and four from other sources. Of the 39 articles considered for inclusion, 23 randomized trials and five systematic studies met the inclusion criteria.

Author/Year	Score (0-	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	11)	Splint	s vs. No Treatment or Different Timing of Wear	ing Splints		
Manente 2001 RCT Sponsored by a grant from the Italian Ministry for Scientific and Technological Research. COI, Manente is owner of patent for brace.	6.5	N = 83 (69 female/11 male) with CTS, EDS confirmed or signs, symptoms of CTS. Mean age splint group 46.10±12.94 years, control group 50.0±12.65 years.	Nocturnal hand brace called Manu every night for 4 weeks (N=41) vs. No treatment, observational period before starting any treatment (N=42), for 4 weeks. Assessments at 2 weeks and 4 weeks.	BCTQ symptomatic score (baseline/4 weeks): splint 2.75 ± 0.7 to 1.54 ± 0.4 at 4 weeks vs. controls 2.77 ± 0.7 to 2.61 ± 0.6 (p <0.001). Sensory conduction velocities not different (p = 0.55). BCTQ function scores improved more in treated group from 1.89 to 1.48 vs. control from 2.02 to 2.03 (p < 0.001).	"The study demonstrates that this hand brace is highly efficient in relieving symptoms and functional loss in CTS."	Study evaluated a unique hand brace. Non-intervention controls may bias in favor of intervention.
Premoselli 2006 RCT No mention of sponsorship or COI.	6.0	N = 50 (23 female/2 male) with CTS electrodiagnostic study confirmed. Mean age splint group 53.1±13.3 years, control group 46.5±13.8 years.	Nocturnal splint (custom molded) for a minimum of 6 hours (N=25) vs. No treatment (N=25) for 6 months. Assessments at baseline, 3 months, and 6 months.	Follow-up symptoms splint vs. control group (mean \pm SD): 3 months: 1.63 \pm 0.25 vs. 2.57 \pm 0.31 (p = 0.001); 6 months: 1.48 \pm 0.19 vs. 2.38 \pm 0.40 (p = 0.001); Sensory latency (ms): Recruitment: 2.74 \pm 0.28 vs. 2.79 \pm 0.38 (p = 0.63); 3 months: 2.59 \pm 0.39 vs. 2.85 \pm 0.336 (p = 0.02); 6 months: 2.61 \pm 0.37 vs. 2.71 \pm 0.43 (p = 0.50)	"Symptom relief and neurophysiological improvement after night-only splint wear therapy lasted up to the six-month follow-up visit."	Dropout rate 28% over 6 month trial. Non-intervention controls may bias in favor of intervention.
Walker 2000 RCT No sponsorship or COI.	5.0	N = 21 (30 hands) with unilateral or bilateral CTS, EDS confirmed. Mean age 60±11.2 years.	Nocturnal splints (N=13) vs. Full-time splints (N=11). Follow-up for 6 weeks.	Symptoms severity (baseline/ follow-up): night only (2.89±0.96/2.30±0.93) vs. full- time (2.79±0.69/2.09±0.62) (NS). Functional deficits: night (2.75± $1.01/2.14\pm0.87$) vs. full time (2.27±1.03/1.93±0.77) (NS). Motor (p = 0.04) and sensory (p = 0.05) distal latencies improved more in full-time use.	"The study provides added evidence to support the efficacy of neutral wrist splints in CTS and suggests that physiologic improvement is best with full-time splint wear instructions."	Symptoms/function data suggest no difference in efficacy. NCS data favor full-time use. High noncompliance with full-time use (27% completely compliant with daytime use) raises questions about validity of conclusions.
Werner 2005 RCT Sponsored by the United Auto Workers (UAW) and General	4.5	N = 161 with signs/symptoms suggestive of CTS for >1 week or >3 times in last 6 months. No EDS used for inclusion but performed after entry. Mean age splint group 44.74±1.02 years, ergonomic education group 43.77±1.44 years.	Nocturnal splints custom made that maintained wrist in neutral posture ($n = 86$) vs. Ergonomic education on line ($n = 75$); 6 week trial. Both groups given instruction on how to reduce ergonomic stressors in work and home environments. Follow-up at 3, 6, and 12 months.	Wrist, hand, finger discomfort in prior 30 days (baseline/follow-up): splints $(7.24\pm2.08/4.43\pm3.71)$ vs. controls $(6.60\pm2.51/5.58\pm3.30)$, p = 0.03. Splinted group had more visits to plant medical department (15.5 \pm 7.1 visits vs. 3.6 \pm 4.3 visits, p = 0.02)	"Benefit from a 6-weeks nocturnal splinting trial, and the benefits were still evident at the 1-year follow-up"	High dropout rate (30.4%) and 50% questionnaires incomplete may sharply limit the value of the data.

Motors (GM) National						
Joint Committee on						
Health and Safety. No COI. Hall 2013 RCT No mention of sponsorship or COI.	4.5	N = 62 age 18 and older with paresthesia in median nerve distribution in night or day, clumsiness, grasp weakness, sleep disturbances, not pregnant, and no medical (surgery or injections) and conservative (wearing hand splints) treatments in past 6 months. Mean age: 53.8 years.	Conservative treatment group: full-time wrist splint (neutral position with full finger and thumb motion) and education sessions (pathology of CTS, risk identification, goal setting for self-management of CTS symptoms) by an occupational therapist (2 treatment session in 1 st week and between weeks 2 and 4 plus a 20 minute phone call at week 7) for 8 weeks (n = 31) vs. Control group: assessed and observed but given no intervention for 8 weeks (n = 31). Assessments at end of 8 weeks.	Boston Questionnaire for Assessment of Carpal Tunnel Symptom Severity (BQSS), mean \pm SD (pre-treatment/post- treatment): splint 2.80 \pm 0.63/ 2.38 \pm 0.77 vs. control 2.57 \pm 0.52/ 2.60 \pm 0.62 (p <0.001). Boston Questionnaire for the Assessment of Carpal Tunnel Symptom Functional Status Scale (BQFSS), mean \pm SD (pre-treatment/post-treatment): splint 2.24 \pm 0.78/ 2.04 \pm 0.74 vs. control 2.00 \pm 0.71/ 2.08 \pm 0.70 (p = 0.015). VAS, mean \pm SD (pre-treatment/post-treatment): splint 5.84 \pm 2.46/ 4.26 \pm 2.67 vs. control 5.00 \pm 2.62/ 5.65 \pm 2.54 (p = 0.001). Phalen's test, mean \pm SD (pre- treatment/post-treatment): splint 24.43 \pm 17.41/24.59 \pm 18.89 vs. control 27.00 \pm 15.36/22.56 \pm 15.36 (p = 0.031). Grip strength, kg force, mean \pm SD (pre- treatment/post-treatment): splint 23.94 \pm 8.55/25.01 \pm 9.37 vs. control 22.05 \pm 8.37/23.90 \pm 8.88 (p = 0.020). Purdue Pegboard Test score, min, mean \pm SD (pre-treatment/post-treatment): splint 46.87 \pm 16.41/51.40 \pm 15.30 vs. control 40.81 \pm 17.27/53.72 \pm 11.29 (p =	"A conservative treatment program including full-time splinting and formal education as key components can improve symptoms and hand function in patients with CTS."	Conservative treatment group better than control group for symptom improvement and function.
				0.021). Semmes-Weinstein Monofilaments (SWM) score, palmar side, mean±SD (pre-treatment/post- treatment): splint 100.91±90.92/89.78±78.98 vs. control 109.31±77.45/99.68± 87.96 (p <0.001).		
			Splints vs. Medical Treatment including Injection			
MacDermid 2012	7.0	N = 63 age 18-65 with CTS verified by electro-	Experimental group: astaxanthin 4mg capsules	No significant differences between	"This study has not identified	Comparable
DCT		physiology. Mean age astaxanthin group 49 ± 7 years,	after evening meals for 9 weeks followed by 3	groups for primary outcomes, CTS	astaxanthin to be an effective	efficacy in groups. No benefit
RCT		placebo group 49±9 years.	week wash-out plus neutral wrist splint at night and during day when wrist in at-risk position (n	Symptom Severity Scale (p=0.18) and CTS Functional Scale (p=0.40).	adjunct to standard conservative management."	No benefit demonstrated for
Sponsored by IMAGINutrition/Meta			= 32) vs. Control group: placebo capsules plus	(p=0.40).	conservative management.	use of astaxanthin.

Response Sciences. No mention of COI.			neutral wrist splint ($n = 31$). Assessments at 3 week intervals.			
Celiker 2002 RCT No mention of sponsorship or COI.	5.5	N = 23 with unilateral or bilateral CTS, EDS confirmed. Mean age Group A 49.6±15.3 years, Group B 46.9±10.0 years.	Group A: (NSAID) acemetacine 120mg a day and nocturnal splint light-weight, neutral- positioned ($n = 11$) vs. Group B: 40mg methylprednisolone acetate injection ($n = 12$). Assessments at week 2 and week 8.	VAS pain scores (baseline/2nd week/8th week): NSAID plus splint 7.9±1.4/ 4.3±0.9/1.7±1.0 vs. injection 7.0±2.2/ 3.1±2.5/1.8±1.9 (p>0.05). Symptom severity scale results not different.	"Both splinting combined with the use of a nonsteroidal anti- inflammatory drug and steroid injection into the carpal tunnel resulted in significant improvement in carpal tunnel syndrome."	No placebo control. Results suggest splinting and NSAID may be as effective as injection.
Ucan 2006 RCT No mention of sponsorship or COI.	5.0	N = 67 hands of patients with mild, moderate, or advanced CTS confirmed by nerve conduction studies. Mean age splint 44.50 ± 7.24 years, steroid injection plus splint 44.46 ± 8.52 years, open carpal tunnel release 45.27 ± 13.19 years.	Group A: Full-time splinting in neutral position with standard splint for 3 months ($n = 23$) vs Group B: Single steroid injection (20mg triamcinolone acetate with 20mg lidocaine) and splinted for 3 months ($n = 23$) Group C: Surgery, open carpal tunnel release ($n = 11$). Assessments at baseline, 3 months, and 6 months after treatment.	Boston Questionnaire scores (baseline/3rd month/6th month): splinting $2.66\pm0.35/1.39\pm0.37/1.54\pm0.31$ vs. splint plus steroid $2.79\pm0.63/1.41\pm0.32/1.96\pm0.63$ vs. CTR $3.09\pm0.5/1.86\pm0.6/1.41\pm0.31$ (p = 0.004). Palm-wrist median sensory nerve velocities: splint $27.26\pm5.3/29.6\pm7.16/$ 29.56 ± 4.83 vs. splint plus steroid $26.35\pm4.12/31.57\pm4.33/28.74\pm6.19$ vs. CTR $23.98\pm4.28/32.20\pm4.17/33.15\pm4.1$ (NS between groups). Those completely/almost satisfied 3rd/6th months splinting $69.6\%/34.8\%$ vs. splint plus steroid $100\%/82.6\%$ vs. CTR 45.5%/90.9%.	"All treatment methods were effective, but (open) CTR was superior to conservative methods in the long term despite complications and longer recovery time."	Baseline differences. Appears to have targeted lower enrollment for surgery without stating such.
Mishra 2006 RCT No mention of sponsorship or COI.	4.0	N = 66 with CTS EDS confirmed for at least 1 month. Mean age splint group 42.91 years, steroid group 41.57 years.	Full-time splint use for 4 weeks with commercially available carpal tunnel splint (n = 20) vs. oral prednisolone 20mg a day for 2 weeks followed by 10mg a day for 2 weeks (n = 20). Follow-up at 1 and 3 months.	Mean±SD for splint vs. Steroid: Symptom severity score (SSS): SSS 0-1: 0.34 ± 0.42 vs. 0.40 ± 0.30 (p = 0.52); SSS $0-3: 0.30\pm0.54$ vs. 0.49 ± 0.44 (p = 0.42). Sensory distal latency (SDL): SDL 0-1: 0.16 ± 0.63 vs. 0.13 ± 0.71 (p = 0.86); SDL $0-3: 0.35\pm0.76$ vs. 0.55 ± 0.66 (p = 0.25).	"There was significant improvement in both groups clinically during follow-up at 1 and 3 months as well as electrophysiologically, at 3 months"	No blinding. Suggests splinting is as effective as oral steroid, though function slightly better with splinting.
	•		Splints vs. Surgery		• •	
Gerritsen 2002 RCT Sponsored by a grant from the Health Care insurance Council of the Netherlands. No mention of COI.	8.5	N = 176 with CTS, EDS confirmed without previous splinting treatment or surgery. Age 18 years or older, mean age surgery group 49 ± 11 years, splinting group 49 ± 12 years.	Open surgical release (N=87) vs. splinting, custom made or prefabricated to immobilize wrist in a neutral position, at night for at least 6 weeks but could also wear it during the day (N=89) for 12 months. Assessments at 3, 6, 12, and 18 months.	Surgery success rates superior other than first month $(1/3/6/12/18 \text{ months})$ surgery vs. splinting: 29 vs. 42% (p = 0.07)/80 vs. 54% (p <0.001)/94 vs. 68% (p <0.001)/92 vs. 72% (p = 0.002)/90 vs. 75% (p = 0.02). Nights awakening due to symptoms (1/3/6/12/18 months) surgery vs. splinting (mean±SD): 0.8 ± 3.2 vs. 2.0 ± 3.0 (p = 0.008)/ 2.6 ± 3.5 vs. 2.2 ± 3.1 (p = 0.49)/ $3.6\pm$ 2.8 vs. 2.6 ± 3.1 (p = 0.03)/ 3.6 ± 2.9 vs.	"Treatment with open carpal tunnel release surgery resulted in better outcomes than treatment with wrist splinting for patients with CTS."	Duration of symptoms was somewhat worse in splinting group (median 52 vs. 40 weeks, NS). Both treatment arms document substantial improvement,

Korthals-de Bos 2006 RCT Sponsored by a grant from the Health Care Insurance Council of the Netherlands. No COI.	4.0	N = 176 with CTS, EDS confirmed, 18 years of age or older.	Surgery, standard open carpal tunnel release (N=87) vs. nocturnal splinting with custom of prefabricated splint that immobilized wrist in neutral position for at least 6 weeks. Could wear splint during day if desired (n = 89). 1- year study. Assessments at baseline 3, 6, and 12 months.	2.9 ± 3.0 (p = 0.13)/3.6 ± 2.9 vs. 3.2 ± 3.1 (p = 0.44). Severity of main complaint (1/3/6/12/18 months) surgery vs. splinting (mean \pm SD): 1.6 ± 2.9 vs. 2.1 ± 2.2 (p = 0.22)/5.1 ± 3.3 vs. 3.2 ± 2.7 (p <0.001)/6.6 ± 2.4 vs. 4.4 ± 3.2 (p <0.001)/6.4 ± 2.7 vs. 5.1 ± 3.1 (p = 0.005)/6.2 ± 2.8 vs. 5.0 ± 3.3 (p = 0.02). Paresthesia during day (1/3/6/12/18 months) surgery vs. splinting (mean \pm SD): 1.5 ± 3.0 vs. 1.4 ± 2.1 (p = 0.66)/4.8 ± 3.2 vs. 2.2 ± 3.2 (p <0.001)/5.5 ± 2.9 vs. 3.7 ± 3.2 (p <0.001)/5.5 ± 2.9 vs. 4.0 ± 3.4 (p = 0.004)/5.3 ± 3.0 vs. 4.0 ± 3.6 (p = 0.01). Paresthesia at night (1/3/6/12/18 months) surgery vs. splinting (mean \pm SD): 1.3 ± 3.1 vs. 2.5 ± 3.0 (p = 0.02)/4.6 ± 3.8 vs. 3.5 ± 3.3 (p = 0.046)/5.4 ± 3.5 vs. 4.1 ± 3.7 (p = 0.02)/5.2 ± 3.6 vs. 4.5 ± 3.4 (p = 0.20)/5.0 ± 3.6 vs. 4.4 ± 3.6 (p = 0.35). Success rates higher at 12 months for surgery group, surgery 92% vs. splint 72% (95% CI 8-31). Nights awakening due to complaints not different (surgery 3.6 ± 2.9 vs. splint 2.9 ± 3.0), 95% CI -0.2- 1.7. Severity of main complaint higher in surgery (6.4 ± 2.7 vs. 5.1 ± 3.1) 95% CI 0.4-2.2. Paraesthesia during the day: surgery 5.5 ± 2.9 vs. splint 4.0 ± 3.4 (95% CI 0.5-2.5). Paraesthesia at night: surgery 5.2 ± 3.6 vs. splint 4.5 ± 3.4 (95% CI -0.4- 1.8). Mean aggregate costs 2,126€ surgery vs. 2,111€ splint, NS. Absenteeism comparable (50 vs. 52 days). d Yoga	"In the Netherlands, surgery is more cost-effective compared with splinting, and recommended as the preferred method of treatment for patients with CTS."	which may reflect a good natural history. Population-based study with likely relatively suboptimal control over treatments. Small sample size. Applicability of cost data to U.S. questionable.
Confinited 1009	6.0		5	<u> </u>	"In this analianing and the	Crin stron -th
Garfinkel 1998 RCT Sponsored by a grant from the Commonwealth of	6.0	N = 52 with CTS signs and symptoms (at least 2 of 5 – positive Tinel sign, positive Phalen sign, pain in median nerve distribution, sleep disturbances resulting from hand symptoms, and numbness or paresthesias in median nerve distribution) EDS confirmed. Mean age yoga group 48.9, splint group 48.7 years.	Standard splint with metal insert to supplement current treatment (n = 25) vs. Iyengar yoga (1- 1.5 hour, 2x a week for 8 weeks focused on upper body postures, improving flexibility, correcting alignment of hands, wrists, arms, and shoulders, stretching, increasing awareness of optimal joint position during use (n = 26). Current treatment not described. Timing of	Grip strength (pretest/posttest) mean \pm SD: 161.6 \pm 70.4/187.4 \pm 68.8 vs. splint 183.9 \pm 69.5/190.5 \pm 68.2mmHg (p=0.37). Pain reduced (pre-/post-test) mean \pm SD: yoga 5.0 \pm 2.8/2.9 \pm 2.2 (p = 0.02) vs. splint 5.2 \pm 2.1/4.3 \pm 2.2 (p = 0.16). Median nerve sensory conduction (pretest/posttest) mean \pm SD: yoga 4.40 \pm 1.5ms/3.97 \pm 1.5 (p	"In this preliminary study, a yoga-based regimen was more effective than wrist splinting or no treatment in relieving some symptoms and signs of carpal tunnel syndrome."	Grip strength increase may be from activity in yoga as comparison presumably an inactive splint which may have

Pennsylvania. No mention of COI.			splinting not described. Assessments at baseline and 8 weeks.	= 0.18) vs. splint 4.66±1.4/ 4.36±1.6ms (p = 0.28).		caused greater improvement not related to CTS. Lack of description of controls limits interpretations.
Brininger 2007 RCT Sponsored by the School of Health and Rehabilitation Science Development Fund, School of Health and Rehabilitation Sciences, University of Pittsburg, PA. No COI.	6.0	N = 61 at least 18 years of age with a positive Tinel sign or Phalen maneuver and complaints of nocturnal numbness and tingling. Mean age 50 years.	Neutral wrist and metacarpophalangeal (MCP) splint, custom splint positioning MCP joints 0°-10° flexion, NW/MCP (n = 17) vs. neutral wrist and MCP exercise group (tendon and nerve gliding exercises 3-5x a day with 10 reps in each position held for 5 seconds), NW/MCP-X (n = 16) vs. wrist cock-up splint prefabricated that immobilized wrist in 20° of extension, WCU (n = 12) vs. wrist cock-up splint and exercise, WCU-X (n = 16). All groups wore splint during sleep for 4 weeks and received educational brochure on CTS. Assessments at baseline, 4 and 8 weeks.	All groups saw significant decrease in CTS symptoms (no p-value reported).	"Our results provide further evidence of the effectiveness of splinting, designed to target an underlying anatomic problem, for reducing symptoms and improving functional status in patients with mild-to-moderate CTS."	Small group numbers. No table or graphic for results. Baseline comparability for group strength different between groups.
Baysal 2006 RCT No mention of sponsorship or COI.	5.5	N = 36 (72 wrists) females with bilateral CTS, EDS confirmed. Mean age Group 1 47.8±5.5 years, Group 2 50.1±7.3, Group 3, 51.4±5.2 years.	Group 1: tendon- and nerve-gliding exercises 5 daily sessions, each exercise repeated 10x each session for 3 weeks plus splinting with custom made neutral volar splint for 3 weeks all night and during day (n = 12) vs. Group 2: ultrasound 15 minutes a session to palmar carpal tunnel area, frequency 1 MHz, intensity 1.0 W/cm ² , 15 treatments 1x a day, 5x a week for 3 weeks plus splinting (n =12) vs. Group 3: ultrasound, splinting and exercises n = 12). Full-time splint use; 8 week treatment. Assessments at first treatment, end of therapy, and after 8 weeks follow-up.	Pain score before treatment/after treatment/after 8 weeks follow-up: Group I: 4.8±2.3/3.3±2.9/ 2.6±2.8; Group II: 5.7±2.7/2.2±1.9/ 2.5±2.8; Group III: 5.6±3.5/1.3±1.8/ 0.8±0.9. Functional status score: Group I: 20.6±7.8/14.8±7.5/ 14.9±6.6; Group II: 21.9±9.1/16.1±8.5/ 16.1±8.7; Group III: 20.5±7.1/11.7±3.6/ 12.6± 3.4. NS between groups for study outcomes.	"The result of this study emphasizes the efficacy of conservative treatment in CTS. In all patient groups, the treatment combinations were significantly effective immediately and 8 weeks after the treatment."	All groups were splinted precluding judgment of utility of splinting. Unclear if there is an independent effect of exercise.
Fusakul 2014 RCT Sponsored by a grant from the Research Support Funding of the Faculty of Medicine at Vajira Hospital, Navamindradhrirja University, Thailand. No COI.	5.5	N = 66 (126 hands) aged 18 and older with CTS symptoms and a mild-to-moderate diagnosis made with clinical exams and electrodiagnosis. Mean age Group I $- 50.70 \pm 1.39$ years, Group II $- 50.79 \pm 1.38$ years.	Group I: low level laser therapy (LLLT), 18J per session over carpal tunnel area, 15 sessions for 5 weeks plus neutral wrist splint at night and during day for 12 weeks (n = 63) vs. Group II: placebo treatment, red light without laser power output over carpal tunnel, 15 sessions for 5 weeks plus neutral wrist splint at night and during day for 12 weeks (n = 63). Both groups encouraged to perform tending gliding exercises. Follow-up 5 and 12 weeks after treatment.	Symptom Severity Scale (SSS) mean±SD (baseline/week 5/week 12): Group I 2.10±0.68/1.68±0.66/1.49±0.58 vs. Group II 1.68±0.56/1.43±0.49/1.35±0.51 (p=0.031 at week 5). Distal motor latency (DML) mean ±SD (baseline/week 12): Group I 4.84±0.15/4.73±0.13 vs. Group II 5.20±0.18/6.63±1.10 (p=0.015).	"[B]oth LLLT and splints improved the clinical parameters of our study, but LLLT was electroneuro- physiologically superior to splints with regard to the conduction of the median motor nerve fibers."	LLLT significantly better than sham at 3 months for median nerve distal motor latency and better for grip strength. Both groups splinted, precluding assessment of splint's utility.

Soyupek 2012 RCT No mention of sponsorship or COI. Kumnerddee 2010 RCT	4.5	N = 52 (81 wrists) with CTS, EDS confirmed. Mean age splinting, PCS, PNSAI: 47.95±6.93 years, 50.50±8.71 years, 53.79±10.40 years. N = 61 with mild-to-moderate CTS, EDS confirmed. Mean age acupuncture – 50.37±9.01 years; night	 Phonophoresis with corticosteroid (betamethasone valerate %0.1 cream), CS (PCS) over carpal tunnel for 10 minutes/session at frequency 3 MHz, intensity 1.5 W/cm² 5x a week for 3 weeks (n = 28) vs. phonophoresis with non-steroidal anti-inflammatory drug (diclofenac diethyl ammonium gel), NSAI (PNSAI) over carpal tunnel for 10 minutes/session frequency 3 MHz, intensity 1.5 W/cm² 5x a week for 3 weeks (n = 23) vs. wrist splinting in neutral position during day and at night first 15 days and then when CTS symptomatic (n = 23). Follow-up 3 months after treatment. Acu group: 10 sessions of electro-acupuncture 2x a week on meridian of affected area (n = 30) 	VAS difference from baseline to after 3 months, mean±SD (baseline/after 3 months): splinting group $50.69\pm23.45/37.91\pm23.94$ (NS); PCS $60.35\pm18.95/30.35\pm18.15$ (p <0.017); PNSAI 69.13±16.21/45.65±23.65 (p <0.017). Boston Questionnaire total difference from baseline to after 3 months, mean±SD (baseline/after 3 months): splinting group 43.34±10.89/39.26±10.03 (NS); PCS $54.21\pm11.34/39.14\pm10.33$ (p <0.017); PNSAI 53.69±41.86/41.86±10.03 (p <0.017). Tinel's sign, %, difference from baseline to after 3 months (baseline/after 3 months): splinting group 65.2/60.9 (NS); PCS 82.1/50.0 (p <0.017); PNSAI 82.6/65.2 (NS). Phalen's sign, %, difference from baseline to after 3 months (baseline/after 3 months): splinting group 60.9/52.2 (NS); 89.3/50.0 (p <0.017); PNSAI 78.3/39.1 (p <0.017). Mean±SD VAS (baseline/end of treatment): acupuncture	"[T]he most effective treatment modality for CTS was P-CS according to ultrasonographic investigations and other findings."	PCS group better than splinting or PNSAI groups.
Pramonkutklao Hospital's Foundation under Her Royal Highness Princess Maha Chakri Sirindhorn's Patronage. No mention of COI.			Assessments at baseline and end of treatment.	0.028). NS between groups for Symptom Severity Scale (p = 0.295) and Functional Status Scale (p=0.663).		acupuncture group. Study susceptible to significant contact time bias.
Storey 2013	4.5	N = 49 diagnosed with CTS from history and clinical	Comparing Types of Splints C-Trac splint (C-shaped, tubular, semirigid	No significant differences between	"These results suggest that C-	Pilot study
5001Cy 2013	H. J	exam confirmed with nerve conduction studies. Mean	frame contoured around dorsum of wrist and	groups for primary outcomes, Levine	Trac splint is not dissimilar in	showing similar
RCT		age C-Trac splint 47 years, BWB 39 years.	hand with air pressure bladder to control pressure to 180-190mmHg for 2 minutes) 3x a	symptom ($p = 0.213$) and function ($p = 0.308$) scores by week 8. No significant	efficacy to a resting Beta Wrist Brace."	efficacy between C-Trac splints
No mention of sponsorship. No COI.			week first 4 weeks then as necessary ($n = 25$) vs. Beta Wrist Brace (BWB) resting splint at night and during activities that provoke symptoms first 4 weeks then as necessary ($n =$ 24). Follow-up at 4, 8, 26, and 52 weeks.	differences between groups for secondary outcomes at 8 weeks, Semmes-Weinstein monofilament scores ($p = 0.0567$), grip strength ($p = 0.568$), lateral pinch ($p = 0.728$), tripod pinch ($p = 0.183$).		compared to Beta wrist braces at 8 weeks, 6 months and 12 months.

De Angelis 2009	4.0	N = 120 age 18 or older with possible CTS, pain,	Hand brace MANU® that does not impede	No significant differences between	"Our findings demonstrate that	High dropout rate.
		numbness, and paresthesias and/or hypoesthesia in the	thumb-index finger pinch, thumb-little finger	groups for the primary study outcomes (p	a conservative treatment by	At 3 months,
RCT		median nerve distribution, positive Phalen test,	opposition, and wrist flexion and extension	= 0.097 - 0.821).	the hand brace or a splint is	comparable
		exclusive or predominant in one, and	worn every night for 3 months $(n = 59)$ vs.wrist		effective as long as they are	efficacy
Sponsored by the AGF		electrophysiological diagnosis of CTS. Mean age	splint CAMP TIELLE® that immobilizes wrist		employed as already shown in	
Orthopaedic Devices		MANU® 46.0±11.8 years, CAMP TIELLE® 46.3±7.9	in dorsiflexion position with external angle of		other studies."	
s.r.l. company. No COI.		years.	30° and internal angle of 16° worn every night			
			for 6 months ($n = 61$). Follow-up at 3 months			
			and 6 months after treatment.			

Evidence for the Use of Acupuncture

There are 4 moderate-quality RCTs incorporated into this analysis.(781, 792-794) There are 3 low-quality RCTs in Appendix 2.(795-797)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Acupuncture, Acupuncture Therapy, carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, tingling, wrist, hand, palm, finger, pain, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random,* randomized, randomization, randomly; systematic, systematic review, retrospective studies, and prospective studies. We found and reviewed 40 articles in PubMed, 411 in Scopus, 83 in CINAHL, 46 in Cochrane Library and 0 in other sources. We considered for inclusion 7 from PubMed, 2 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 9 articles considered for inclusion, 8 randomized trials and 2 systematic studies met the inclusion criteria

Author/Year Study Type Conflict of Interest (COI)	Score (0- 11)	Sample Size	Cor	nparison Group	Results	Conclusion	Comments
Yao 2012 RCT Sponsoredby the Department of Physical Medicine and Rehabilitation, university of California and by the National Institute of Disability Research grant.	7.0	patients with mil	not specified) acupuncture-naïve adult d to moderate CTS. Found through c testing; mean age: Group 1 $p 2 - 53.6 \pm 7.65$.	Acupuncture group given treatment during 6 weekly sessions for 20 minutes. Group asked to feel a de-qi sensation; heaviness (n = 21) vs. Placebo acupuncture group acupuncturists stopped manipulate needle for 2 seconds. Both groups given wrist splints for sleeping (n = 20). Follow-up baseline, immediately after 6 weeks treatment, 2 weeks and 3 months after last treatment.	Comparing baseline to three months after the last treatment carpal Tunnel Self-Assessment Questionnaire (CTSAQ) scores improved in both groups. Group 1, 0.58 improvement ($p =$ 0.03), Group 2 improved by 0.81 ($p =$ 0.001). Analyzing CTSAQ hand function 3 months after last treatment group 1, improvement by 0.45 ($p =$ 0.17) and group 2, improvement by 0.48 ($p = 0.02$) both improved significantly.	"Both treatment and placebo groups demonstrated improvements from baseline."	Splints given to all participants. Small sample size with 20% dropout in 1 arm. Acupuncture not superior to placebo acupuncture.
Yang 2009 RCT	5.5	N = 77 (63 females/14 males) consecutive and	Acupuncture 8 sessions of 30 minutes duration for 4 weeks (2x a week) ($n = 38$) vs. Steroid treatment group: 20mg daily of prednisolone for 2 weeks and 10mg daily for following 2 weeks. 4 weeks total ($n = 39$). Follow-up baseline, 2 weeks, 4 weeks for Global Symptom Score and nerve conduction study (NCS) scores at baseline and 4 weeks.		At study end, there was a high percentage of improvement in both acupuncture and steroid groups at 2 weeks and 4 weeks ($p < 0.01$). Although there was no statistical significance	"Despite the limitations, this randomized, controlled study indicates that short-term acupuncture treatment is as effective as short-term low-	Minimal differences between groups observed. Population poorly described.

Sponsored by Kuang		prospective		between the two group at these follow	dose steroid for mild-to-	
Tien General		patients with		ups.	moderate CTS."	
Hospital grant.		mild to		Nocturnal awakening week 4, acu group		
No COI.		moderate CTS		3.5 ± 3.8 vs steroid group 1.5 ± 1.9 , (p <		
10 001.		and naïve to		0.03).		
		acupuncture		0.05).		
		treatment				
		(confirmed by				
		NCS); mean				
		age: Group 1 –				
		9.3±8.9; Group				
		$2 - 49.9 \pm 10.3$.				
Yang 2011	5.0	N = 70 whom	Acupuncture consisted of 8 sessions of 30 minute duration administered for 4 weeks	Global Symptom Score (GSS) month 7,	"[T]herefore, we conclude that	Long term follow
1 ang 2011	5.0	had not done	(twice a week) $(n = 38)$ vs. Steroid treatment group prescribed 20mg daily of	group 1 3.4±5.8 vs group 2 7.2±5.4 (p	acupuncture treatment can be	up of prior study.
RCT		any other type	prednisolone for 2 weeks and given 10mg daily for following 2 weeks. 4 weeks total (n	<0.01). GSS at month 13 group 1,	considered as an alternative	No statistical
KC1		of intervention	= 39). Follow-up at 7 months and 13 months after treatment.	4.5 ± 7.7 vs group 2, 11 ± 8.6 (p <0.01).	therapy to other conservative	difference between
Sponsoredby Kuang		since the other	= 57). I blow-up at 7 months and 15 months after treatment.	Month $13 - Baseline improvement in$	treatments for those who do not	groups at any time
Tien General		study. (Yang		GSS group 1, -11.53 ± 7.63 vs group 2, 3	opt for early surgical	point.
Hospital grant. No		2009); Mean		28 ± 10.64 (p <0.01). Distal Motor	decompression."	point.
COI.		age: Group 1 –		Latency (DML) Month 13 – Baseline	decompression.	
001.		49.3±8.9;		improvement; group 1, -1.44 ± 1.07 vs		
		49.3±8.9, Group 2 –		group 2 -0.18±1.04 (p <0.01). Compound		
		49.9 ± 10.3 .		Muscle Action Potential (CMAP) group		
		49.9±10.5.				
				1 improvement 0.56 ± 1.25 (p < 0.01).		
				Motor Nerve Conduction Velocity		
				(MNVC) at Month 13, group 52.7 ± 4.0 vs		
				group 2 49.7±4.6. Month 13 – Baseline		
				group 1, -0.47±4.00. Sensory Nerve		
				Action Potential (SNAP) Month 13 –		
				Baseline, acupuncture improvement		
				2.75±6.15 (p<0.01). Distal Sensory		
				Latency (DSL) Month 13 – Baseline		
				acupuncture vs steroids, -0.36±0.62 vs		
				0.23±0.71 (p <0.01). Both groups		
				improved significantly Month 13 –		
				Baseline in Wrist Palm Sensory nerve		
				conduction velocity, (p <0.01).		<i>a</i> 11
Kumnerddee 2010	4.0	N = 61 with	Acupuncture group, 10 sessions $2x$ a week, needles placed around median nerve and	Boston Carpal Tunnel Outcome Scale	"Electro-acupuncture provides	Comparable
DOT		mild to	received 1 Hz current for 30 minutes ($n = 30$) vs. Night Splinting group for 5 weeks, use	(BCTS) decreased significantly, 1.92±	more pain attenuating effect	efficacy, but pain
RCT		moderate CTS	of metal bar splint to restrict wrist flexion during sleep ($n = 30$). Follow-up at baseline	0.54 (baseline) to 1.53 ± 0.34 (treatment	than night splinting in mild-to-	symptoms relieved
		who have not	and immediately after treatment period (5 weeks).	end) Acu group (p <0.001) vs. 1.88±0.48	moderate degree CTS."	slightly better with
Sponsoredby		participated in		(baseline) to 1.61±0.43 (end) (p <0.007)		acupuncture group.
Pramonkutklao		surgical		splint group. Acu group Symptom		Study susceptible to
Hospital's		treatment,		Severity Scale (SSS) 2.03±0.61(baseline)		

Foundation under	steroid	to 1.57±0.39 (end), Functional Status	significant contact
Princess Maha	injections, or	Scale (FSS) 1.76±0.63 (baseline) to	time bias.
Chakri Sirindhorn's	were pregnant,	1.50±0.39 (end) and VAS 22.57±22.67	
Patronage	all patients	(baseline) to 7.97±14.99 (end) scores all	
	asked to	decreased significantly ($p < 0.05$) vs.	
	discontinue use	night splinting for which only SSS	
	of NSAIDs	decreased significantly $(p = 0.008)$ at 5	
	during study;	weeks. Comparing groups: VAS	
	age: Group 1:	reduction Acu group 14.60±19.31 vs	
	50.37±9.01;	4.97 ± 24.37 NS group (p = 0.028).	
	Group 2:		
	51.73±8.92		

Evidence for the Use of Low-Level Laser Therapy for CTS

There are 11 moderate-quality RCTs and 1 moderate-quality crossover trial incorporated into this analysis.(779, 799, 802-811) There is 1 low-quality RCT in Appendix 2.(812)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: laser or low-level laser therapy, carpal tunnel, medial nerve, median carpal, median nerve neuropathy, median neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, or tingling; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, random*, randomized, randomization, random!; systematic, systematic review, retrospective studies, prospective studies, epidemiological studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 41 articles in PubMed, 541 in Scopus, 29 in CINAHL, 38 in Cochrane Library and. We considered for inclusion 9 from PubMed, 5 from Scopus, 0 from CINAHL, and Cochrane Library. Of the 14 articles considered for inclusion, 13 randomized trials and 0 systematic review met the inclusion criteria.

Author/Year	Score (0-	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type Irvine 2004	11) 7.5	N = 15 (12	Gallium/aluminum/ arsenide laser treatment $(n = 8)$ vs. Control group or treatment with	Improvement in sham laser $(p = 0.034)$	"[L]LLT is no more effective in	No difference
II VIIIC 2004	1.5	R = 15 (12) female/3 male)	a sham laser $(n = 7)$. Follow-up for 4 weeks.		the reduction of symptoms of	
RCT		with CTS.	a shain faser (fi = 7). Follow-up for 4 weeks.	and LLLT treatment groups, (p =	CTS than is sham treatment."	between groups.
Double-blind				0.043). NS between group differences, $(n - 0.60)$	CTS than is shall treatment.	
Double-billio		Ranging in age		(p = 0.69).		
		from 34 to 67				
No mention of		years, $(46 \pm$				
sponsorship. One of		11).				
the authors (K. M. C.)						
funded by Alberta						
Heritage Foundation						
for Medical Research						
as clinical						
investigator.						
Tascioglu 2012	7.5	N = 60 (46	First group received Ga-Al-As laser irradiation at each point, once daily, 5 days a week	Pain scores decreased significantly in all	"In conclusion, the results of	Comparable results
		female/14	(N = 20) vs. Second group treated with same low-power laser, but painful points	groups at Study end for group I, II and	this study indicate that low	showing LLL not
RCT		male) with	irradiated with duration of 1 minute, once daily, 5 days a week (n = 20) vs. Third group	III, (p < 0.001, p <0.001, and p < 0.01).	level laser, given at two	superior to placebo.

Placebo-controlled		CTS	received placebo laser, with duration of 2 minutes irradiation, 1x daily, 5 days a week	FSS scores improved in all groups, (p	different dosages, was no more	
		symptoms	(n = 20). Follow-up for 15 days.	<0.05).	effective than placebo in the	
No mention of		shorter than 6			treatment of CTS."	
sponsorship or COI.		months. Aged				
		between 28				
		and 68 years.				
Bakhtiary 2004	7.0	N = 40 and 10	Ultrasound,15 minute sessions with frequency of 1 MHz and intensity of 1.0W/cm ² ,	Thumb sensory latencies favored	"[U]ltrasound treatment is more	Suggests laser not
		(gender not	pulsed mode duty cycle of 1:4 and transducer area 5cm^2 (N = 45) vs. Low-level laser	ultrasound: -0.7 vs-0.2, (p = 0.003).	effective than low level laser	effective compared
RCT		specified) with	therapy, applied low intensity 9J, infrared laser diode, 830nm at 5 points, 1.8J/point,	Other electrodiagnostic measures all	therapy in patients with mild to	with ultrasound.
		bilateral and	daily 15 minute sessions 5 times a week ($n = 45$). Follow-up for 3 weeks.	favored ultrasound. VAS pain scores -	moderate carpal tunnel	
Sponsored by a grant		unilateral CTS		6.3 in the ultrasound group vs.	syndrome."	
from Semnan Medical		confirmed by		-2.0 in laser group, (p < 0.001) at 4		
Sciences University.		electromyogra		weeks after completion of treatment.		
No mention of COI.		phy or 90				
		wrists. Age				
		means for				
		laser/ultrasoun				
		d groups: 48				
		(13.4) / 45				
		(17.1).				
Naeser 2002	6.5	N = 11 (2	Device 1: Red-beam laser, continuous 15-mW, applied to shallow acupuncture points	McGill Pain Questionnaire scores were	"[LLLT] appears to be an	Small sample size.
		female/9 male)	located on the fingers and hand, 3 times weekly $(n = 11)$ vs. Device 2: Infrared pulsed	significantly lower with real treatment,	affective substitute for	Combined therapy
RCT		with mild to	laser, 180ns, 9.4W, located on the elbow, shoulder, upper back, and cervical paraspinal	(p = 0.0035). Sensory latencies were	surgeryespecially when this	precludes
Double-blind		moderate CTS,	areas, 3 times weekly ($n = 11$) Device 3: Microamps TENS 580 μ A-3.5mA device,	improved with real treatment, (p =	new conservative treatment is	assessment of value
Crossover		EDS	applied to the affected wrist, 3 times weekly $(n = 11)$. Follow-up for 3 to 4 weeks.	0.009), but not motor latencies, (p =	applied in the early stages of	of laser. Variable
		confirmed.		0.27).	CTS (preferably within 1y of	numbers
Sponsored in part by		Age range			symptom onset) and with	treatments. 27%
the American Society		from 40 to 68			middle to moderate cases (as	incomplete data.
for Lasers in Surgery		years (mean			defined with NCSs and where	
and Medicine's 16th		53.5 y).			there is no abnormality on	
Annual Meeting. No					needle electromyography)."	
COI.						
Evcik 2007	6.5	N = 81 (70	Group 1 or laser group received 7 joules/per point over carpal tunnel area at wrist (n =	VAS scores for day and night showed	"In using LLLT, (1) there was	Comparable results
		female/11	41) vs. Group 2 or placebo received placebo laser therapy $(n = 40)$. Follow-up at 4 and	significant decrease in both groups at	no difference relative to pain	for pain relief.
RCT		male) with	12 weeks.	end of therapy, ($p < 0.001$). Statistically	relief and functional capacity	Although LLLT
Placebo-controlled		CTS diagnosis,		significant improvement in sensory	during the follow-up in CTS	group showed some
Double-blind		on both		nerve velocity, and sensory and motor	patients; (2) there were positive	improvement in
		clinical		distal latencies in laser group, (p	effects on hand and pinch grip	hand and pinch grip
No mention of		examination		<0.001), and sensory nerve velocity	strengths."	strength over
sponsorship or COI.		and		meaningful in placebo group, (p <0.05).		placebo.
		electromyogra				
		phic (EMG)				
		study. Age				
		range, 26-78.				

Ekim 2007 RCT	6.5	N = 19 (18 female/1 male) with clinical	Group 1 or LLLT with dosage $1.5J$ / per point once daily for 10 days (n = 10 hands) vs. Group 2 or placebo laser therapy group once daily for 10 days (n = 9 hands). Follow-up at 3 months.	Mean differences at 3 months significant; 95% CI, $(-15 - (-5))$ and placebo $(-5 - (-2))$. No other statistically	"CTS only add to the suffering of RA patients with disorganized hand functions."	Small sample size. Rheumatoid arthritis population,
No mention of		and electrophysiol		significant improvements in the other clinical symptoms and		with utility for occupational or
sponsorship or COI.		ogic evidence of CTS with		electrophysiological assessments.		general populations unclear.
		RA. Age 33-72 years.				
Yagci 2009	6.0	N = 45 (hands) with symptoms	Splinting or S group splinted in neutral position with standard cotton–polyester splints (n $= 24$) vs. splinting plus low-level laser therapy SLLLT an infrared Ga–Al–As diode laser	No differences at baseline and third month, $(p > 0.05)$. Symptom severity	"As a conclusion, both SLLLT and splinting provided	Comparable efficacy.
RCT		and signs of	device wavelength 830nm (n = 21). Follow-up for 3 months.	score of SLLLT group statistically	improvements in clinical	efficacy.
Masked-controlled		suspected CTS		lower than S group, ($p = 0.03$). S group	parameters but SLLLT is	
		over 3 months.		had improvement in only BQ symptom	electrophysiologically superior	
No mention of		Mean age for		severity score, $(p = 0.001)$, and there	to splinting."	
sponsorship or COI.		S/ and SLLLT		was a significant decrease in grip		
		groups:		strength ($p = 0.016$).		
		51.75±12.09/				
		49.47±6.32.				
Chang 2008	5.5	N = 36 with	Laser group received laser treatment (10 Hz, 50% duty cycle, 60 mW, once daily for	No significant differences seen in motor	"LLLT was effective in	Small sample size
RCT		mild to moderate	two weeks (N = 20 wrists) vs. Placebo group received sham laser treatment (N = 20 wrists). Follow-up after 2 weeks of treatment for 18 week.	latency and sensory peak latency between groups, ($p > 0.05$). Statistically	alleviating pain and symptoms, and in improving functional	and short follow up period. CTS
Placebo-controlled		degree of CTS.	witsis). Follow-up after 2 weeks of freatment for 18 week.	significant reduction in VAS scores in	ability, as well as finger and	diagnosis not
Double-blind		Age mean for		laser group after treatment and at 2-	hand strength, in those with	standardized.
Double-billio		laser/ and		week, (p $<$ 0.05 and 0.051). At 2 weeks,	mild to moderate CTS, and the	Trends of longer
Sponsored by the		placebo		statistically significant differences in	therapy had no side effects."	duration disease
National Science		groups; 46.01		reductions in Symptom Severity Scale		and less nocturnal
Council of the		± 11.65 / 49.07		and Functional Status Scales scores		awakening in
Republic of China. No		± 11.28.		between groups, (p <0.05).		placebo group.
COI.						Unusual finding of
						increases in
						symptoms in
						placebo group.
Saeed 2012	5.5	N = 100 with	Group A, treated by Ultrasound therapy 1MHz, 1.0 Watt/cm2, 5x a week for 4 weeks (n	Distal motor latency and sensory	"Ultrasound treatment proved	Ultrasound group
DCT		unilateral CTS	= 50) vs. Group B, treated with LLLT or 830 nm infrared, 5x a week for 4 weeks (n =	latencies were found to be statistically	to be more effective than Laser	better than laser at
RCT		diagnosed clinically and	50). Follow-up for 4 weeks.	improved in ultrasound treated group, (p <0.001). Change from baseline for	treatment."	4 weeks. Unclear compliance and
No mention of		electrophysiol		pain/symptom severity scale/functional		dropouts.
sponsorship or COI.		ogically. The		status scale, (p <0.001).		aropouts.
sponsorship of COL		mean age was		status seale, (p <0.001).		
		$35.59 \pm 6.1.$				

Fusakul 2014 RCT Double-blind Sponsored by grant from Research Support Funding of the Faculty of Medicine at Vajira Hospital, Navamindradhriraj University, Thailand. No COI.	5.5	N = 66 with mild to moderate carpal tunnel syndrome (CTS). Mean age for group I / II: $50.70 \pm 1.39 / 50.79 \pm 1.38$.	Group I, LLLT with a splint of 15 sessions, 3 times weekly for 5 weeks (n = 63 hands) vs. Group II, placebo treatment with splint for 15 sessions, 3x a week for 5 weeks (n = 63 hands). Follow-up for 5 weeks.	At 5 and 12 week follow-up significantly better improvements in LLLT-treated group compared to placebo, especially for grip strength, T0/T5/T12; (p = $0.414/0.313 / 0.554$). Distal motor latency of median nerve significantly improved in LLLT vs placebo group, (p < 0.05).	"[B]oth LLLT and splints improved the clinical parameters of our study, but LLLT was electro- neurophysiologically superior to splints with regard to the conduction of the median motor nerve fibers."	LLLT significantly better than sham at 3 months for median nerve distal motor latency and better for grip strength.
Shooshtari 2008 RCT No mention of sponsorship or COI.	4.0	N = 80 with CTS based on clinical examination and electromyogra phic (EMG) findings. Age range 30-70.	Group A received low power laser waves by physiolaser Olympic with multiple probe five times weekly ($n = 40$) vs. Group B received flash laser ($n = 40$).	Median transcarpal sensory NCV after/before treatment, (p <0.001). Hand grip power increased 15.39% Group A with no meaningful improvements in Group B. NCV of median nerve in Group A improved about 3.25% ms, 1.99% ms, 6.43 m/s, with no meaningful changes in Group B.	"Laser therapy as a new conservative treatment is effective in treating CTS paresthesia and numbness and improved the subjects' power of hand grip and electrophysiological parameters."	Sparse methodological details. Hand grip improved in LPL group.
Raeissadat 2010 RCT Single-blind No mention of sponsorship or COI.	4.0	N = 65 (hands) with mild or moderate CTS. The mean age of patients was 43.9 years.	Group I received local corticosteroid injection or Hydrocortisone 50mg (n = unknown) vs. Group II, received low level laser therapy or 20J/cm ² in 11 seconds/session for each of 5 points, 775nm, 10 sessions and 3sessions / week (n = unknown). Follow-up for 10 months.	Severity of disease in injection group based on electrodiagnostic findings; mild in 41.2%, moderate in others. After 10 months, electrodiagnostic studies normal in 32.4% (38.7% before treatment), mild in 23.5% (22.6%), moderate in 41.2% (35.5%), severe in 2.9% (3.2%). Median nerve distal sensory latency before (DSL1) and 10 months after accomplishing treatment and comparison of 2 groups: injection therapy vs laser therapy: 4.28 ± 0.36 vs 4.25 ± 0.43 DSL1, and 3.9 ± 0.5 vs 4 ± 0.6 , DSL2, (p >0.05). Distal motor latency: 4.3 ± 0.6 vs 4.33 ± 0.65 (MDL1) and 4.2 ± 0.7 vs 4.17 ± 0.8 (DML2), (p <0.05). Before vs. 10 months after treatment severity of disease: mild 45.2% vs 22.6%.	"Low level laser therapy can be as effective as local injection in reducing pain and severity of disease (based on electrodiagnostic medicine classification) in patients with mild and moderate CTS even in long term (after 10 months)."	Comparable efficacy. Patient blinding not possible due to different treatments (injection vs. laser).

Evidence for the Use of Manipulation and Mobilization for CTS

There are 2 moderate-quality RCTs incorporated into this analysis.(637, 819) There are 3 low-quality RCTs in Appendix 2.(625, 820, 821)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: manipulation or mobilization / carpal tunnel, median nerve, median, carpal, disease, entrapment, neuropathy, syndrome, compression, CTS, burning, itching, numbness, tingling, hand, palm, finger, wrist, and pain; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 38 articles in PubMed, 172 in Scopus, 26 in CINAHL, and 10 in Cochrane Library. We considered for inclusion 3 from PubMed, 8 from Scopus, 3 from CINAHL, 1 from Cochrane Library and 0 from other sources. Of the 15 articles considered for inclusion, 3 randomized trials and 8 systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Davis 1998	5.0	N = 91 (gender not specified) age 21-45 years	Ibuprofen (800mg 3x a day for 1 week, then 2x a day for 1 week, then PRN 7	CTS outcome assessment physical distress (mean±SD) baseline to end of	"Carpal tunnel syndrome associated with median nerve demyelination but not	Baseline did not exclude prior ibuprofen use or manipulation, but prior use of these
RCT		with self-reported symptoms of CTS and	weeks) and nocturnal cock-up wrist supports $(n = 46)$ vs. high velocity, low	study: IBU and splint 14.66 ± 9.89 to 5.74 ± 6.28 vs. ultrasound and	axonal degeneration may be treated with commonly used components of	treatments is likely differential between the 2 groups and is a potentially fatal study flaw.
Sponsored by a grant from the National Chiropractic		EDS confirmed CTS. Mean age ibuprofen group	amplitude manual thrust procedures: manipulation to upper extremity and spine	manipulation 12.47 ± 8.07 to 9.25 ± 8.14 (p = 0.0132). CTS outcome	conservative medical or chiropractic care."	Ibuprofen use PRN after 2 weeks and subject contact differed between groups, providing
Mutual Insurance		38±5 year, manipulation	(3 treatments a week for 2 weeks; 2	assessment mental distress (mean±SD)		bias in favor of manipulation/ultrasound.
Company. No mention of COI.		group 36±6 years.	treatments a week for 3weeks; 1 treatment a week for 4 weeks) plus ultrasound applied over carpal tunnel for half chiropractic treatment visits, 1 MHz and 1.0-1.5 W/cm at 50% duty cycle 5 minutes plus nocturnal wrist supports (n = 45). Study 9 weeks. Assessments at baseline, end of study.	baseline to end of study: IBU and splint 33.61 ± 12.02 to 14.94 ± 11.33 vs. ultrasound and manipulation 28.94 ± 11.69 to 17.29 ± 13.24 (p = 0.0085). No significance between group difference in EDS.		High dropout rates. Study mainly compares variable dose ibuprofen vs. manipulation plus ultrasound as both splinted. Since ibuprofen not effective and evidence that ultrasound is, results suggest manipulation is not effective.
Burke 2007	5.0	N = 24 with clinically suspected CTS. Mean age	Graston Instrument-assisted soft tissue mobilization surgery (GISTM) (N=14)	VAS pain ratings (baseline/post- treatment/3months): CISTM	"Although the clinical improvements were not different between the 2 manual	This study's two arms are both active treatment, precluding ability to address
RCT		TISTM 39.8±8.75 years, STM 43.4±5.32 years.	vs. soft tissue mobilization (STM) surgery administered with clinician hands	61.5±26.6/9.8±12.5/9.2±11.0 vs. STM 60.5±17.9/ 15.4±19.6/33.7±28.8 (p	therapy techniques, which were compared prospectively, the data	efficacy of manual therapy.
Sponsored by the TherapyCare Resources, Inc. No COI.			(N=12). 6 week treatment (2 times a week for 4 weeks, then once a week for 2 weeks). Follow-up at 3 months.	<0.05).	substantiated the clinical efficacy of conservative treatment options for mild to moderate CTS."	

There is 1 moderate-quality RCT incorporated into this analysis.(822) There are 2 low-quality RCTs in Appendix 2.(823, 824)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Massage, soft tissue massage and carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease entrapment, neuropathy nerve compression, burning, itching, numbness, tingling, and pain; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective studies, prospective studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 22 articles in PubMed, 209 in Scopus, 13 in CINAHL, 128 in Cochrane Library and 0 in other sources. We considered for inclusion 3 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 3 articles considered for inclusion, 3 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type						
Madenci	4.5	N = 80 (76 females/4	Group I, splint plus massage;	Patient global assessment (PGA, pre-treatment/post-treatment,	"Statistically more significant	Data suggest "splint+massage"
2012		males) with CTS with	Madenci hand massage technique	mean±SD): Group I (8.5±1.1/2.3±0.8) v. Group II	improvement was observed in	treatment superior to splint along
		symptoms for longer	(MHMT) self-applied for 6 weeks	$(8.2\pm1.2/4.1\pm0.7)$, p = 0.001. Physician global assessment	PGA, MDPGA, hand grip	for global score outcome but not
RCT		than 6 weeks and at least	with weekly follow-up visits (n =	(MDPGA, pre-treatment/post-treatment, mean±SD): Group I	strength scores, and	for any other outcomes including
		1 positive test of	40) vs. Group II, splint ($n = 40$).	(5.9±0.8/1.2±0.5) v. Group II (5.1±0.9/2.7±0.8), p = 0.002. Grip	electrophysiological parameters	objective electrodiagnostic
No mention of sponsorship		following: Tinel, Phalen,	Both groups received tendon and	strength right: Group I (25.4±6.3/30.3±5.2) vs. Group II	in the group applied MHMT as	measures. Study susceptible to
or COI.		Buda, and Carpal	nerve gliding exercises and	$(25.7\pm5.9/28.2\pm3.2)$, p = 0.042. Grip strength left: Group I	compared to the group applied	significant contact time bias. Both
		compression test.	analgesic drugs. All wore wrist-	(21.2±3.2/26.9±2.6) vs. Group II (20.5±3.3/24.1±2.3), p = 0.041.	splint therapy only."	groups also provided exercises and
		Between the ages of 31	hand resting splint during sleep at	Boston symptom severity scale: Group I (3.9±1.1/1.8±0.4) v.		analgesics.
		and 65	night for 6 months.	Group II ($3.7\pm1.0/2.5\pm0.5$), p = 0.001. Boston functional		
				capacity scale: Group I (3.2±0.8/2.0±0.4) v. Group II		
				$(3.2\pm0.6/2.6\pm0.6), p = 0.001.$		

Evidence for the Use of Therapeutic Touch for CTS There are no quality studies. There is 1 low-quality RCT in Appendix 2.(825)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Therapeutic touch and carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease entrapment, neuropathy nerve compression, burning, itching, numbness, tingling, and pain; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective studies, prospective studies, epidemiological studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 22 articles in PubMed, 209 in Scopus, 13 in CINAHL, 128 in Cochrane Library and 0 in other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 1 article considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

Evidence for the Use of Ice

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: ice; self-applied ice, cold therapy, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, burning, itching, numbness, tingling,

hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 19 articles in PubMed, 7 in Scopus, 0 in CINAHL, 0 in Cochrane Library and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Heat

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Self applied heat, heat therapy, electrical induced heat, dielectric heating, self-applied heat therapy, carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, tingling, and pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomiz, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 44 articles in PubMed, 34 in Scopus, 2 in CINAHL, and 38 in Cochrane Library. We considered for inclusion 1 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 2 articles considered for inclusion, 0 randomized trials and 0 systematic studies met the inclusion criteria.

Evidence for the Use of Diathermy

There are 2 moderate-quality RCTs incorporated into this analysis.(829, 830)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: diathermy; carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomiz, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 33 articles in PubMed, 153 in Scopus, 0 in CINAHL, and 3 in Cochrane Library. We considered for inclusion 0 from PubMed, 2 from Scopus, 0 from CINAHL, 1 from Cochrane Library and 0 from other sources. Of the 3 articles considered for inclusion, 2 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	(0-11)					
Conflict of Interest (COI)						
Frasca 2011	5.0	N = 22 (19 females/3 males) with	Hyperthermia treatment or HTG	At final visit of HTG improvement in pain severity vs. baseline	"Hyperthermia produced	Small sample size. Study
		idiopathic unilateral or bilateral, mild to	for 8 sessions, 20 minutes each (n	(VAS: p = 0.002, Levine-Boston I p < 0.0001) and functional	short-term improve-ments in	represented as double blinded, but
RCT		moderate carpal tunnel syndrome (CTS).	= 11) vs. sham-controlled groups	impairment (Levine-Boston II $p = 0.002$) No significant	pain and function in patients	cannot blind this type of study
Double-blind		Mean age HT group 50.8±13.8 and for SC	or SCG for 8 sessions, 20 minutes	difference in SCG vs. baseline value (VAS p = 0.713 Levine-	with mild to moderate carpal	design using heat.
		group 56.4±13.8	each $(n = 11)$. Follow-up at	Boston I $p = 0.14$). Comparisons of changes in outcome	tunnel syndrome in the	
No sponsorship			baseline and 3 weeks.	measures for HTG pain severity (VAS p = 0.004, Levine-Boston	absence of any sizeable	
or COI				I $p = 0.009$) No significant difference for SCG. VAS for HTG	change in neurophysiological	
				17.9mm.	parameters."	
Incebiyik	4.5	N = 31 females with mild and moderate	Group 1 hot pack, Short-wave	At baseline vs. 3 weeks, between-group comparison: Tinel test/	"SWD provided short-term	Data suggest treatment superior to
2014		CTS. Mean age for Group 1 51±10.07 and	diathermy or SWD, and gliding	Phalen test/Reverse Phalen test/Carpal compression test/VAS/	improvements in pain, clinical	placebo. Many cointerventions
		for Group 2 44.92±10.84.	exercises for 15 sessions, 5 times	Levine-Boston Symptom Severity Scale or SSS/ Functional	symptoms, and hand function	poorly tracked. Trial susceptible to
RCT			weekly $(n = 15)$ vs. Group 2 hot	Status Scale or FSS; p <0.001 group 1 vs. p = 0.500 group 2/p	in patients with mild and	contact time bias.
Double-blind			pack, placebo for SWD, and	<0.001 vs p = 1.000/ p < 0.001 vs p = 1.000/p < 0.001 vs p =	moderate CTS."	

		gliding exercises for 15 sessions, 5	1.000/p < 0.001 vs p = $1.105/p < 0.001$ vs p = $0.234/p < 0.001$ vs	
No mention of		times weekly $(n = 13)$. Follow-up	p = 0.204.	
sponsorship or		at baseline and at 3 weeks.		
COI.				

Evidence for the Use of Ultrasound for CTS

There are 1 high-(640) and 7 moderate-quality(611, 637, 805, 831, 833, 835, 836) RCTs incorporated into this analysis. There are 4 low-quality RCTs in Appendix 2.(785, 832, 837, 838)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: ultrasound therapy, carpal tunnel syndrome, median nerve neuropathy, median nerve disease entrapment, neuropathy nerve compression, burning, itching, numbness, tingling, controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective studies, prospective studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 56 articles in PubMed, 6329 in Scopus, 8 in CINAHL, 43 in Cochrane Library and 0 in other sources. We considered for inclusion 11 from PubMed, 0 from Scopus, 2 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 18 articles considered for inclusion, 13 randomized trials and 1 systematic review met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	(011)			Ultrasound vs. Placebo		
Yildiz 2011	8.0	N = 51 (25 median nerves; 43 female/8 male) with signs and symptoms of CTS for	Group 1: sham ultrasound (US), ultrasound system in off mode 15	Mean±SD VAS (baseline/2 week/8 week): Group 1, 5.76±2.45/2.72±2.07/3.28±2.74 vs. Group 2,	"Our results suggest that ketoprofen PH in addition to	Ultrasound plus splinting not superior to splinting alone.
RCT		more than a month and mild-to-moderate CTS after electrodiagnostic test	minute sessions once a day 5 times a week for 2 weeks plus splinting	4.96±2.50/2.41±2.43/2.77±2.74 vs. Group 3, 6.04±2.40/3.03±1.96/0.98±1.65 (p = 0.002, Group 3> Group 1; p	splinting is superior to the combination of US and	Ketoprofen plus splinting was associated with a reduction in
No mention of sponsorship or COI.		confirmation. Age range 39-66 years.	with a neutral custom-molded thermoplastic volar wrist splint at night and during the day for 8 weeks (n = 17, 25 median nerves) vs. Group 2: US, pulse mode (1:4) with gel without medication at 1 MHz frequency and 1 W/cm ² intensity plus splinting (n = 17, 26 median nerves) vs. Group 3: ketoprofen phonophoresis (PH), US pulse mode (1:4) with 2.5% ketoprofen gel at 1 MHz frequency and 1 W/cm ² intensity plus splinting (n = 17, 25 median	= 0.004, Group 3 > Group 2).	splinting with respect to pain only in middle term patients with CTS."	pain at 8 weeks.

Ebenbichler 1998 RCT No mention of sponsorship. No COI.	6.5	N = 45 (gender not specified) with mild to moderate CTS. Mean age51.	Ultrasound daily 15 minute sessions, 5x a week for 2 weeks then twice a week for 5 more weeks, 1MHz with intensity 1.0W/cm ² , pulsed mode duty cycle of 1:4 and transducer area of 5cm ² (n = 45 wrists) vs. sham ultrasound (n = 45 wrists). Follow-up period 6 months.	Main changes in symptom complaints were (active/sham): Week 2 (-1.05/0.05, p = 0.015), end of therapy (-0.17/-2.14, p = 0.001) and 6 months (-0.08/-2.76, p <0.0005). Grip strength measures improved (p <0.005). EDS measures improved (p <0.05).	"There are satisfying short to intermediate term effects due to ultrasound treatment in patients with mild to moderate idiopathic carpal tunnel syndrome."	Suggests ultrasound efficacious. High numbers of treatments (20). No assessment of blinding provided.
				Ultrasound vs. Injection		
Bilgici 2010 RCT No mention of sponsorship or COI.	5.5	N = 34 (22 female/9 male) with CTS. Mean age for Groups A and B; 47.33 (7.44) and 44.15 (9.30).	Group A, ultrasound treatment given under water, 5x a week, for 4 weeks, intensity of 1.5 watt/cm ² for 5 minutes, with 2.5 cm ² soundhead, frequency 3 MHz (n = 16) vs. Group B, local corticosteroid injection (single 4mg dexamethasone without lidocaine) plus splinting (n = 18). Follow-up for 8 weeks.	VAS pain / severity of symptoms / functional status / grip strength, (p < 0.001) and two point discrimination (p <0.016). Group A, improved for all clinical outcomes, (p <0.001), except the grip strength.	"Both ultrasound treatment and corticosteroid injection plus splinting were effective on the clinical symptoms and the electrophysiological findings of CTS."	Both groups improved meaningfully over time, but differences between groups minimal with only one significant difference.
				Other Treatments or in Combination(s)		
Bakhtiary 2004 RCT Sponsored by grant from Semnan Medical Sciences University. No mention of COI.	7.0	N = 40 (age not specified) and 10 with bilateral and unilateral CTS confirmed by electromyography or 90 wrists. Age means for laser/ultrasound groups: 48 (13.4)/45 (17.1).	Ultrasound, 15 minute sessions with frequency of 1 MHz and intensity of 1.0W/cm ² , pulsed mode duty cycle of 1:4 and transducer area 5cm^2 (N = 45) vs. low-level laser therapy, applied low intensity 9J, infrared laser diode, 830nm at 5 points, 1.8J/point, daily 15 minute sessions 5 times a week (n = 45). Follow-up for 3 weeks.	Thumb sensory latencies favored ultrasound: -0.7 vs0.2, $p = 0.003$. Other electrodiagnostic measures all favored ultrasound. VAS pain scores were -6.3 vs2.0, $p < 0.001$ at 4 weeks after treatment completion.	"Ultrasound was more effective than laser therapy for treatment of carpal tunnel syndrome."	Suggests ultrasound efficacious. Numbers of treatments (15) in protocol is high.
Baysal 2006 RCT No mention of sponsorship and COI.	5.5	N = 36 (72 wrists) females with bilateral CTS, EDS confirmed. Mean age Group 1 47.8±5.5 years, Group 2 50.1±7.3, Group 3, 51.4±5.2 years.	Group 1: tendon- and nerve-gliding exercises 5 daily sessions, each exercise repeated 10 times at each session for 3 weeks plus splinting with custom made neutral volar splint for 3 weeks all night and during the day ($n = 12$) vs Group 2: ultrasound administered 15 minutes per session to the palmar carpal tunnel area at frequency of 1 MHz and intensity of 1.0 W/cm ² , 15 treatments once a day, five time a week for 3 weeks plus	Pain score before treatment/after treatment /after 8 weeks follow- up: Group I: $4.8\pm2.3/3.3\pm2.9/2.6\pm2.8$; Group II: $5.7\pm2.7/2.2\pm1.9/2.5\pm2.8$; Group III: $5.6\pm3.5/1.3\pm1.8/0.8\pm0.9$. Functional status score: Group I: $20.6\pm7.8/14.8\pm7.5/14.9\pm6.6$; Group II: $21.9\pm9.1/16.1\pm8.5/16.1\pm8.7$; Group III: $20.5\pm7.1/11.7\pm3.6/12.6\pm3.4$. NS between groups for study outcomes.	"The result of this study emphasizes the efficacy of conservative treatment in CTS. In all patient groups, the treatment combinations were significantly effective immediately and 8 weeks after the treatment."	Results suggest ultrasound may have some benefits, although it was not compared to a sham, placebo or no treatment. All groups were splinted.

			splinting (n = 12) vs. Group 3: ultrasound, splinting and exercises (n = 12). Full-time splint use; 8 week treatment. Assessments at first treatment, end of therapy, and after 8 weeks follow-up.			
Davis 1998 RCT Sponsored by a grant from the National Chiropractic Mutual Insurance Company. No mention of COI.	5.0	N = 91 with self-reported symptoms of CTS and EDS confirmed CTS. Mean age ibuprofen group 38±5 year, manipulation group 36±6 years.	Ibuprofen (800mg 3x a day for 1 week, then 2x a day for 1 week, then PRN 7 weeks) and nocturnal cock- up wrist supports (n = 46) vs. high velocity, low amplitude manual thrust procedures: manipulation to upper extremity and spine (3 treatments a week for 2 weeks; 2 treatments a week for 3 weeks; 1 treatment a week for 4 weeks) plus ultrasound applied over the carpal tunnel for half of chiropractic treatment visits, 1 MHz and 1.0-1.5 W/cm at 50% duty cycle for 5 minutes plus nocturnal wrist supports (n = 45). Study duration: 9 weeks. Assessments at baseline and end of study.	CTS outcome assessment physical distress (mean \pm SD) baseline to end of study: IBU and splint 14.66 \pm 9.89 to 5.74 \pm 6.28 vs. ultrasound and manipulation 12.47 \pm 8.07 to 9.25 \pm 8.14 (p = 0.0132). CTS outcome assessment mental distress (mean \pm SD) baseline to end of study: IBU and splint 33.61 \pm 12.02 to 14.94 \pm 11.33 vs. ultrasound and manipulation 28.94 \pm 11.69 to 17.29 \pm 13.24 (p = 0.0085). No significance between group difference in EDS.	"Carpal tunnel syndrome associated with median nerve demyelination but not axonal degeneration may be treated with commonly used components of conservative medical or chiropractic care."	Baseline did not exclude prior ibuprofen use or manipulation, but prior use of these treatments is likely differential between 2 groups and potentially fatal study flaw. Ibuprofen use PRN after 2 weeks and subject contact differed between groups bias in favor of manipulation/ ultrasound. High dropout rates. Study mainly compares variable dose ibuprofen vs. manipulation plus ultrasound as both splinted. Since ibuprofen not effective and evidence that ultrasound is suggest manipulation not effective.
Chang 2014 RCT Sponsored by grant of Taipei Tzuchi Hospital, Buddhist Tzuchi Medical Foundation (TCRD-TPE-99- 25) and partially supported by grant from National Science Council, Executive Yuan, Taiwan (NSC102-2314-	4.0	N = 60 diagnosed with CTS. Mean age: Group1: 51.9 years. Group 2: 48.8 years	Group1: Paraffin therapy, Twice per week. (N = 30) vs. Group 2: ultrasound +splint only, twice per week. (n = 30) Follow up period: 8 weeks after treatment.	Significant improvements in symptom severity scores seen in both groups. The effect size (ES) of the symptom severity scores was 0.63 for both groups. However, significant improvements in functional status scores (ES 0.38) and pain scales (ES 0.74) only seen in US therapy group. An effect size of 0.3 to 0.8 is considered a "moderate" effect.	"To improve the functional status of CTS patients, a combination of ultrasound therapy and a wrist orthosis may be more effective than a combination of paraffin therapy and a wrist orthosis. Since this is an exploratory trial, further confirmatory testing is suggested to justify the efficacy of these two treatments."	Minimal differences seen between groups. Data suggests ultrasound and splint not superior to paraffin and splint.

B-303-001) No COI.											
	Ultrasound vs. Ultrasound plus NSAID										
Piravej 2004	4.5	N = 18 females (30 hands) with mild to moderate CTS for less than 12 months	Ultrasound 0.5 W/cm ² for 10 minutes, 5 days a week for 4 weeks	Night pain/paresthesias (pre/post): US $1.47\pm0.83/0.53\pm0.64$ vs. placebo US/NSAID $1.53\pm0.92/0.60\pm0.63$ (p = 0.89). Frequency	"The therapeutic efficacy of low intensity ultrasound	Low sample size. Blinding unclear. Diagnostic criteria					
RCT		(mean 6.53±4.33 months), no treatment for at least 1 month and no steroid injections	plus placebo (n = 15 hands) vs ultrasound 0.0 W/cm ² plus	of awakening US 0.80±1.15/0.27±0.80 vs. placebo US/NSAID 1.07±1.22/0.20±0.56 (p = 0.36).	thermotherapy was satisfied for mild to moderate CTS.	unclear, including NCS and 9 other criteria that seem					
Sponsored by Asahi Glass		in last 3 months. Age range 33-68 years, mean age 46.97±8.37 years.	diclofenac 75mg a day (n =15 hands). Follow-up within 5 days		However, the electrophysiological changes	unlikely fulfilled for all. No non-treatment comparison. No					
Foundation, Japan and Faculty of			after 4 weeks of treatment.		after ultrasound treatment need further investigation."	between group differences. Conclusion regarding					
Engineering, Chulalongkorn						ultrasound not clearly supported. If bilateral CTS					
University. No mention of COI.						(12/30), both treated the same and double-counted in results.					
						weakening conclusions.					

Evidence for the Use of Phonophoresis

There is 1 high-(640) and 2 moderate-quality(783, 840) RCTs incorporated into this analysis. There are 2 low-quality RCT in Appendix 2.(786, 839)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Phonophoresis or phonophoresis, carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease entrapment, neuropathy nerve compression, burning, itching, numbness, tingling, controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, random*, randomized, randomization, randomly; systematic, systematic review, retrospective studies, prospective studies, epidemiological studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 19 articles in PubMed, 6 in Scopus, 11 in CINAHL, 43 in Cochrane Library and 0 in other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 4 articles considered for inclusion, 4 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score (0-	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	11)					
Yildiz 2011	8.0	N = 51 (25 median nerves; 43	Group 1: sham ultrasound or US,	Mean±SD VAS (baseline/2 week/8 week):	"Ketoprofen PH as adjuvant	Ultrasound plus splinting not
		female/8 male) with signs and	ultrasound in off mode 15 minute sessions	Group 1, 5.76 ±2.45/2.72 ± 2.07/3.28 ±	therapy on splinting is effective	superior to splinting alone.
RCT		symptoms of CTS for more than a	once a day 5x a week for 2 weeks plus	2.74 vs. Group 2, 4.96 ± 2.50/2.41 ±	with respect to reduction of pain."	Ketoprofen plus splinting was
		month and mild-to-moderate CTS	splinting with neutral custom-molded	2.43/2.77 ± 2.74 vs. Group 3, 6.04 ±		associated with a reduction in pain
No mention of sponsorship		after electrodiagnostic test	thermoplastic volar wrist splint at night	$2.40/3.03 \pm 1.96/0.98 \pm 1.65 \ (p = 0.002,$		at 8 weeks.
or COI.		confirmation. Age range 39-66	and during day $(n = 17)$ vs. Group 2: US,	Group 3> Group 1; p = 0.004, Group 3 >		
		years.	pulse mode (1:4) with gel without	Group 2). Pain score significantly lower in		
			medication at 1 MHz frequency and 1	Group 3 at 8th week compared to other		
			W/cm2 intensity plus splinting $(n = 17)$ vs.	treatment groups (Group 1 and Group 2) (p		
			Group 3: ketoprofen phonophoresis (PH),	= 0.002, p = 0.004 and p = 0.001, p =		
			US pulse mode (1:4) 2.5% ketoprofen gel	0.001).		
			at 1 MHz frequency and 1 W/cm2 intensity			

			plus splinting (n = 17). Follow-up for 8 weeks.			
Bakhtiary 2013 RCT Sponsored by Research Deputy of Semnan University of Medical Sciences. No COI.	7.0	N = 34 (gender not specified) with mild to moderate CTS confirmed by electromyography. Mean age for Iontophoresis and Phonophoresis; 48.2 (14.5) and 44.6 (12.8).	Iontophoresis of Dex-P 0.4% (n = 26) vs. Phonophoresis of Dex-P 0.4%, plus applied over wrist chin, and pulsed (20%) ultrasound waves (n = 26). Follow-up for 4 weeks.	Pain at end of treatment and 4 weeks later significantly favored phonophoresis vs. iontophoresis of Dex-P intervention, (p <0.01). Motor latency/motor action potential amplitude/finger pinch strength/ hand grip strength/and pain relief: [mean difference 0.8 m/s; 95% (CI), 0.5-1.1]/(4.1 mV; 95% CI, 3.0 - 5.2)/(31.6 N; 95% CI, 15.9-47.3)/(27.1 N; 95% CI, 13.5- 40.5)/and 2.1 points on 10-point scale; 95% CI, 1.3-2.9.	"Our clinical trials showed that phonophoresis of Dex-P is more effective than iontophoresis of Dex-p treatment in patients with mild to moderate CTS."	Data suggest phonophoresis superior to iontophoresis
Soyupek 2012 RCT No mention of sponsorship or COI.	4.5	N = 52 with CTS, EDS confirmed. Mean age splinting, PCS, PNSAI: 47.95±6.93 years, 50.50±8.71 years, 53.79±10.40 years.	Phonophoresis with corticosteroid (betamethasone valerate %0.1 cream), CS (PCS) over carpal tunnel for 10 min/session at frequency of 3 MHz and intensity of 1.5 W/cm ² 5 times a week for 3 weeks (n = 28) vs. phonophoresis with non-steroidal anti-inflammatory drug (diclofenac diethylammonium gel), NSAI (PNSAI) over carpal tunnel for 10 min/session at frequency of 3 MHz and intensity of 1.5 W/cm ² 5x a week for 3	VAS difference baseline to after 3 months, mean \pm SD (baseline/after 3 months): splinting group 50.69 \pm 23.45/37.91 \pm 23.94 (NS); PCS 60.35 \pm 18.95/30.35 \pm 18.15 (p <0.017); PNSAI 69.13 \pm 16.21/45.65 \pm 23.65 (p <0.017). Boston Questionnaire total difference from baseline to after 3 months, mean \pm SD (baseline/after 3 months): splinting group 43.34 \pm 10.89/39.26 \pm 10.03 (NS); PCS 54.21 \pm 11.34/39.14 \pm 10.33 (p <0.017); PNSAI 53.69 \pm 41.86/41.86 \pm 10.03	"[T]he most effective treatment modality for CTS was P-CS according to ultrasonographic investigations and other findings."	PCS group better than splinting or PNSAI groups.
			weeks $(n = 23)$ vs. wrist splinting in neutral position during the day and at night for the first 15 days and then when CTS was symptomatic $(n = 23)$. Follow-up 3 months after treatment.	(p <0.017). Tinel's sign, %, difference from baseline to after 3 months (baseline/after 3 months): splinting group 65.2/60.9 (NS); PCS 82.1/50.0 (p <0.017); PNSAI 82.6/65.2 (NS). Phalen's sign, %, difference from baseline to after 3 months (baseline/after 3 months): splinting group 60.9/52.2 (NS); 89.3/50.0 (p <0.017); PNSAI 78.3/39.1 (p <0.017).		

Evidence for the Use of Iontophoresis for CTS There are 2 moderate-quality RCTs incorporated into this analysis.(841, 842) There are 2 low-quality RCT in Appendix 2.(786, 839)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Iontophoresis or phonophoresis, carpal tunnel syndrome, median nerve neuropathy, median neuropathy, median nerve disease entrapment, neuropathy nerve compression, burning, itching, numbness, tingling, controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective studies, prospective studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 19 articles in PubMed, 6 in Scopus, 11 in CINAHL, 43 in Cochrane Library and 0 in other sources. We considered for inclusion 2 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 2 articles considered for inclusion, 2 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type						
Amirjani 2009	7.5	N = 20 (19 female/1 male)	Dexamethasone sodium phosphate in	Levine Self-Assessment Questionnaire	"Although corticosteroid iontophoresis	Small sample size. Stratified
		with mild to moderate	distilled water 0.4% (n = 10) vs. distilled	scores median (25th-75th % CI) (baseline/post	is feasible in clinical settings and is well-	baseline data not provided. Appears
RCT		NCS confirmed (19	water iontophoresis 80mA a minute	first treatment/post 6 treatments): Dex [38	tolerated by patients, iontophoresis of	underpowered, although magnitude
		females; 1 male). Mean	continuous DC current at 2mA a minute	(31-40)/33 (30-48), 26 (24-31)] vs. water	0.4% dexamethasone was not effective	of a potential benefit also not likely
No mention of		age: 54 ± 10 years	over carpal tunnel, 6 treatments QOD over 2	controls (36 (33-54)/38 (27-44)/34 (22-41)),	in the treatment of mild to moderate	high or moderate.
sponsorship or COI.			week ($n = 10$). Follow-up for 6 months.	(p = 0.73, p = 0.91, p = 0.25))	CTS."	
Gökoğlu 2005	4.0	N = 27 with clinical and	40mg methylprednisolone acetate (1ml)	Symptoms severity scores (baseline/Week	"Success of both iontophoresis of	Suggests injection superior to
		electro physiologic	injected into carpal tunnel $(n = 15)$ vs.	2/Week 8): injection 2.7±0.8/1.9±0.7/1.6	dexamethasone sodium phosphate and	iontophoresis of dexamethasone.
RCT		evidence of CTS. Mean	iontophoresis of DXM-P ($n = 15$). Follow	± 0.6 vs. iontophoresis	injection of corticosteroids, but symptom	
		age: 46.2 ±8.0 years;	up at 2 and 8 weeks.	3.1±0.8/2.5±0.9/2.2±1.0 (p <0.05) weeks 2	relief was greater at 2 and 8 wks with	
No mention of		group 2: 49.2±8.2 years.		and 8 favor injection. Functional status scale	injection of corticosteroids."	
sponsorship or COI.				and VAS scores similarly favored injection.		

Evidence for the Use of Glucocorticosteroids (Oral and Injection) for CTS

There are 8 high-(646, 648, 843-845, 851, 855, 860) and 19 moderate-quality(631, 636, 643, 644, 647, 777, 835, 840, 842, 848, 849, 852-854, 863-868) RCTs (one with two reports) incorporated into this analysis. There are 5 low-quality RCT and 1 prospective randomized blinded trial in Appendix 2.(786, 789, 839, 869-871)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: glucocorticoids, glucocorticosteroids, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 109 articles in PubMed, 268 in Scopus, 5 in CINAHL, and 46 in Cochrane Library. We considered for inclusion 30 from PubMed, 0 from Scopus, CINAHL, Cochrane Library and other sources. Of the 30 articles considered for inclusion, 30 randomized trials and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: glucocorticoids, glucocorticosteroids, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trial,

randomized controlled trials, random allocation, random^{*}, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies; Carpal Tunnel Syndrome to find 53 articles. Of the 53 articles, we considered for inclusion 12. Of the 12 considered for inclusion, 12 are randomized controlled trials and 0 systematic reviews.

Author Year (Score):	Categor y:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
Armstro ng 2004 (Score=9 .5)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	Sponsored by Southern California Kaiser Permanente Department of Research and Evaluation. No mention of COI.	N = 81 with typical symptoms of CTS and EDS confirmed. Age 18-80.	Mean Age: 51.67±11.9 5 years; 18 males, 63 females.	Group 1, received Steroid injection consisting of Betamethasone 6mg (n = 43) vs. Group 2, received a saline injection (Placebo group) (n = 36)	Baseline, 2 weeks, 3 months, 6 months, 18 months.	Changes in median sensory latencies -0.19 ± 0.27 vs. -0.04 ± 0.14 (p = 0.01). Changes in symptoms scores also favored corticosteroid injections -0.78 ± 0.80 vs. -0.19 ± 0.62 (p <0.01). Satisfaction rates 70% vs. 34% (p = 0.001). In subsequent open label follow-up, additional injections performed per patient requests (up to 7 injections for a few); 18 (39.1%) referred for surgery, 37.0% reported adequate symptom relief.	"Steroid injections are a safe and effective treatment for temporary relief of CTS symptoms for patients who did not improve with splinting and activity modification."	Unblinded after 2 weeks.
Dammer s 2006 (Score=9 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 136 EDS confirmed diagnosis of CTS.	Mean age: 51.3 years; 30 males, 102 females.	Group 1, received 20mg methyl- prednisolone injections (n = 45) vs. Group 2, received 40mg methylprednisol one injections (n = 43) vs. Group 3, received 60mg methyl- prednisolone injections (n = 44)	Baseline, 3 months, 6 months, 1 year.	73% of 60mg, 53% of 40mg and 56% of 20mg groups symptom free or requiring no further treatment at 6 months. Only 22% treated with 1-2 injections methylprednisolone during first year referred to surgery (p <0.05).	"One injection of methylprednisolone close to the carpal tunnel reduces the number of patients requiring surgery." 60mg dose more effective than lower doses, with 2nd injection possibly increasing recurrence of symptom-free patients.	Injection site 4cm proximal to distal wrist crease.
Wong 2001 (Score=9 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 62 with newly diagnosed CTS >3 months.	Mean age: 49 years; 7 males, 53 females.	Group 1, received Steroid injection of prednisolone 25mg and a placebo oral pill (n = 30) vs.	Baseline, 2 weeks, 8 weeks, 12 weeks.	Global symptom scores (injection/oral): baseline ($25.0\pm6.4/25.7\pm8.3$), 2 weeks ($13.6\pm7.5/17.8\pm10.0$), 8 weeks ($13.7\pm8.3/20.8\pm8.7$), and 12 weeks ($14.3\pm8.4/21.4\pm9.6$). GSS scores borderline	"Local steroid injection was superior to oral corticosteroids over a 3-month period in patients with CTS."	Suggests injections superior to oral glucocorticosteroids.

Wong	Intracar	RCT	No mention of	N = 40 with	Mean age:	Group 2, received Oral steroid of prednisolone acetate 15mg and placebo injection (n = 30) Single injection	Baseline, 8, 24, & 40	significant at 2 weeks (p = 0.07), but significant at 8 and 12 week follow-ups (p = 0.002 and p = 0.004).	"The results suggest that an additional	Both arms had active treatment
2005 (Score=9 .0)	pal Glucoc orticost eroid Injectio ns		sponsorship or COI.	newly diagnosed CTS and NCS confirmed.	46.9±7.8 years; 6 males, 24 females.	group or methylprednisol one 15 mg injection (n = 20) vs. Double- injection group at 8 weeks of steroid or placebo (n = 20). 40 week follow-up.	weeks.	vs. Double injections (pre/8/24/ 40 weeks): Single $26.7\pm10.1/$ $15.2\pm9.9/15.9\pm10.6/12.6\pm9.1$ vs. Double $25.6\pm11.6/11.4\pm$ $7.6/13.0\pm9.7/14.1\pm11.0$ (p> 0.19) all times. No differences in grip strengths or in NCS other than right hand which was borderline different at baseline (p = 0.08).	steroid injection confers no added benefit to a single injection in terms of symptoms relief."	
Atroshi 2013 (Score=8 .5)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	Sponsored by grant from Region of Scania Research and Development Foundation and Hässleholm Hospital Organization. No COI.	N = 111 with idiopathic CTS not previously treated with steroid injections.	Mean age: 46.67±11.4 2 years; 30 males, 81 females.	80mg methylprednisol one (n = 37) vs. 40mg methylprednisol one (n = 37) vs. placebo (n = 37).	Baseline, 10 weeks, 1 year.	At baseline CTS symptom severity score at 10 weeks improved those who received methylprednisolone vs. placebo ($p = 0.003$ for 80mg; $p = 0.001$ for 40mg methylprednisolone). At 1-year rates of surgery 73%, 81%, and 92% in 80mg methylprednisolone, 40mg methylprednisolone, and placebo groups. Those who received 80mg methylprednisolone less likely to have surgery (OR, 0.24 [CI, 0.06 to 0.95], ($p = 0.042$).	"Methylprednisolone injections for CTS have significant benefits in relieving symptoms at 10 weeks and reducing the rate of surgery 1 year after treatment, but 3 out of 4 patients had surgery within 1 year."	Data suggest both active treatments superior to placebo, no statistical differences between 80 mg and 40 mg steroid
Dammer s 1999 (Score=8 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No sponsorship and no COI.	N = 60 with carpal tunnel symptoms >3 months and NCS confirmed.	Mean age: 52 years; 10 males, 50 females.	Intervention group or methylprednisol one 40mg plus 10mg lidocaine (n = 30) vs. Control group or lidocaine alone (n = 30).	Baseline, 1, 3, 6, 9, 12 months.	Percentage not needing 2nd treatment (1/3/6/9/12 month): steroid (77/63/57/53/50%) vs. placebo (20/7/7/7/%), significant but no p-value reported. In open phase, 24 of 28 crossed over from controls and 50% of those had surgery, no p-value reported.	"A single injection with steroids close to the carpal tunnel may result in long term improvement and should be considered before surgical decompression."	Data suggest injection effective and 50% need no treatment for 1 year.

Hui 2005 (Score=8 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 50 with EDS confirmed idiopathic CTS.	Mean age: 49.5±9.4 years; 2 males, 48 females.	Steroid injection or methylprednisol one acetate 15mg (n = 25) vs. Decompression or open CTR (n = 25).	Baseline, 6, and 20 weeks.	Mean improvements in global symptoms scale: 24.2 ± 11.0 vs. 8.7 ± 13.0 (p <0.001). Grip strengths were: surgery 23.4 ± 8.2 to 21.8 ± 7.9 vs. injection 24.2 ± 7.0 to 26.6 ± 7.4 (p = 0.009). Sensory nerve conduction velocities: surgery 34.2 ± 7.9 to 42.2 ± 8.0 m/s vs. injection 37.3 ± 8.0 to 40.5 ± 6.3 (p = 0.003).	"Open carpal tunnel release resulted in better symptomatic and neurophysiologic outcome but not grip strength in patients with idiopathic carpal tunnel syndrome over a 20-week period."	Suggests surgery superior.
Peters- Velutha maningal 2010 (Score=7 .5)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship. No COI.	N = 69 with clinical diagnosis of CTS. Mean age: NaCl group = 57.6 years, TCA group = 56.5 years.	Mean age: 47.0±29.7 years; 16 males, 53 females.	1ml triamcinolonacet onide (TCA) 10mg/ml (n = 36) vs. 1ml saline (NaCl) 0.9%, placebo 1- 2 injections (n = 33).	Follow-up 1, 3, 6 and 12 months.	Steroid-group showed better direct treatment response (p = 0.013), perceived improvement (p = 0.01) and more improvement than NaCl-group in outcomes SSS BCTQ score (from 2.872 to 1.948 in TCA group vs. from 2.815 to 2.529 in NaCl group) and FSS BCTQ score (2.456 to 1.881 in TCA group vs. 2.353 to 2.366 in NaCl group). Mean difference in change score 0.637 (95% CI: 0.320, 0.960; (p < 0.001)) for SSS BCTQ and mean difference in change score 0.588 (95% CI: $0.232, 0.944$; p = 0.02) for FSS BCTQ. Number Needed to Treat to achieve satisfactory partial treatment response or complete resolution of symptoms and signs 3 (95% CI: 1.83, 9.72).	"Corticosteroid injections for CTS provided by general practitioners are effective regarding short-term outcomes when compared to placebo injections."	Multiple injections given if patient result was "not satisfactory" Data suggest steroid injections superior to NaCl for short term outcomes.
Babaei- Ghazani 2017 (Score=7 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No sponsorship or COI.	N = 44 patients with signs/sympto ms of mild to moderate CTS.	Mean age: 56.1±6.6 years; 4 males, 40 females.	Ultrasound- guided injections above the median nerve group (n=22) vs ultrasound- guided injections below the median	Follow up 6 and 12 weeks.	Mean VAS pain score for above the median nerve group was 6.04 at baseline vs 2.90 at 6 weeks (p<.05) and 2.77 at 12 weeks (p<.05). VAS for below the median nerve group was 6.86 at baseline vs 2.81 at 6 weeks (p<.05) and 2.90 at 12 weeks (p<.05). No significant between group findings.	"Both above and under median nerve ultrasound-guided steroid injection techniques were effective in reducing the symptoms, improving the function and electrodiagnostic and sonographic findings of CTS. However the amount of improvement in the outcomes did not differ between groups, implying that none of technique has the superiority over another."	No meaningful differences between treatment groups. Both treatment groups improved over time. No assessment for equality.

Bakhtiar y 2013 (Score=7 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	Sponsored by Research Deputy of Semnan University of Medical Sciences. No COI.	N = 34 mild to moderate CTS confirmed by electromyogra phy. Mean age for Iontophoresis and Phonophoresis s; 48.2 (14.5) and 44.6 (12.8).	Mean age: 46.4±13.7 years; no mention of sex.	nerve group (n=22). Both injections were conducted using ulnar side approach Iontophoresis of Dex-P 0.4% (n = 26) vs. Phonophoresis of Dex-P 0.4%, plus applied over wrist chin and pulsed (20%) ultrasound waves (n = 26).	Baseline, 2 weeks, 6 weeks.	Pain at end of treatment and 4 weeks later significantly favored phonophoresis vs iontophoresis of Dex-P intervention, (p <0.01). Motor latency/motor action potential amplitude/finger pinch strength/hand grip strength/ pain relief: [mean difference 0.8 m/s; 95% (CI), 0.5-1.1]/ (4.1 mV; 95% CI, 3.0 -5.2)/ (31.6 N; 95% CI, 3.0 -5.2)/ (31.6 N; 95% CI, 15.9-47.3)/ (27.1 N; 95% CI, 13.5-40.5)/ and 2.1 points on 10-point scale; 95% CI, 1.3 - 2.9.	"Our clinical trials showed that phonophoresis of Dex-P is more effective than iontophoresis of Dex-p treatment in patients with mild to moderate CTS."	Data suggest phonophoresis superior to iontophoresis
Ly-Pen 2005 (Score=6 .5)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 123 (163 wrists) with CTS.	Mean age: 51.9±12.6 years; no mention of sex.	Betamethasone 6.4mg, 2 injections 2 weeks apart (n = 83 wrists) vs. Open Carpal Tunnel Release (n = 80).	Follow-up at 3, 6, and 12 months.	70% improvements in nocturnal paresthesias present (3/6/12 months): injection 86.7/69.9/61.4% vs. surgery 61.3/68.8/73.8% (p = 0.001/p = $1.0/p = 0.098$).	"Over the short term, local steroid injection is better than surgical decompression for the symptomatic relief of CTS. At 1 year, local steroid injection is as effective as surgical decompression for the symptomatic relief of CTS."	Details sparse. Most patients had 2 injections. No clear surgical benefit vs. injection.
Roghani 2018 (Score=6 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship. No COI.	N = 94 patients with a clinical diagnosis of CTS and electrodiagno stic confirmation of moderate CTS.	Mean age: 65.2 years; 17 males, 77 females.	80 mg triamcinolone (2 mL) and 1 mL of 2% lidocaine group (group 1) (n=32) vs 40 triamcinolone (1 mL) 1 mL of 2% lidocaine and 1 mL normal saline group (group 2) (n=32) vs 1 mL 2% lidocaine and 2 mL normal	Follow up at baseline, 2 weeks, 3 months, and 6 months.	Mean VAS pain score at baseline for group 1 was 7.29 vs 2.43 at 6 months (p<0.001). Mean VAS at baseline for group 2 was 6.22 vs 2.00 at 6 months (p<0.001). Mean VAS at baseline for group 3 was 5.8 vs 2.75 at 6 months (p<0.001).	"Hydrodissection with lidocaine and normal saline is as effective as hydrodissection with low- and high-dose steroid medication in elderly patients with CTS in this study, but further studies with matched baseline measures and also a sham group are suggested for definitive recommendation."	All three treatment groups, including lidocaine only, had significant improvements over the 6 month study period. Only significant between group finding was for median distal motor latency, slightly favoring steroid tx.

						saline group (group 3) (n=30).				
Bahrami 2015 (Score=6 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship. No COI.	N = 60 hands of 30 female patients with mild and moderate CTS	Mean age: 50.07±9.7 years; 0 males, 30 females.	Single local injection of 40 mg/ml triamcinolone acetate and 0.5 ml lidocaine (2%) group (n=30 hands) vs single local injection of 0.5 ml 17-alpha hydroxyl progesterone and 0.5 ml lidocaine (2%) group (n=24 hands)	Follow up at baseline and 10 weeks.	Mean VAS pain score for triamcinolone group at baseline was 5.00 vs 2.23 at 10 weeks (p=0.0001). Mean VAS for progesterone group at baseline was 4.80 vs 2.29 at 10 weeks (p=0.0001). No significant between group differences.	"Both treatments were effective in the short-term management of mild and moderate disease, clinically and electrophysiologically. There were no significant differences in therapeutic effects between two groups."	All groups had significant improvements in outcomes but no differences between groups.
Özdoğan 1984 (Score=6 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 37 with idiopathic CTS.	Mean age: 45.8±8.7 years; 0 males, 37 females.	Steroid injection, 1.5mg betamethasone disodium phosphate and acetate suspension (n = 18) vs. Placebo into deltoid double dummy (N = 19). Follow-up for 10-12 months.	Baseline, 1 week, 1 month, recall at 10 months.	7 from carpal injection group and 6 from IM injection group returned with symptoms after 1 month and required second shot. One from first group and 2 from second group required third shot after 7.3±3.7 months. Response rate 50% in hand injections vs. 15.8% IM.	"Steroid injected at the site of entrapment is effective and suggest superiority to the intramuscular route in the management of ICTS."	Carpal injections appear superior to intramuscular steroids.
Ly-Pen 2012 (Score=6 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 101 with clinical diagnosis and neuro- physiological confirmation of CTS.	Mean age: 51.9±12.6 years; no mention of sex.	Surgical decompression (n = 83 wrists) vs. Local steroid injection (n = 83 wrists).	Baseline, 3, 6, 12, 24 months.	56 underwent surgery, 24 had CTS in both hands. 84% required 2 injections. At 24- months follow-up, 60.2% of wrists in injection group and 68.8% in surgery group achieved 20% response in nocturnal paraesthesias, (p = 0.256). Surgery more effective than injection for self-perceived functional impairment, with	"Our findings suggest that both local steroid injection and surgical decompression are effective treatments in alleviating symptoms in primary CTS at 2-year follow-up."	High drop out at 24 months. Injection superior at 3 months' time point but release superior at 12 months and 24 months.

Celiker 2002 (Score=5 .5)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 23 with bilateral or unilateral CTS, EDS confirmed.	Mean age: 48.2±12.6 years; 1 male, 22 females.	Group A: acemetacine 120mg a day with splints at night (n=11). Group B: 40mg methylpred- nisolone acetate (1ml) (n=12)	Baseline, 2 weeks, 8 weeks.	mean VAS score of 6.21 (8.81) in injection group vs. 2.02 (7.23) in surgery group, (p = 0.008). VAS pain scores (baseline/2 nd week/8 th week): NSAID plus splint 7.9 \pm 1.4/4.3 \pm 0.9/1.7 \pm 1.0 vs. injection 7.0 \pm 2.2/3.1 \pm 2.5/1.8 \pm 1.9 (P>0.05). Symptom severity scale results similar (p>0.05).	"Both splinting combined with the use of a nonsteroidal anti-inflammatory drug and steroid injection into the carpal tunnel resulted in significant improvement in carpal tunnel syndrome."	No placebo controlled. Suggests splinting and NSAID may be as effective as injection.
Bilgici 2010 (Score=5 .5)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 34 with CTS.	Mean age: 45.7±8.5 years; 9 males, 22 females.	Group A, ultrasound treatment (n = 16) vs. Group B, local corticosteroid injection plus splinting (n = 18). Follow-up for 8 weeks.	Baseline, 4 weeks, 8 weeks.	VAS pain/severity of symptoms/functional status / grip strength, (p <0.001) and two point discrimination (p <0.016). Group A, improved for all clinical outcomes, (p <0.001), except grip strength.	"Both ultrasound treatment and corticosteroid injection plus splinting were effective on the clinical symptoms and the electrophysiological findings of CTS."	Both groups improved meaningfully over time, but differences between groups minimal; one statistically significant difference.
Habib 2006 (Score=5 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 42 with symptoms of CTS and EDS confirmed. Age >18 years old.	Mean age: 42.15±11.9 years; 9 males, 23 females.	Local corticosteroid classic injection (n = 21) vs. 2- 3cm distal to the wrist crease. Both with 12mg methyl- prednisolone acetate with 0.15ml lidocaine (n = 21). Follow-up for 12 months.	1, 3, 6, and 12 weeks.	81 % of classical injection and 71% new method injection patients had favorable response rate after 3 weeks ($p = 0.468$). Procedure time 8.48 ± 1.123 seconds in new method group vs. 26.71 ± 32.83 in classical group ($p = 0.021$). Mean \pm SD grade of pain: new method 4.38 ± 1.523 vs. classic method 3.62 ± 1.071 ($p = 0.065$).	"Local corticosteroid injection using the novel approach for the treatment of carpal tunnel syndrome is helpful, and the favorable response rates are comparable to those using the classic approach after 1, 3, 6, and 12 weeks."	Suggests traditional injection technique may be superior.
O'Gradai gh 2000 (Score=5 .0)	Intracar pal Glucoc orticost eroid	RCT	No mention of sponsorship or COI.	N = 32 with suspected CTS and EDS confirmed. Age not reported.	No mention of age or sex.	Hydrocortisone 25mg or 100mg (A), hexacetonide 20mg (B), plus phase II;	Baseline, post treatment, 6 weeks, 6 months.	Results from Phase 1 (25mg/ 100mg/no injection) 66% vs. 63% vs. 5% better or much better (NS between injected groups' differences).	"As low dose steroid is as effective, and potentially less toxic, this should be the recommended dose for injection of carpal tunnel syndrome."	Two studies in one report with the first finding benefits of injection. Second trial found minimal incremental gain for higher dose.

	Injectio					Triamcinolone		Symptoms improved in Phase 2		
	ns					20mg or		in 72% vs. 67% (NS).		
	115					Hydrocortisone		m 7270 V3. 0770 (115).		
						100 mg (n = 33)				
						vs. Control no				
						injection (n =				
						20).				
Ucan	Intracar	RCT 1	No mention of	N = 57 with	Mean age:	Group A or	Baseline, 3 and 6	Boston Questionnaire scores	"All treatment methods were found to be	Baseline differences present.
2006	pal	5	sponsorship or	CTS	44.63±8.96	Splinted (S)	months.	(baseline/3rd month/6th	effective, but despite the complications	Appears to have targeted lower
(Score=5	Glucoc		COI.	diagnosis.	years; 4	hands splinted in		month): splinting $2.66\pm0.35/$	and the relatively long period to return to	enrollment for surgery without
.0)	orticost			U	males, 53	neutral position		1.39±0.37/1.54±0.31 vs. splint	work, OCTR was superior to	stating such.
	eroid				females.	with standard		plus steroid 2.79±0.63/1.41±	conservative methods in long term."	6
	Injectio					cotton polyester		0.32/1.96±0.63 vs. CTR 3.09±	č	
	ns					splint $(n = 23)$		$0.5/1.86 \pm 0.6/1.41 \pm 0.31$ (p =		
						vs. Group B or		0.004). Palm-wrist median		
						single steroid		sensory nerve velocities: splint		
						injection (20mg		27.26±5.3/29.6±7.16/29.56±		
						triamcinolone		4.83 vs. splint plus steroid		
						acetate plus		26.35±4.12/31.57±4.33/28.74±		
						20mg lidocaine)		6.19 vs. CTR 23.98±4.28/		
						and splinted		32.20±4.17/33.15±4.1 (NS		
						(SLSI) (n = 23)		between groups). Those		
						vs.Group C:		completely/almost satisfied		
						Surgery (OCTR)		3rd/6th months splinting		
						(N = 11).		69.6%/34.8% vs. splint plus		
						× ,		steroid 100%/82.6% vs. CTR		
								45.5%/90.9%.		
Lee 2014	Intracar	RCT 1	No mention of	N = 44	Mean age:	In-plane ulnar	Follow up at baseline,	Mean baseline SSS for the	"US-guided local steroid injection using	Methodological details sparse.
(Score=4	pal		sponsorship or	patients with	52.7 years;	approach carpal	4 and 12 weeks.	blind group was 30.21 vs 20.18	an in-plane ulnar approach in the CTS	Baseline differences in symptoms
.5)	Glucoc		COI.	mild to	3 males, 41	tunnel injection		at 12 weeks (p<0.05). Mean	may be more effective than out-plane or	duration. No meaningful differences
	orticost			moderate	females.	group $(n = 24)$		baseline SSS for the out-plane	blind injection."	between groups for most outcomes.
	eroid			idiopathic		vs out-plane		group was 28.30 vs 17.41 at 12		Blind injection had more
	Injectio			CTW with a		carpal tunnel		weeks (p<0.05). Mean baseline		complications.
	ns			neurophysiolo		injection group		SSS for the in-plane group was		
				gical		(n = 26) vs blind		29.55 vs 12.18 at 12 weeks		
				confirmation		injection group		(p<0.05). No significant		
				consisting of		(n = 25). All		between group differences.		
				N = 75 hands.		three were		Number of posttreatment		
						injections of 40		complications for the blind		
						mg of		group was 15 vs 7 for the out-		
						triamcinolone.		plane group vs 4 for the in-		
				1	1					

Atthako mol 2018 (Score=4 .5)	pal Glucoc orticost eroid Injectio ns	RCT	Sponsored by the Faculty of Medicine, Chiang Mai University. No COI.	N = 25 CTS patients diagnosed based on guidelines of the American Academy of Neurology for CTS.	Mean age: 49.4 years; 6 males, 19 females.	Radial extracorporeal shock wave therapy (rESWT) group – 15 Hz frequency, 5000 shocks, BTL- 6000 SWT, for 3-7 minutes (n = 13) vs local corticosteroid injection (LCsI) group – 1 ml of triamcinolone (acetonide) 10 mg mixed with 1 ml of 1% lidocaine (n = 12).	Follow up at baseline, 1, 4, 12, and 24 weeks.	Mean VAS pain score for the rESWT group at baseline was 2.4 vs 0.35 at 24 weeks (p = 0.0075). Mean VAS pain score for the LCsI group at baseline was 2.6 vs 1.7 at 24 weeks (p = 0.19). Mean difference of SSS at 12 to 24 weeks between rESWT and LCsI groups was - 5.1 (p = 0.036)	"Treatment of CTS using single-dose rESWT has a carry-over effect lasting up to 24 weeks suggesting that single-dose rESWT is appropriate for treatment of mild to moderate CTS and provides longer-lasting benefits than LCsI."	Small sample size (n=25). Methodological details sparse.
Karadas 2011 (Score=4 .5)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship. No COI.	N = 99 with clinical and electrophysiol ogic evidence of CTS, older than 18 years.	Mean age: 47.1±10.7 years; 13 males, 86 females.	Group 1 40mg triamcinolone acetonide (n = 34) vs. Group 2 4ml 1% procaine HCl (n = 32) vs. Group 3 both 40mg triamcinolone acetonide and 4ml 1% procaine HCl (n = 33).	Follow-up at baseline, 2, and 6 months after injection.	VAS scores improved significantly in each group at 2 and 6 months after treatment, (p <0.05). No significant differences shown for electrophysiologic findings at baseline, 2, and 6 months, (p >0.05).	"Local procaine HCl injection and steroid injection effectively reduced the symptoms of CTS and equally improved electrophysiologic findings."	Combined triamcinolone acetonide and procaine HCL may be superior to individual medications alone.
Karadas 2012 (Score=4 .5)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 57 with clinically suspected primary CTS. Age >18 years.	Mean age: 47.2±10.2 years; 7 males, 50 females.	Group 1 injected with 1ml 0.09% saline (n = 19) vs. Group 2 injected with 40mg triamcinolone acetonide (n = 20) vs. Group 3 injected with 4ml 1%		Clinical/electrophysiological evaluations improved significantly in groups 2 and 3 at post-treatment, ($p < 0.05$). No significant changes in group 1, ($p > 0.05$). Groups 2 and 3 better scores vs. group 1 at 2, 6 months, ($p < 0.05$). No difference between groups 2 and 3 in terms of change scores	"Triamcinolone acetonide and procaine HCl injections are effective regarding short- and long-term outcomes compared with placebo injections, and procaine HCl injection was as effective as steroid injection."	Both active interventions superior to saline injection.

						procaine HCl (N = 18).		of any terms at post-treatment, $(p > 0.05)$.		
Seok 2012 (Score=4 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship. No COI.	N = 31 patients with positive Tinel sign or Phalen test that had numbness and tingling in at least two of the first, second and third digits. All patients were diagnosed with mild to moderately severe CTS using electrophysiol ogic studies	Mean age: 50.3 years; 5 males, 26 females.	One session of extracorporeal shock wave therapy (ESWT) with 1000 shocks at a frequency of 360 shocks per minute group (n = 15) vs local corticosteroid (CS) injection of 40 mg triamcinolone acetonide group (n = 16)	Follow up at baseline, 1 and 3 months.	No significant in group differences were seen in the ESWT group. Baseline NCV of median sensory nerve for the injection group was 34.35 vs 40.06 at 3 months (p<0.05). No significant between group difference.	"ESWT can be as useful as CS injection for relieving symptoms of carpal tunnel syndrome. Furthermore, in contrast to CS injection, it has the merit of being noninvasive"	No meaningful differences between groups. Methodological details sparse. Data suggest trend favoring injection at 3mo., which may be underpowered.
Eslamian 2017 (Score=4 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No sponsorship or COI.	N = 47 patients with a primary moderate idiopathic CTS with a clinical and electrodiagno stic confirmation of CTS. N = 60 hands.	Mean age: 52.4 years; 2 males, 45 females.	Ultrasound guided (US) steroid injections (n = 30 hands) vs landmark (LM) guided steroid injections (n = 30 hands). Both steroid injections were 40 mg of methylprednislo ne without local anesthetic.	Follow up at baseline and 12 weeks.	Boston Carpal Tunnel Questionnaire (BCTQ) total score at baseline for the US group was 2.86 vs 1.58 at 12 weeks (p<0.001). BCTQ total score at baseline for the LM group was 3.08 vs 1.80 at 12 weeks (p<0.001). No significant between group differences.	"Both US-guided and LM-guided steroid injections were effective in reducing the symptoms, improving the function and electrodiagnostic findings of CTS. Although there was better symptomatic improvement with US- guided injections and better increase in sensory nerve action potential amplitude with LM-guided injection, a significant difference was not generally observed between US-guided and LM-guided CTS injections."	Methodological details sparse. Both groups had improvements for most outcomes but no meaningful difference between groups.
Khosraw i 2015 (Score=4 .0)	Intracar pal Glucoc orticost eroid	RCT	No sponsorship or COI.	N = 43 patients with a diagnosis of severe CTS based on the clinical signs	Mean age: 51.4 years; 6 males, 37 females.	Full-time neutral wrist splint for 12 weeks group (n = 22; Group A) vs injections of 40 mg Depo-	Follow up at baseline, 4 and 12 weeks.	Median nerve distal motor latency at baseline for group A was 5.76 vs 5.04 at 12 weeks (p<0.001). Median nerve distal motor latency at baseline for group A was 6.55 vs 4.88 at 12	"considering some findings regarding the superior effect of splinting plus local steroid injection on functional status scale and median nerve distal motor latency, it seems that using combination therapy could be more	Methodological details sparse. No significant difference between groups.

	Injectio ns			and symptoms of CTS and electrodiagno stic evidence of severe CTS.		Medrol 1cc and full time neutral wrist splint for 12 weeks.		weeks (p<0.001). No significant between group differences.	effective for long-term period specially in the field of functional improvement of CTS."	
Gökoğlu 2005 (Score=4 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 30 with clinical and EDS evidence of CTS.	Mean age: 48.0 ± 8.2 years; 3 males, 27 females.	Group 1: 40mg methylprednisol one acetate injected (n = 15) vs. Group 2: iontophoresis of dexamethasone sodium phosphate (n = 15).	Follow-up for 2 and 8 weeks.	Symptoms severity scores (baseline/week 2/week 8): injection $2.7\pm0.8/1.9\pm0.7/1.6\pm$ 0.6 vs. iontophoresis $3.1\pm0.8/2.5\pm0.9/2.2\pm1.0$ (p <0.05) for Weeks 2 and 8 favoring injection. Functional status scale and VAS scores similarly favored injection.	"Success of both iontophoresis of dexamethasone sodium phosphate and injection of corticosteroids, but symptom relief was greater at 2 and 8 weeks with injection of corticosteroids."	Suggests injection superior to iontophoresis of dexamethasone.
Üstün 2013 (Score=4 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship. No COI.	N = 46 with idiopathic CTS.	Mean age: 44.3±10.9 years; 5 males, 41 females.	US-guided device of 20mg methylprednisol one (n = 23) vs. Palpation- guided approach or blind injection group of 20mg methylprednisol one using ulnar side approach (n = 23).	Follow-up at 6 and 12 weeks.	Scores for symptom severity and functional status improved at 6 and 12 weeks after the treatment, ($p < 0.05$). Boston Carpal Tunnel Questionnaire (BCTQ) symptoms / function: 6 weeks; 1.33±0.55 and 12 weeks; 1.30±0.45 vs 1.41± 0.59 and 1.67±0.73 Palpation group, ($p < 0.001$)/1.33±0.46 and 1.36±0.49 vs 1.52±0.87 and 1.86±1.09, ($p < 0.001$).	"[B]oth US-guided and blind steroid injections were effective in reducing the symptoms of CTS and improving the function, an earlier onset/better improvement of symptom relief suggests that US-guided steroid injection may be more effective than are blind injections in CTS."	Data suggest ultrasound guided injection superior to blind for providers with this level of experience.
Girlanda 1993 (Score=4 .0)	Intracar pal Glucoc orticost eroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 32 with clinical and EDS evidence of CTS. Age 36-60 years.	Mean age: 45.48±13.3 years; 6 males, 26 females.	Methylpred- nisolone acetate 15mg acetate injection locally (n = 9) vs. saline solution same amount as treatment group (n = 8). Study on long-term effects $(n = 8)$.	Baseline, 1 week, 2 weeks, 1 month, 2 months.	Paresthesias significantly improved from baseline in both groups, but more improved in steroid group (p <0.0001 vs. p <0.01); statistical significance of improvements in saline disappeared at 1 month; persisted through 2 months in steroid. 50% of nerves worse within 6 months; 90% within 18 months; 8% of nerves remained improved at 2-year.	"Only a small percentage (8%) of the nerves remained improved at the 2-years follow-up."	Methods details sparse, especially for long duration components of study. Patients had symptoms over 4 years.

							Glucocorticosteroids vs.	NSAIDs		
Celiker 2002 (score=5. 5)	NSAID /Cortico steroid Injectio n	RCT	No mention of sponsorship or COI.	N = 23 with bilateral or unilateral CTS, EDS confirmed.	Mean age: 48.2 years; 1 male, 22 females	Group A: acemetacine 120mg a day with splints at night. Group B: 40mg methylpred- nisolone acetate (1ml)	8 weeks	VAS pain scores (baseline/ 2^{nd} week/ 8^{th} week): NSAID plus splint 7.9 \pm 1.4/4.3 \pm 0.9/1.7 \pm 1.0 vs. injection 7.0 \pm 2.2/3.1 \pm 2.5/1.8 \pm 1.9 (P>0.05). Symptom severity scale results similar (p>0.05).	"Both splinting combined with the use of a nonsteroidal anti-inflammatory drug and steroid injection into the carpal tunnel resulted in significant improvement in carpal tunnel syndrome."	No placebo controlled. Suggests splinting and NSAID may be as effective as injection.
						(Slucocorticosteroids vs. A	nesthetics		
Karadas 2011 (score=4. 5)	Cortico steroid/ Anesthe tic Injectio n	RCT	No mention of sponsorship. No COI.	N = 99 with clinical and electrophysiol ogic evidence of CTS	Mean age: 47.1 years; 13 males, 86 females	Group 1 40mg triamcinolone acetonide (n = 34) vs. Group 2 4ml 1% procaine HCl (n = 32) vs. Group 3 both 40mg triamcinolone acetonide and 4ml 1% procaine HCl (n = 33).	Follow-up at baseline, 2 and 6 months after injection.	VAS scores improved significantly in each group at 2 and 6 months after treatment, ($p < 0.05$). No significant differences shown for electrophysiologic findings at baseline, 2, and 6 months, ($p > 0.05$).	"Local procaine HCl injection and steroid injection effectively reduced the symptoms of CTS and equally improved electrophysiologic findings."	Combined triamcinolone acetonide and procaine HCL may be superior to individual medications alone.
Karadas 2012 (score=4. 5)	Cortico steroid/ Anesthe tic Injectio n	RCT	No mention of sponsorship or COI.	N = 57 with clinically suspected primary CTS.	Mean age: 47.2 years; 7 males, 50 females	Group 1 injected with 1ml 0.09% saline (n=19) vs. Group 2 injected with 40mg triamcinolone acetonide (n = 20) vs. Group 3 injected with 4ml 1% procaine HCl (n=18).	Follow-up at 1, 2 and 6 months.	Clinical/electrophysiological evaluations improved significantly in groups 2 and 3 at post-treatment, ($p < 0.05$). No significant changes in group 1, ($p > 0.05$). Groups 2 and 3 better scores vs. group 1 at 2, 6 months, ($p < 0.05$). No difference between groups 2 and 3 in terms of change scores of any terms at post-treatment, ($p > 0.05$).	"Triamcinolone acetonide and procaine HCl injections are effective regarding short- and long-term outcomes compared with placebo injections, and procaine HCl injection was as effective as steroid injection."	Both active interventions superior to saline injection.
						G	ucocorticosteroids vs. Io	ntophoresis		
Bakhtiar y 2013	Cortico steroid/	RCT	Sponsored by Research Deputy of Semnan	N = 34 mild to moderate CTS confirmed by	Mean age: 46.4 years;	Iontophoresis of Dex-P 0.4% (n = 26) vs.	2, 4 weeks.	Pain at end of treatment and 4 weeks later significantly favored phonophoresis vs	"Our clinical trials showed that phonophoresis of Dex-P is more effective	Data suggest phonophoresis superior to iontophoresis

(score=7. 0) Gökoğlu 2005 (score=4. 0)	Iontoph oresis Cortico steroid/ Iontoph oresis	RCT	University of Medical Sciences. No COI.	electromyogra phy. N = 30 with clinical and EDS evidence of CTS.	no mention of sex. Mean age 48.0 ± 8.2 years; 3 males, 27 females	Phonophoresis of Dex-P 0.4%, plus applied over wrist chin and pulsed (20%) ultrasound waves (n = 26). Group 1: 40mg methylprednisol one acetate injected (n = 15) vs. Group 2: iontophoresis of dexamethasone sodium phosphate (n =	Follow-up for 2 and 8 weeks.	iontophoresis of Dex-P intervention, (p <0.01). Motor latency/motor action potential amplitude/finger pinch strength/hand grip strength/ pain relief: [mean difference 0.8 m/s; 95% (CI), $0.5-1.1$]/ (4.1 mV ; 95% CI, $3.0 - 5.2$)/ (31.6 N ; 95% CI, $3.0 - 5.2$)/ (31.6 N ; 95% CI, $13.5-40.5$)/ and $2.1 \text{ points on } 10\text{-point}$ scale; 95% CI, $1.3 - 2.9$. Symptoms severity scores (baseline/week 2/week 8): injection $2.7\pm0.8/1.9\pm0.7/1.6\pm$ 0.6 vs. iontophoresis $3.1\pm0.8/2.5\pm0.9/2.2\pm1.0$ (p < 0.05) for Weeks 2 and 8 favoring injection. Functional status scale and VAS scores similarly favored injection.	than iontophoresis of Dex-p treatment in patients with mild to moderate CTS." "Success of both iontophoresis of dexamethasone sodium phosphate and injection of corticosteroids, but symptom relief was greater at 2 and 8 weeks with injection of corticosteroids."	Suggests injection superior to iontophoresis of dexamethasone.
						15).	Injection vs. Ultraso	und		
Bilgici 2010 (score=5. 5)	Ultraso und/Ste roid Injectio n	RCT	No mention of sponsorship or COI.	N = 34 with CTS.	Mean age: 45.7 years; 9 males, 22 females	Group A, ultrasound treatment (n=16) vs. Group B, local corticosteroid injection plus splinting (n=18).	Follow-up for 8 weeks	VAS pain/severity of symptoms/functional status / grip strength, (p <0.001) and two point discrimination (p <0.016). Group A, improved for all clinical outcomes, (p <0.001), except grip strength.	"Both ultrasound treatment and corticosteroid injection plus splinting were effective on the clinical symptoms and the electrophysiological findings of CTS."	Both groups improved meaningfully over time, but differences between groups minimal; one statistically significant difference.
						Glu	acocorticosteroids vs. Rai	nge of Doses		
Dammer s 2006 (score=9. 0)	Glucoc orticost eroids	RCT	No mention of sponsorship or COI.	N = 136 EDS confirmed diagnosis of CTS.	Mean age 51.3 years; 30 males, 102 females	20mg methyl- prednisolone injections (n = 45) vs. 40mg methylprednisolo ne injections (n=43) vs. 60mg methyl-	Follow-up for 3 months.	73% of 60mg, 53% of 40mg and 56% of 20mg groups symptom free or requiring no further treatment at 6 months. Only 22% treated with 1-2 injections methylprednisolone during first year referred to surgery (p <0.05).	"One injection of methylprednisolone close to the carpal tunnel reduces the number of patients requiring surgery." 60mg dose more effective than lower doses, with 2nd injection possibly increasing recurrence of symptom-free patients.	Injection site 4cm proximal to distal wrist crease.

						prednisolone injections (n=44).				
							Injection Metho	d		
Üstün 2013 (score=4. 0)	Ultraso und/Bli nd Injectio ns	RCT	No mention of sponsorship. No COI.	N = 46 with idiopathic CTS.	Mean age: 44 years; 5 males, 41 females	US-guided device of 20mg methylprednisol one (n = 23) vs. Palpation- guided approach or blind injection group of 20mg methylprednisol one using ulnar side approach (n = 23).	Follow-up at 6 and 12 weeks.	Scores for symptom severity and functional status improved at 6 and 12 weeks after the treatment, ($p < 0.05$). Boston Carpal Tunnel Questionnaire (BCTQ) symptoms / function: 6 weeks; 1.33 ± 0.55 and 12 weeks; 1.30 ± 0.45 vs 1.41 ± 0.59 and 1.67 ± 0.73 Palpation group, ($p < 0.001$)/ 1.33 ± 0.46 and 1.36 ± 0.49 vs 1.52 ± 0.87 and 1.86 ± 1.09 , ($p < 0.001$).	"[B]oth US-guided and blind steroid injections were effective in reducing the symptoms of CTS and improving the function, an earlier onset/better improvement of symptom relief suggests that US-guided steroid injection may be more effective than are blind injections in CTS."	Data suggest ultrasound guided injection superior to blind for providers with this level of experience.
						Glucocorticos	teroids (Injection vs. Ora	al or by Injection Sites)		
Wong 2001 (score=9. 0)	Steroid/ Oral Injectio n	RCT	No mention of sponsorship or COI.	N = 62 with newly diagnosed CTS >3 months.	Mean age: 49 years; 7 males, 53 females	Steroid or prednisolone 25mg PO QD for 10 days (n = 30) vs. Oral steroid or prednisolone acetate 15mg injection (n = 30).	Follow-up for 12 weeks.	Global symptom scores (injection/oral): baseline ($25.0\pm6.4/25.7\pm8.3$), 2 weeks ($13.6\pm7.5/17.8\pm10.0$), 8 weeks ($13.7\pm8.3/20.8\pm8.7$), and 12 weeks ($14.3\pm8.4/21.4\pm9.6$). GSS scores borderline significant at 2 weeks (p = 0.07), but significant at 8 and 12 week follow-ups (p = 0.002 and p = 0.004).	"Local steroid injection was superior to oral corticosteroids over a 3-month period in patients with CTS."	Suggests injections superior to oral glucocorticosteroids.
Habib 2006 (score=5. 0)	Cortico steroid Injectio n	RCT	No mention of sponsorship or COI.	N = 42 with symptoms of CTS and EDS confirmed. Age >18 years old.	Mean age: 42.2 years; 9 males, 33 females	Local corticosteroid classic injection (n = 21) vs. 2- 3cm distal to the wrist crease. Both with 12mg methyl- prednisolone acetate with 0.15ml lidocaine (n = 21).	Follow-up for 1, 3, 6 12 weeks	81% of classical injection and 71% new method injection patients had favorable response rate after 3 weeks ($p = 0.468$). Procedure time 8.48 ± 1.123 seconds in new method group vs. 26.71 ± 32.83 in classical group ($p = 0.021$). Mean \pm SD grade of pain: new method 4.38 ± 1.523 vs. classic method 3.62 ± 1.071 ($p = 0.065$).	"Local corticosteroid injection using the novel approach for the treatment of carpal tunnel syndrome is helpful, and the favorable response rates are comparable to those using the classic approach after 1, 3, 6, and 12 weeks."	Suggests traditional injection technique may be superior.

						Glucoco	orticosteroids vs. Intram	uscular Injection		
Özdoğan 1984 (score=6. 0)	Cortico steroid/ Intramu scular Injectio ns	RCT	No mention of sponsorship or COI.	N = 37 with idiopathic CTS.	Mean age 45.8±8.7 years; 0 males, 37 females	Steroid injection, 1.5mg betamethasone disodium phosphate and acetate suspension (n=18) vs. Placebo into deltoid double dummy (n=19).	Follow-up for 10-12 months.	7 from carpal injection group and 6 from IM injection group returned with symptoms after 1 month and required second shot. One from first group and 2 from second group required third shot after 7.3 ± 3.7 months. Response rate 50% in hand injections vs. 15.8% IM.	"Steroid injected at the site of entrapment is effective and suggest superiority to the intramuscular route in the management of ICTS."	Carpal injections appear superior to intramuscular steroids.
					Intra	carpal Tunnel Inje	ection with Glucocorticos	teroids vs. Saline or No Injection		
Armstro ng 2004 (score=9. 5)	Cortico steroid/ Placebo	RCT	Sponsored by Southern California Kaiser Permanente Department of Research and Evaluation. No mention of COI.	N = 81 with typical symptoms of CTS and EDS confirmed.	Mean age: 51.6 years; 18 males, 63 females	Steroid injections or Betamethasone 6mg (n = 43) vs. Placebo group or saline (n = 36).	Follow-up for 18 months.	Changes in median sensory latencies -0.19 ± 0.27 vs. -0.04 ± 0.14 (p = 0.01). Changes in symptoms scores also favored corticosteroid injections -0.78 ± 0.80 vs. -0.19 ± 0.62 (p <0.01). Satisfaction rates 70% vs. 34% (p = 0.001). In subsequent open label follow-up, additional injections performed per patient requests (up to 7 injections for a few); 18 (39.1%) referred for surgery, 37.0% reported adequate symptom relief.	"Steroid injections are a safe and effective treatment for temporary relief of CTS symptoms for patients who did not improve with splinting and activity modification."	Unblinded after 2 weeks.
Peters- Velutham aningal 2010 (score=7. 5)	Cortico steroid/ Placebo	RCT	No mention of sponsorship. No COI.	N = 69 with clinical diagnosis of CTS.	Mean age: 54.6 years; 16 males, 53 females	1ml triamcinolonacet onide (TCA) 10mg/ml (n=36) vs. 1ml saline (NaCl) 0.9%, placebo 1-2 injections (n=33).	Follow-up 1, 3, 6 and 12 months	Steroid-group showed better direct treatment response (p = 0.013), perceived improvement (p = 0.01) and more improvement than NaCl-group in outcomes SSS BCTQ score (from 2.872 to 1.948 in TCA group vs. from 2.815 to 2.529 in NaCl group) and FSS BCTQ score (2.456 to 1.881 in TCA group vs. 2.353 to 2.366 in NaCl group). Mean difference in change score 0.637 (95% CI:	"Corticosteroid injections for CTS provided by general practitioners are effective regarding short-term outcomes when compared to placebo injections."	Multiple injections given if patient result was "not satisfactory" Data suggest steroid injections superior to NaCl for short term outcomes.

O'Gradai gh 2000 (score=5. 0)	Cortico steroid/ Placebo	RCT	No mention of sponsorship or COI.	N = 32 with suspected CTS and EDS confirmed.	No mention of mean age or sex.	Hydrocortisone 25mg or 100mg (A), hexacetonide 20mg (B), plus phase II; Triamcinolone 20mg or Hydrocortisone 100mg (n = 33) vs. Control no injection (n = 20).	Follow-up 6 weeks and 6 months.	0.320, 0.960; (p <0.001)) for SSS BCTQ and mean difference in change score 0.588 (95% CI: 0.232, 0.944; p = 0.02) for FSS BCTQ. Number Needed to Treat to achieve satisfactory partial treatment response or complete resolution of symptoms and signs 3 (95% CI: 1.83, 9.72). Results from Phase 1 (25mg/ 100mg/no injection) 66% vs. 63% vs. 5% better or much better (NS between injected groups' differences). Symptoms improved in Phase 2 in 72% vs. 67% (NS).	"As low dose steroid is as effective, and potentially less toxic, this should be the recommended dose for injection of carpal tunnel syndrome."	Two studies in one report with the first finding benefits of injection. Second trial found minimal incremental gain for higher dose.
Girlanda 1993 (score=4. 0)	Cortico steroid/ Placebo	RCT	No mention of sponsorship or COI.	N = 32 with clinical and EDS evidence of CTS.	Mean age: 45.5 years; 6 males, 26 females	Methylpred- nisolone acetate 15mg acetate injection locally (n = 9) vs. saline solution same amount as treatment group (n = 8). Study on long-term effects $(n = 8)$.	Follow-up every 2 months for 2 years.	Paresthesias significantly improved from baseline in both groups, but more improved in steroid group (p <0.0001 vs. p <0.01); statistical significance of improvements in saline disappeared at 1 month; persisted through 2 months in steroid. 50% of nerves worse within 6 months; 90% within 18 months; 8% of nerves remained improved at 2-year.	"Only a small percentage (8%) of the nerves remained improved at the 2-years follow-up."	Methods details sparse, especially for long duration components of study. Patients had symptoms over 4 years.
							One vs. Two Injecti	ons		
Wong 2005 (score=9. 0)	Steroid Injectio ns	RCT	No mention of sponsorship or COI.	N = 40 with newly diagnosed CTS and NCS confirmed	Mean age: 46.9 years; 6 males, 24 females	Single injection group or methylprednisol one 15 mg injection (n=20) vs. Double-	40 week follow-up	Global Symptom Score Single vs. Double injections (pre/8/24/ 40 weeks): Single 26.7±10.1/ 15.2±9.9/15.9±10.6/12.6±9.1 vs. Double 25.6±11.6/11.4± 7.6/13.0±9.7/14.1±11.0 (p>	"The results suggest that an additional steroid injection confers no added benefit to a single injection in terms of symptoms relief."	Both arms had active treatment

						injection group at 8 weeks of steroid or placebo (n=20)		0.19) all times. No differences in grip strengths or in NCS other than right hand which was borderline different at baseline ($p = 0.08$).		
							Steroid vs. Placel	00		
Atroshi 2013 (score=8. 5)	Steroid Injectio ns	RCT	Sponsored by grant from Region of Scania Research and Development Foundation and Ha [°] ssleholm Hospital Organization. No COI.	N = 111 with idiopathic CTS not previously treated with steroid injections.	Mean age: 46.7 years; 30 males, 81 females	80mg methylprednisol one (n=37) vs. 40mg methylprednisol one (n=37) vs. placebo (n=37).	10 weeks	At baseline CTS symptom severity score at 10 weeks improved those who received methylprednisolone vs. placebo ($p = 0.003$ for 80mg; $p = 0.001$ for 40mg methylprednisolone). At 1-year rates of surgery 73%, 81%, and 92% in 80mg methylprednisolone, 40mg methylprednisolone, and placebo groups. Those who received 80mg methylprednisolone less likely to have surgery (OR, 0.24 [CI, 0.06 to 0.95], ($p = 0.042$).	"Methylprednisolone injections for CTS have significant benefits in relieving symptoms at 10 weeks and reducing the rate of surgery 1 year after treatment, but 3 out of 4 patients had surgery within 1 year."	Data suggest both active treatments superior to placebo, no statistical differences between 80 mg and 40 mg steroid
Dammer s 1999 (score=8. 0)	Steroid Injectio n	RCT	No sponsorship and no COI.	N = 60 with carpal tunnel symptoms >3 months and NCS confirmed.	Mean age: 52 years; 10 males, 50 females	Intervention group or methylprednisol one 40mg plus 10mg lidocaine (n = 30) vs. Control group or lidocaine alone (n = 30).	Follow-up 3, 6, 9, 12 months	Percentage not needing 2nd treatment (1/3/6/9/12 month): steroid (77/63/57/53/50%) vs. placebo (20/7/7/7%), significant but no p-value reported. In open phase, 24 of 28 crossed over from controls and 50% of those had surgery, no p-value reported.	"A single injection with steroids close to the carpal tunnel may result in long term improvement and should be considered before surgical decompression."	Data suggest injection effective and 50% need no treatment for 1 year.
							Splinting vs. Steroid vs.	Surgery		
Wang 2017 (Score=5 .5)	Splint/S teroid	RCT	No mention of sponsorship or COI.	N = 52 patients with typical symptoms of CTS persisting for at least 3 months. CTS diagnosis were	Mean age: 55.05 years; 11 males, 41 females.	Steroid injection (SI) group (n=26) or SI plus splinting group (n=26). SI for both groups was ultrasound guided with 1 mL of 10 mg (10mg/mL)	Follow up at baseline 6 and 12 weeks.	Mean Symptom Severity Scale (SSS) for SI only group was 1.96 at baseline vs 1.28 at 6 weeks (p<0.05) and 1.49 at 12 weeks (p<0.05). Mean SSS for SI plus splint group was 2.27 at baseline vs 1.30 at 6 weeks (p<0.05) and 1.32 at 12 weeks (p<0.05). The between group difference in SSS was -0.048	"In people with CTS, steroid injection combined with splinting resulted in modestly greater reduction of symptoms, superior functional recovery, and greater improvement in nerve function at 12- week follow-up as compared with steroid injection alone. However, these small differences are of unclear clinical significance."	Trends toward differences at baseline between groups for outcomes variables makes interpretation more challenging. Many incongruences within tables and text. Data suggest steroid injection (SI) + splint superior to SI alone at 12 weeks but not 6 weeks.

Ucan 2006 (score=5. 0)	Splint/S teroid/S urgery	RCT	No mention of sponsorship or COI.	confirmed using motor and sensory nerve conduction studies. N = 57 with CTS diagnosis	Mean age: 44.6 years; 4 males, 53 females	triamcinolone acetonide and 1 mL of 2% lidocaine hydrochloride. Group A or Splinted (S) hands splinted in neutral position with standard cotton polyester splint (n = 23) vs. Group B or single steroid injection (20mg triamcinolone acetate plus 20mg lidocaine) and splinted (SLSI) (n = 23) vs. Group C: Surgery (OCTR)	Follow-up for 3 and 6 months.	(p=0.032) with SI plus splint being superior. Boston Questionnaire scores (baseline/3rd month/6th month): splinting 2.66 \pm 0.35/ 1.39 \pm 0.37/1.54 \pm 0.31 vs. splint plus steroid 2.79 \pm 0.63/1.41 \pm 0.32/1.96 \pm 0.63 vs. CTR 3.09 \pm 0.5/1.86 \pm 0.6/1.41 \pm 0.31 (p = 0.004). Palm-wrist median sensory nerve velocities: splint 27.26 \pm 5.3/29.6 \pm 7.16/29.56 \pm 4.83 vs. splint plus steroid 26.35 \pm 4.12/31.57 \pm 4.33/28.74 \pm 6.19 vs. CTR 23.98 \pm 4.28/ 32.20 \pm 4.17/33.15 \pm 4.1 (NS between groups). Those completely/almost satisfied 3rd/6th months splinting 69.6%/34.8% vs. splint plus	"All treatment methods were found to be effective, but despite the complications and the relatively long period to return to work, OCTR was superior to conservative methods in long term."	Baseline differences present. Appears to have targeted lower enrollment for surgery without stating such.
						(n=11).		steroid 100%/82.6% vs. CTR 45.5%/90.9%.		
							Glucocorticosteroid vs.	Surgery		
Hui 2005 (score=8. 0)	Injectio n/Deco mpressi on	RCT	No mention of sponsorship or COI.	N = 50 with EDS confirmed idiopathic CTS.	Mean age: 49.5 years; 2 males, 48 females	Steroid injection or methylprednisol one acetate 15mg (n=25) vs. Decompression or open CTR (n=25).	Follow-up at 6 and 20 weeks.	Mean improvements in global symptoms scale: 24.2 ± 11.0 vs. 8.7 ± 13.0 (p <0.001). Grip strengths were: surgery 23.4 ± 8.2 to 21.8 ± 7.9 vs. injection 24.2 ± 7.0 to 26.6 ± 7.4 (p = 0.009). Sensory nerve conduction velocities: surgery 34.2 ± 7.9 to 42.2 ± 8.0 m/s vs. injection 37.3 ± 8.0 to 40.5 ± 6.3 (p = 0.003).	"Open carpal tunnel release resulted in better symptomatic and neurophysiologic outcome but not grip strength in patients with idiopathic carpal tunnel syndrome over a 20-week period."	Suggests surgery superior.
Ly-Pen 2005 (score=6. 5)	Injectio n/Deco mpressi on	RCT	No mention of sponsorship or COI.	N = 123 (163 wrists) with CTS.	Mean age 51.9 years; 8 males, 93 females	Betamethasone 6.4mg, 2 injections 2 weeks apart	Follow-up at 3, 6, and 12 months.	70% improvements in nocturnal paresthesias present (3/6/12 months): injection 86.7/69.9/61.4% vs. surgery	"Over the short term, local steroid injection is better than surgical decompression for the symptomatic relief of CTS. At 1 year, local steroid injection	Details sparse. Most patients had 2 injections. No clear surgical benefit vs. injection.

						(n=83 wrists) vs. Open Carpal Tunnel Release		61.3/68.8/73.8% (p = 0.001/p = 1.0/p = 0.098).	is as effective as surgical decompression for the symptomatic relief of CTS."	
Ly-Pen 2012 (score=6. 0)	Injectio n/Deco mpressi on	RCT	No mention of sponsorship or COI.	N = 101 with clinical diagnosis and neuro- physiological confirmation of CTS.	Mean age: 51.5 years; 8 males, 93 females	(n=80). Surgical decompression (n=83 wrists) vs. Local steroid injection (n=83 wrists).	Follow-up of 2 years.	56 underwent surgery, 24 had CTS in both hands. 84% required 2 injections. At 24- months follow-up, 60.2% of wrists in injection group and 68.8% in surgery group achieved 20% response in nocturnal paraesthesias, (p = 0.256). Surgery more effective than injection for self-perceived functional impairment, with	"Our findings suggest that both local steroid injection and surgical decompression are effective treatments in alleviating symptoms in primary CTS at 2-year follow-up."	High drop out at 24 months. Injection superior at 3 months' time point but release superior at 12 months and 24 months.
								mean VAS score of 6.21 (8.81) in injection group vs. 2.02 (7.23) in surgery group, (p = 0.008).		

Evidence for the Use of Intramuscular Injections for CTS There is 1 moderate-quality RCT incorporated into this analysis.(854)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: intramuscular injections, carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, tingling, wrist, hand, palm, finger, pain, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, random*, randomized, randomiz, systematic, systematic review, retrospective studies, prospective studies, epidemiological studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 36 articles in PubMed, 722 in Scopus, 3 in CINAHL, 40 in Cochrane Library and 0 in other sources. We considered for inclusion 8 from PubMed, 0 from Scopus, 1 from CINAHL, 2 from Cochrane Library and 0 from other sources. Of the 11 articles considered for inclusion, 3 randomized trials and 1 systematic study met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: intramuscular injections, carpal tunnel syndrome, median nerve neuropathy, median nerve disease, entrapment, neuropathy, nerve compression, burning, itching, numbness, tingling, wrist, hand, palm, finger, and pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 1 articles. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
Özdoğan 1984 (Score=6.0)	Intramuscular Glucocorticosteroid Injections	RCT	No mention of sponsorship or COI.	N = 37 females: symptoms: burning pain, tingling, numbness in thumb, index and long fingers and palm.	Mean age: 45.8±8.7; 0 males, 37 females.	Group 1, received 1.5mg betamethaso ne disodium phosphate and acetate suspension into carpal tunnel and same volume of placebo (0.5 ml saline) into the deltoid muscle on same side (n = 18) vs.	1 week, 1 month, and 10 months after study completio n.	Seven patients from carpal injection group and 6 patients from IM injection group returned with symptoms after 1 month and required 2nd shot. One from 1st group and 2 from 2nd group required 3rd shot after 7.3±3.7 months. Response rate 50% in hand injections	"Steroid injected a site of entrapment effective and sugge superiority to the intramuscular route the management of ICTS."	is injections much more effective.

		Group 2,	compared to	
		received	15.8% IM.	
		1.5mg		
		betamethason		
		e disodium		
		phosphate		
		and acetate		
		suspension		
		into deltoid		
		muscle and		
		same volume		
		of placebo		
		into carpal		
		tunnel (n=19)		

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
Özdoğan 1984 (Score=6.0)	Intramuscular Glucocorticosteroid Injections	RCT	No mention of sponsorship or COI.	N = 37 females: symptoms: burning pain, tingling, numbness in thumb, index and long fingers and palm.	Mean age: 45.8±8.7; 0 males, 37 females.	Group 1, received 1.5mg betamethasone disodium phosphate and acetate suspension into carpal tunnel and same volume of placebo (0.5 ml saline) into the deltoid muscle on same side (n = 18) vs. Group 2, received 1.5mg betamethasone disodium phosphate and acetate suspension into	1 week, 1 month, and 10 months after study completio n.	Seven patients from carpal injection group and 6 patients from IM injection group returned with symptoms after 1 month and required 2nd shot. One from 1st group and 2 from 2nd group required 3rd shot after 7.3±3.7 months. Response rate 50% in hand injections compared to 15.8% IM.	"Steroid injected at the site of entrapment is effective and suggest superiority to the intramuscular route in the management of ICTS."	Data suggest intracarpal tunnel injections much more effective.

			deltoid muscle		
			and same		
			volume of		
			placebo into		
			carpal tunnel		
			(n=19)		

Evidence for the Use of Insulin Injections for CTS

There are 2 moderate-quality RCT incorporated into this analysis.(872, 873)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Insulin injections and carpal tunnel syndrome, CTS, median nerve neuropathy, median neuropathy, median nerve disease entrapment, neuropathy nerve compression, burning, itching, numbness, tingling, controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective studies, prospective studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 6 articles in PubMed, 836 in Scopus, 1 in CINAHL, 39 in Cochrane Library and 0 in other sources. We considered for inclusion 3 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 3 articles considered for inclusion, 2 randomized trials and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: insulin injections and carpal tunnel syndrome, median nerve neuropathy, median nerve disease entrapment, neuropathy nerve compression, burning, itching, numbness, tingling, and pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 403 articles. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
Ozkul 2001 (Score=6. 0)	Insulin Injections	RCT	No mention of sponsorship or COI.	N = 43 with non- insulin- dependent diabetes mellitus (NIDDM) with mild to moderate CTS.	Mean age: 47.7±1.3; 0 males, 50 females.	Group 1, received 0.3 mL-12 U of NPH insulin one time a week for 7 weeks (n=22) vs. Group 2, received placebo (0.3 mL-0.9% saline	Follow up at baseline, 1, 2, 3, 4, 5, 6, 7, 15, and 23 weeks.	Mean±SD median nerve motor distal latency (MNMDL): decrease 5 weeks insulin group 4.52±0.12 vs. placebo 4.80±0.03ms (p <0.05) and continued to 23	"[L]ocal insulin injections more significantly decreased MNMDL [median nerve motor distal latency], increase MNSV [median nerve sensory velocity] and reduces GSS [global symptom score] than the placebo in NIDDM patients with CTS."	All had gluco-corticosteroid injection. Suggestive results that need confirmation.

						solution) injected into carpal tunnel weekly for 7 week (n=21)		weeks (p <0.01). Mean±SD median nerve sensory velocity (MNSV): difference more significant insulin group vs placebo over whole study (p <0.01).		
Ashraf 2009 (Score=4.0)	Insulin Injections	RCT	No mention of sponsorship or COI.	N = 50 with non-insulin dependent diabetes mellitus; 20 had bilateral involvemen t, had symptoms and signs of CTS confirmed by standard electro diagnosis.	Mean age: 51.3±4.5; 15 males, 35 females.	Group 1, received injection into carpal tunnel (10IU of NPH insulin) (n=30 hands) vs. Group 2, received Physiotherapy (2 periods with 10 sessions) (n=32 hands)	Follow up at baseline, 2, 4, and 6 weeks.	In both groups decrement of distal motor latency (DML) of median nerves statistically significant. In both groups the increment of sensory nerve conduction velocity was statistically significant. Also, decrement of pain, paresthesia, numbness, weakness/ clumsiness and nocturnal awaking was statistically significant in both groups. But no significant	"In conclusion, in the present study, local insulin injections significantly reduced symptoms as the physiotherapy in NIDDM patients with CTS. But clinical significant difference in compare with physiotherapy was not seen. In summary two local insulin injections had no significant difference with compare to 20 sessions physiotherapy. Although these findings are promising, further studies with insulin are needed to verify its effectiveness as a treatment for CTS and other degenerative nerve diseases."	No differences between groups

			difference	
			between two	
			groups.	

Evidence for the Use of Botulinum Injections for CTS There is 1 moderate-quality RCT incorporated into this analysis.(874)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: botulinum toxin, botox or botulinum Injection, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, and pain; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 11 articles in PubMed, 201 in Scopus, 2 in CINAHL, and 1 in Cochrane Library. We considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: Botulinum toxin, Botox or Botulinum Injection, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, meadian nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, retrospective, and prospective studies to find 5 articles. Of the 5 articles we considered for inclusion 0. Of the 0 considered for inclusion, are randomized controlled trials and 0 systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
	Botulinum Injections	RCT	Sponsored by Elan Pharmaceutical s, San Francisco, California. No mention of COI.	N = 20 with hand pain and discomfort associated with CTS.	No mention of mean age; no mention of sex.	Group 1, received 2,500 units of botulinum toxin B injection into carpal tunnel (N=11) vs. Group 2, received injections of placebo	Follow up at baseline, 5, 9, and 13 weeks.	Response rates for botulinum toxin B and placebo groups: 126/143 (88.1%) vs. 117/117 (100%).	"Botulinum toxin B is not dramatically superior to placebo for the relief of CTS symptoms."	Small sample size. Few screened (20/388) randomized. Suggests not effective.

		(Normal saline		
		solution) (N=9)		

Evidence for the Use of Carpal Tunnel Surgical Release

There are 7 high-(763, 851, 931, 937, 938, 955, 956) and 36 moderate-quality (one with two reports)(641, 777, 778, 852, 853, 907, 911, 914-918, 921-925, 928, 929, 932, 935, 936, 939-941, 945, 946, 948-954, 957, 959, 960) RCTs and crossover trials incorporated into this analysis. There are 13 low-quality RCTs(407, 846, 913, 930, 961-969) in Appendix 2.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: carpal tunnel surgical release, Knifelight, open release, endoscopic, epineurotomy, neurolysis, flexor retinacular, ulnar bursal preservation, mini palmer incision, flexor tenosynovectomy, biopsy of abnormal tenosynovium and carpal tunnel syndrome, median nerve neuropathy, median neuropathy, median nerve disease entrapment, neuropathy nerve compression, burning, itching, numbness, tingling, controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective studies, epidemiological studies, epidemiological research, and Nonexperimental Studies. We found and reviewed 179 articles in PubMed, 84 in Scopus, 17 in CINAHL, 45 in Cochrane Library and 0 in other sources. We considered for inclusion 56 articles from PubMed, 2 from Scopus, 2 from CINAHL, 1 from Cochrane Library and 3 from other sources. Of the 64 articles considered for inclusion, 51 randomized trials and 12 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: carpal tunnel surgical release, Knifelight, open release, endoscopic, epineurotomy, neurolysis, flexor retinacular, ulnar bursal preservation, mini palmer incision, flexor tenosynovectomy, biopsy of abnormal tenosynovium and carpal tunnel syndrome, median nerve neuropathy, median neuropathy, median nerve disease entrapment, neuropathy nerve compression, burning, itching, numbness, tingling, and pain. ; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomly; systematic, retrospective, and prospective studies; Carpal Tunnel Syndrome to find 77 articles. Of the 77 articles we considered for inclusion 28. Of the 28 considered for inclusion, 18 are randomized controlled trials and 10 systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
			Carpa	al Tunnel Relea	ise vs. Non-si	rgical Therapy				
Gerritsen 2002 (score=8.5)	Carpal Tunnel Release Surgery	RCT	Sponsored by a grant from the Health Care Insurance Council of the Netherlands. No mention of COI.	N = 176 EDS confirmed.	Mean age: 49 years; 33 males, 143 females	Open release (n = 87) vs Splinting for 12 months (n = 89).	Follow-up at 1, 3, 6, 12 and 18 months.	Overall success rates statistically superior for all 5 measurements other than 1st month (1/3/6/12/18 months): 29 vs. 42% (p = 0.07)/80 vs. 54% (p	"Treatment with open carpal tunnel release surgery resulted in better outcomes than treatment with wrist splinting for patients with CTS."	Duration of symptoms was somewhat worse in splinting group (median 52 vs. 40 weeks, NS). Both treatment arms document

68% (p<0.001)/92 improvement, vs. 72% (p = which may 0.002) / 90 vs. reflect a good 0.002) / 90 vs. natural history. Nights awakening which may with wymptoms and paresthesias not significantly different at 12 or 18 months. Five (5.7%) in surgery (5.7%) in surgery group had wound infection: CRPS/RSD in one. Median-ulnar latency differences borderline favored splinting (baseries 1.7 vs. 1.8 months; 12 months; 11 vs. 0.7 months), as did ofter measures.									<0.001)/94 vs.		substantial
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCT NET Spansord by the latamural OCHN=116 PotentsMean are set Surgery for diagosedSurgery for Surgery/En Center, No COLN=116 PotentsMean are set Surgery for diagosedSurgery for No Surgery for diagosedN=116 PotentsMean are set Surgery for surgery for diagosedSurgery for surgery for diagosedOpen N=116 surgery for diagosedN=116 potentsMean are set Surgery for surgery for diagosedSurgery for surgery for diagosedOverall, these surgery for diagosedAt 12 months, surgery for diagosedAt 12 months, surgery for surgery for diagosedAt 12 months, surgery for surgery for diagosedAt 12 months, surgery for surgery for diagosedMean are surgery for surgery for surgery for diagosedSurgery for surgery for diagosedSurgery for surgery for diagosedSurgery for surgery for diagosedSurgery for surgery for surgery for diagosedMean are surgery for surgery for surgery for surgery for surgery for diagosedSurgery for surgery for<											
Jarvik 2009 (score=7.0)Open Surgery(Fn doscopic Decompres sionRCT NR PT Surgery(Fn Coner, No COLSponsored by NR NEN = 116 patients NRMean age NR Surgery (Th Surgery (Fn Chineal NF (Chineal NGCOL)N = 116 NGCOLSurgery surgery surgery surgery modelsFore (S-7%) (n = 000-2) Nights avakening with symptoms and paresthesias and paresthesias ones. Median-ulnar latency difference 11 vo = 18 months. Five (S-7%) (n = 000-2) (CB2R) Din one. Median-ulnar latency differences borderline favord splining (baseline : 1.7 vs. I.8 months; 12 months. 11 vs. 0-7months), as did doscopic pecompres sionRCT RCT RCT NET NET NET CHICH Chineal NET CHICH CHINEAL NET <b< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td></b<>									-		-
Jarvik 2009 (score=7.0)Open Surgery/En doscopic becompres sionRCTSpensored by NELN=116Mean age score sondSurgery or surgery for hat the Intramural disgnosed CTS.Surgery or for the sond surgery or finance surgery for hat surgery for the Intramural disgnosed CTS.N=116Mean age score surgery for the Intramural surgery or proloce surgery for the Intramural disgnosed CTSA0 (random or the sond) surgery for the Intramural disgnosedN=116Mean age score surgery for the Intramural surgery for surgery for the Intramural disgnosed CTS.Surgery for the Intramural surgery for the Intramural considering surgery for for the Surgery for the Intramural considering surgery for mates.62Surgery for for the Surgery for the Intramural surgery for for the Surgery for for the Surger											
Jarvik 2009 (score=7.0)Open Surgery/En doscopic pecompres sionRCT Net Met Intramural Research NTH Clinical Center. No Col.N = 116 N = 116 Program of the Linication LinicationMean age Surgery Group: Open Surgery or SionSurgery/En differences borderline favored util an indicate surgery or diagnosed Surgery (CTSAQ) in context surgery or the Intramural Research NTH Clinical Center. No Col.N = 116 N = 116 SionMean age Surgery (Single Single Sin											
Jarvik 2009 (score=7.0)Open Surgery/En doscopic sionRCTSponsored by the Intramural Research SionN = 116Mean age surgery group have surgery group have surgery group have on one. Median-ultare latency differences borderline favored splinting (baseline: 1.7 vs. 1.8 months: 12 months.N = 116 surgery group have on one. Median-ultare latency differences borderline favored splinting (baseline: 1.7 vs. 1.8 months: 12 months.N = 116 surgery group have on one. Median-ultare latency differences borderline favored splinting (baseline: 1.7 vs. 1.8 months: 12 months.At 12 months surgery of males.Jarvik 2009 (score=7.0)Open surgery/En doscopic pecompres sionRCTSponsored by the Intramural ResearchN = 116 surgery of surgery of fmles.Mean age surgery of surgery of surgical group surgery on surgery of surgical group surgery con surgery surgers of surgical group surgery con surgery surgery surgery surgers of surgical group surgery surgery surgers of surgical group surgery cons surgery cons surgery cons surgery s											natural history.
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCTSponsored by the Intrauural Research Program of the NIH Clinical Center. No COLN = 116 First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First Cast First First Cast First First Cast First Fi									0 0		
Jarvik 2009 (score=7.0)Open Surgery/En dosopic becompres sionRCT Spensored by the Intranural Resarch NTH Clinical Centr. No COLN = 116 patients considering surgery for years, 54 considering sionMean age spensored by the Intranural Resarch Program of the CHRS (RSD)Surgery (Leng months sionFollow-up surgery for the Intranural Resarch Program of the Undagosed Centr. No COLN = 116 patients considering surgery for the Intranural Resarch program of the NTH Clinical Centr. No COLN = 116 patients considering surgery for the Intranural Resarch program of the Centr. No COLN = 116 patients considering surgery for the Intranural Resarch program of the Centr. No COLMean age patients considering surgery for the Intranural Resarch considering surgery for the Intranural Resarch program of the VITH Clinical Centr. No COLFollow-up surgery for the Intranural Resarch program of the surgery or the Intranural Resarch surgery for the Intranural Resarch program of the surgery or the Intranural Resarch program of the surgery or the Intranural Resarch program of the surgery or the Intranural the Intranural the Intranural Resarch program of the surgery or the Intranural the Intranural the Intranural the Intranural the Intranural Resarch<									• 1		
Javik 2009 (score=7.0)Open Surgery/En doscopic DecompressRCT SpannerSponsored by the Intramural Program of the NIH Clinical Center. No COLN = 116 patients CaseMean age surgery or framates, 62 caseSurgery case one. Median-ulnar latency differences one. Median-ulnar latency differences one. Median-ulnar latency differences borderline favored splinting (baseline: 1.7 vs. l.8 months; 1.1 vs. o.7months), as did other measures.Open Surgery/En doscopic DecompressRCT Sponsored by the Intramural Program of the NIH Clinical Center. No COLN = 116 patients CaseMean age Surgery frequences frequencesSurgery case other measures.Follow-up result case surgery or surgery or talistically considering surgery or surgery or surgery or females, 62Mean age surgery or surgery or talistically considering surgery or surgery or su											
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCT Program of the NIH Clinical Center. No COI.Sponsored by the Intramural Research Program of the Stingery CTS.N = 116 patients considering surgery or mates, 62 femalesSurgery Follow-up surgery or surgery or surgery or that, in patients surgery or surgery or surgery or surgery or surgery or surgery or surgery or that, in patients surgery or surgery or the Intramural center. No COI.N = 116 patients considering surgery or the Intramural center. No COI.Mean age patients considering surgery or the Stare or for the surgery or surgery or the Stare or surgery or <td></td> <td></td>											
Jarvik 2009 (score=7.0)Open Surgery/fn doscopicRCT Program of the 											
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCTSponsore by the Intramural Research Program of the NIH Clinical Center. No COLN=116 surgery for diagnosedMean age sond Surgery for diagnosedSurgery for males, 62Surgery Endoscopic males, 62Mean age surgery or the Intramural surgery or surgery or sionSurgery for males, 62Mean age surgery or males, 62Surgery for surgery or surgery or surgery or surgery or the Intramural surgery or sionMean age surgery for diagnosedSurgery for males, 62Surgery for surgery or surgery or surgery or surgery or surgery or finales, 62Surgery for surgery or surgery or surgery or surgery or finales, 62Surgery for surgery or surgery or surger											
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCT Spann Center. No COLSponsored by He Intramaral Center. No COLN= 116 Patients Carson Considering Surgery for diagnosed CETS.Mean age Surgery for males, 62 femalesSorgery Surgery for males, 62 femalesFollow-up Surgery for males, 62 femalesFollow-up Surgery for surgery or Surgical group surgery or Surgical group surgery for significantly lower surgery for significantly lower surgery for significantly lower surgery for the Intramare Center. No COLMean age patients Surgery for diagnosed CTS.Surgery Surgery for males, 62 femalesFollow-up surgery or surgery or surgery or Surgical group surgery for surgical group surgery for surgery for surgical group surgery for surgery for surgical group surgery for surgical group surgery for surgical group surgery for surgical group surgical group significantly for surgery for surgical group significantly for surgical group significantly fo											
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCTSponsored by the Intramural Research N = NN = 116 patients considering surgery for all stanesMean age surgery for males, 62Surgery Group: Open surgery or males, 62Follow-up surgery or males, 62CRPS/RSD in one. Median-ulnar latency differences borderline favored splinting (baseline: 1.7 vs. 1.8 months; 1.2 months; 1.1 vs. 0.7months), as did other measures.At 12 months, surgery or males, 62Collow-up surgery or males, 62Follow-up surgery or months.Coverall, these data indicate that, in patients straignicant for improved straignicant for improved surgery or surgery or femalesKen age surgery or males, 62Surgery Group: Open surgery or males, 62Follow-up Group: Open surgery or months.Coverall, these data indicate that, in patients straignicant for improved surgery or surgery or surgery or surger and the program of the surgery or surger and that, in patients surgery or surgery or surger and that, in patients surgery or surgery or surger and surgery or surge											
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCTSponsored by the Intramural Program of the Program of the Singery for HIH Clinical Center. No COLN = 116 patients CasterMean age Surgery for males, 62 EmalesSurgery Follow-up Surgery for ange, 62 Follow-up SionFollow-up Follow-up Program of the surgery for MIH Clinical Center. No COLMean age patients considering the surgery or males, 62 EmalesSurgery Follow-up Follow-up Follow-up Follow-up Surgery for Months: 1.1 vs. O.7months: 1.1 vs. O.7months: 1.1 vs. O.7months: 1.1 vs. O.7months: 1.2 vs. SyndromeAt 12 months, surgical group was surgical group significant for improved surgery on surgical group significant for improved surgery on surgical group surgical group at 6 surgical group at 6 surgery anothsMean age surgery for males, 62 surgery or surgery or surgery or surgical group surgical group at 6 surgical group at 6 surgery monthsAt 12 months, surgery surgical group surgical group at 6 surgery monthsAt 12 months, surgery surgery for improved symptoms by 3MarkN=116 patients surgery for significant for improved symptoms by 3N=116 surgery for significant for improved symptoms by 3Mark at 12 surgery for significant for improved symptoms by 3Mark at 12 surgery for significant for improved symptoms by 3MarkN=116 patients significant for improved symptoms by 3N									-		
Image: here is a stand sta											
Image: here is a serie of the image: here is a serie is a serie of the image: he									one. Median-ulnar		
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCTSponsored by the Intramural Program of the NIH Clinical Center. No COI.N = 116 patients surgery for diagnosed CTS.Mean age surgery for males, 62 femalesSurgery Group: Open surgery or moths:Follow-up statistically surgery or moths:Follow-up statistically surgery or moths:Mean age statistically surgery or moths:At 12 months, surgery or moths:At 12 months, surgery or males, 62 females, 62 femalesSourgery for surgery or moths:Follow-up surgery or moths:Primary outcome statistically surgery or moths:At 12 months, surgical group was statistically surgery or surgery or surg											
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCTSponsored by the Intramural Research NIH Clinical Center. No COI.N = 116 patients Cansidering VERMean age surgery for diagnosed CTS.Surgery Group: Open surgery for males, 62Follow-up Group: Open surgery or 12"Overall, these stars of the intramural surgery or sionA 12 months, surgery for diagnosed Center. No COI.N = 116 patients considering surgery for diagnosed CTS.Surgery surgery or males, 62Follow-up Group: Open surgery or surgery or surgery or intravoutcome"Overall, these surgery or surgery or months.At 12 months, surgery or surgery or intravoutcomeAt 12 months, surgical group wasJarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCTSponsored by preference. (n = 57) vs. non- Surgical group surgering for visits withN=116 (males)Mean age Surgery or interving Group: Open Surgery or surgery or surgery or surgery or surgery or surgery or surgery or surgery or surgering on surgery or surgery or surgering on surgering on surgery or surgering on surgering on surgerin									differences		
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCTSponsored by the Intramural Research Program of the NIH Clinical Center. No COLN = 116 patients considering surgery for diagnosedMean age soldSurgery Group: Open surgery or femalesSurgery follow-up surgery or the last surgery or the seconic sionRCTSponsored by the Intramural Research Program of the NIH Clinical Center. No COLN = 116 patients considering surgery for diagnosedMean age surgery or the last surgery or the seconic surgery or the seconic the seconic surgery or the seconic that, in patients surgery or the seconic that, in patients surgery or that, in patients surgery that, in patients surgery that, in patients surgery the seconic that, in patients surgery the seconic that, in patients surgery the seconic that, in patients surgery that, in patients surgery surgery that, in patients surgery surgery the seconic surgery that, in patients surgery that, in patients surgery surgery the seconic secon									borderline favored		
Image: space s									splinting		
Image: space s									(baseline: 1.7 vs.		
Image: space s									1.8 months; 12		
Image: constraint of the second statisticallySource (1)Constraint of the second statisticallySource (1)Source (1)Constraint of the second statisticallySource (1)Source (1									months: 1.1 vs.		
Jarvik 2009 (score=7.0)Open Surgery/En doscopic Decompres sionRCTSponsored by the Intramural Research NIH Clinical Center. No COI.N = 116 patients considering surgery for diagnosedMean age sondSurgery Group: Open surgery or males, 62 femalesFollow-up 3, 6, 9 and 12Primary outcome Carpal Tunnel Syndrome"Overall, these data indicate surgical group was statistically significantly lower surgery modestly improves hand function.At 12 months, surgical group was statistically significantly lower surgical group at 6 syndromeDecompres sionNIH Clinical Center. No COI.NIH Clinical Center. No COI.NIH Clinical Center. No COI.Mean age patients considering surgery for diagnosed CTS.Surgery males, 62 femalesFollow-up 3, 6, 9 and surgery or males, 62 femalesPrimary outcome Surgery or tal"Overall, these data indicate was statistically significant for improved syngtoms and function.									0.7months), as did		
Surgery/En doscopic Decompres sionthe Intramural Research Program of the NIH Clinical Center. No COI.patients considering surgery for diagnosed CTS.50.7 years; 54 males, 62 femalesGroup: Open surgery or females3, 6, 9 and 12Carpal Tunnel Syndromedata indicate that, in patients was statistically statistically significant for improved surgery modestly function and surgical group at 6 symptoms by 3 months; 1.91 vs.Carpal Tunnel data indicatedata indicate was statistically was									other measures.		
Surgery/En doscopic Decompres sionthe Intramural Research Program of the NIH Clinical Center. No COI.patients considering surgery for diagnosed CTS.50.7 years; 54 males, 62 femalesGroup: Open surgery or famales, 62 females3, 6, 9 and 12Carpal Tunnel Syndromedata indicate that, in patients wassurgical group wasNIH Clinical Center. No COI.CTS.Group: Open years; 54 males, 62 femalesGroup: Open surgery or that, in patients3, 6, 9 and 12Carpal Tunnel Syndromedata indicate that, in patients wassurgical group surgery that, in patientsVill Clinical Center. No COI.CTS.Group: Open surgery for diagnosed CTS.Group: Open surgery or that, in patients3, 6, 9 and 12Carpal Tunnel Syndromedata indicate that, in patients wassurgical group surgery significant for improvedVill Clinical Center. No COI.CTS.Group: Open diagnosed CTS.Group: Open surgery the surgery females3, 6, 9 and the surgery or that, in patients surgery the pending on surgery surgical group surgical groupdata indicate that, in patients wassurgical group that, in patients that, in patients wasSurgery of the surgery to the pending on surgical group at 6 the surgical group at 6 months; 1.91 vs.surgery modestly surgical group at 6 monthsfunction surgical group at 6 monthsGroup and 6 monthssurgery modestly months	Jarvik 2009 (score=7.0)	Open	RCT	Sponsored by	N = 116	Mean age	Surgery	Follow-up	Primary outcome	"Overall, these	At 12 months,
doscopic Decompres sionResearch Program of the NIH Clinical Center. No COI.considering surgery for diagnosed CTS.years; 54 males, 62 femalessurgery or months.12 months.Syndrome Assessment questionnaire (CTSAQ).that, in patients with carpal statistically significant for improved symptoms and function.doscopic sionResearch Program of the NIH Clinical Center. No COI.considering diagnosed CTS.years; 54 males, 62 femalessurgery or months.12 months.Syndrome Assessment questionnaire (CTSAQ).that, in patients with carpal statistically significant for improved symptoms and function.doscopic significantly lower surgical therapy group: 6 visits with12 months.Syndrome Assessment questionnaire (CTSAQ).that, in patients with carpal statistically significant for improved symptoms and function.		Surgery/En		the Intramural	patients	50.7		3, 6, 9 and	Carpal Tunnel	data indicate	surgical group
Decompres sionProgram of the NIH Clinical Center. No COI.surgery for diagnosed CETS.males, 62 femalesEndoscopic surgery depending on surgeon'smonths.Assessmentwith carpalstatisticallyQuestionnaire depending on surgeon'sCTS.CTS.femalesfemalessurgery depending on surgeon'sSurgical groupdenervation, improvessymptoms and function.FemalesSurgical tepending on surgeon'sSurgical groupdenervation, improves handsymptoms and function.FemalesSurgical tepending on surgeon'sSurgical groupfemalessignificantly lower surgical therapy group: 6 visits withSurgical group at 6 surgical group at 6symptoms by 3 months; 1.91 vs.months.surgery modestly surgical group at 6		• •		Research	considering	years; 54	surgery or	12	Syndrome	that, in patients	was
sionNIH Clinical Center. No COI.diagnosed CTS.femalessurgery depending on surgeon's preference. (n = 57) vs. non- Surgical therapy group: 6 visits withQuestionnaire (CTSAQ).tunnel syndrome withoutsignificant for improved symptoms and function.				Program of the	surgery for	males, 62	Endoscopic	months.	Assessment	with carpal	statistically
Center. No COI.CTS.depending on surgeon's(CTSAQ).withoutimprovedSurgical groupdenervation,symptoms andpreference. (nsignificantly lowersurgery modestlyfunction.= 57) vs. non-CTSAQ functionimproves handfunction andSurgicalscore vs. non-function andsurgical group at 6symptoms by 36 visits withmonths; 1.91 vs.monthsmonthsfunction				NIH Clinical		females	surgery		Questionnaire	tunnel syndrome	significant for
surgeon's Surgical group denervation, symptoms and preference. (n significantly lower surgery modestly function. = 57) vs. non- CTSAQ function improves hand function. Surgical score vs. non- function and surgical group at 6 symptoms by 3 6 visits with months; 1.91 vs. months months months		51011		Center. No COI.	CTS.		depending on		(CTSAQ).	without	improved
= 57) vs. non- Surgical therapy group: 6 visits withCTSAQ function score vs. non- surgical group at 6 months; 1.91 vs.improves hand function and symptoms by 3 months										denervation,	
= 57) vs. non- Surgical therapy group: 6 visits withCTSAQ function score vs. non- surgical group at 6 months; 1.91 vs.improves hand function and symptoms by 3 months							preference. (n		significantly lower	surgery modestly	function.
Surgical score vs. non- function and therapy group: surgical group at 6 symptoms by 3 6 visits with months; 1.91 vs. months							- ·			• • •	
therapy group: surgical group at 6 symptoms by 3 6 visits with months; 1.91 vs. months							· ·				
6 visits with months; 1.91 vs. months							-				
									-		
therapy and and at 12 months; multimodality									-	-	

						prescribed NSAIDS. (n = 59).		1.74 vs. 2.17 (p = 0.0081). Secondary outcome of CTSAQ symptoms also significantly lower in surgery vs. non- surgery at 6 months; 2.02 vs. 2.42 (p = 0.018) and 12 months; 1.74 vs. 2.07 (p = 0.036).	non-surgical treatment regimen, and this benefit is sustained through 1 year."	
Fernández-De-Las-Peñas 2016 (score=6.0)	Carpal Tunnel Release Surgery/M anual Physical Therapy	RCT	Sponsored by 2 research project grants from the Health Institute Carlos III. No COI.	N=120 females with carpal tunnel syndrome	Mean age: 47±9 years; 0 males, 120 females	Physical Therapy Group: received 3 treatment sessions of manual physical therapy (desensitizatio n maneuvers of central nervous system 30 min once per week) (n=60) vs Surgery Group: received open or endoscopic decompression and release of the carpal tunnel and education of	Follow up at 1, 3, 6, and 12 months	Time-by- prediction rule status showed effect for hand pain (F=0.200, p=0.657), worst pain during last week (F=0.03, p=0.863), function (F=0.001, p=0.990), symptom severity (f=0.034, p=0.854). Secondary analysis showed effects of hand pain (F=0.024, p=.878), worst pain experience (f=0.013, p=0.918), function (F=0.265, p=0.608), symptom severity	"The results of this study did not support the validity of the previously developed clinical prediction rule for manual physical therapy in women with CTS."	Physical therapy treatment poorly defined and included median nerve from shoulder to hand No significant differences at 1 year, however PT was superior to surgery for most outcomes at 1, 3 months.

Korthals-de Bos 2006 (score=4.0)	Carpal Tunnel Release Surgery	RCT	Sponsored by grant from Health Care Insurance Council of the Netherlands. No COI.	N = 13 patients with electrophysi ologically confirmed idiopathic carpal tunnel syndrome.	No mention of mean age or sex.	physical therapy (n=60) Open release: Incision size not specified. Numerous specialists performed (n = 73) vs. Nocturnal splinting plus daytime "if they wished to."	Follow-up 3, 6, 12 months.	(F=0.265, p=0.662). Success rates higher at 12 months for surgery group, 92% vs. 72%, difference is 20% (8-31 95% CI). Night awakening due to complaints not different (3.6 ± 2.9 vs. 2.9 ± 3.0). Severity of main complaint higher in surgery group (6.4 ± 2.7 vs. 5.1 ± 3.1). Mean aggregate costs $2,126\ell$ surgery vs. 2.111ℓ criticat	"In the Netherlands, surgery is more cost-effective compared with splinting, and recommended as the preferred method of treatment for patients with CTS."	Population- based study with likely relatively suboptimal control over treatments. Small sample size. Applicability of cost data to US is questionable.
				Carpal Tunne	l Release vs.	Injections		2,111€ splint. Absenteeism comparable (50 vs. 52 days).		
Hui 2005 (score=8.0)	Carpal Tunnel Release Surgery	RCT	No mention of sponsorship or COI.	N = 50 patients with electrophysi ologically confirmed idiopathic carpal tunnel syndrome.	Mean age 49.5 years; 2 males, 48 females	Injection Group- Methylpred- nisolone acetate 15mg (n = 25) vs. Open carpal tunnel release (n = 25).	Follow-up at 6 and 20 weeks.	Mean improvements in the global symptoms scale 24.2 ± 11.0 vs. 8.7 ± 13.0 (p <0.001). Grip strengths: surgery 23.4 ± 8.2 to 21.8 ± 7.9 vs. injection 24.2 ± 7.0 to 26.6 ± 7.4 (p = 0.009). Sensory	"Open carpal tunnel release resulted in between symptomatic and neurophysiologic outcome but not grip strength in patients with idiopathic carpal tunnel syndrome over a 20-week period."	Suggests surgery superior.

Ly-Pen 2005 (score=6.5)	Surgical Decompres sion/Injecti ons	RCT	No mention of sponsorship or COI.	N = 123 (163 wrists) with carpal tunnel syndrome (CTS).	Mean age 51.9 years; 8 males, 93 females	Bethamethaso ne 6.4mg, 2 injections 2 weeks apart (n = 83 wrists) vs. Open Carpal Tunnel Release (n = 80). 1 year study.	Follow-up 3, 6, and 12 months.	nerve conduction velocities: surgery 34.2 ± 7.9 to 42.2 ± 8.0 m/s vs. injection 37.3 ± 8.0 to 40.5 ± 6.3 (p = 0.003). 70% improvements in nocturnal paresthesias present (3/6/12 months): injection 86.7/69.9/61.4% vs. surgery 61.3/68.8/73.8% (p = $0.001/p =$ 1.0/p = 0.098).	"Over the short term, local steroid injection is better than surgical decompression for the symptomatic relief of CTS. At 1 year, local steroid injection is as effective as surgical decompression for the symptomatic relief of CTS."	Details sparse. Most patients had 2 injections. No clear surgical benefit.
Ucan 2006 (Score=5.0)	Carpal Tunnel Release Surgery/Inj ections	RCT	No mention of sponsorship or COI.	N = 57 (57 hands) with mild or moderate idiopathic carpal tunnel syndrome.	Mean age 44.6 years; 4 males, 53 females	Group A: splinted for 3 months (n = 23 Hands) vs. Group B: Single steroid injection (20mg triamcinolone acetate with 20mg lidocaine) and splinted for 3 months (n = 23 Hands) vs.	Follow-up assessmen ts 3 and 6 months.	Boston Questionnaire scores (baseline/ 3rd month/6th month): splinting $2.66\pm$ $0.35/1.39\pm0.37/$ 1.54 ± 0.31 vs. splint plus steroid $2.79\pm0.63/1.41\pm0.$ $32/1.96\pm0.63$ vs. CTR $3.09\pm0.5/1.86\pm0.6$ /1.41± 0.31 (p = 0.004 at 6	"All treatment methods were found to be effective, but despite the complications and the relatively long period to return to work, OCTR was superior to conservative methods in long term."	Baseline differences present. Appears to have targeted lower enrollment for surgery without stating.

						Group C: surgery (n = 11 Hands).		months). Palm- wrist median sensory nerve velocities: splint $27.26\pm5.3/29.6\pm7.$ $16/29.56\pm4.83$ vs. splint plus steroid $26.35\pm4.12/31.57$ $\pm 4.33/28.74\pm$ 6.19 vs. CTR $23.98\pm4.28/32.20$ $\pm4.17/33.15\pm4.1$ (NS). Completely satisfied/ almost satisfied/ almost satisfied (3rd/6th months): splinting 69.6%/34.8% vs. splint plus steroid 100%/82.6% vs. CTR 45.5%/90.9%.		
Saw 2003 (score=7.5)	Carpal Tunnel Release Surgery	RCT	No mention of sponsorship or COI.	Endoscopi N = 150 patients with carpal tunnel syndrome.	c vs. Open R Mean age 51.9 years; 40 males, 110 females	elease Open Carpal Tunnel Release Group: Open incision 2cm (n = 76) vs. 1- portal endoscopic release (n = 74).	Follow-up at 1, 3, 6 and 12 weeks.	Anterior carpal tenderness not significantly different 22 \pm 7 vs. 24 \pm 6 (p = 0.18). Grip strength was also not different, but favored endoscopic (p = 0.21). Endoscopic group returned to work average 8 days (95% CI 2- 13, (p = 0.005)) sooner than open. Lost time offset	"On the basis of these findings, we recommend that endoscopic carpal tunnel release should be considered in the employed as a cost-effective procedure, but perhaps not in the general population as a whole."	Endoscopic recommended due to earlier return to work in employed.

Atroshi 2006 (score=7.0)	Carpal Tunnel Release surgery	RCT	Sponsored by research grants from Skane county council's research and development foundation, Kristianstad University, and Swedish Society of Medicine. No COI.	N = 128 with idiopathic CTS.	Mean age 44 years; 40 males, 88 females	Open Surgery Group-4cm open (n = 65) vs. 2-portal endoscopic release-1cm endoscopic (n = 63).	Follow-up at 3 and 6 weeks and 3 and 12 months.	increased costs of endoscopic surgery, resulting in net savings of 438£ (\$661.63 USD 2009) per patient. Post-operative pain scores (3 weeks/6 weeks/3 months/12 months): open $60.5\pm23/51.3\pm23/$ $36.2\pm20/13.9\pm22$ vs. endoscopic $52.1\pm23/43.3\pm23/$ $23.5\pm26/8.7\pm21$ (p = 0.028, p = 0.03, p <0.001, p = 0.13 respectively). Lost time median 28 days in both groups (range 17- 44).	"In carpal tunnel syndrome, endoscopic surgery was associated with less postoperative pain than open surgery, but the small size of the benefit and similarity in other outcomes make its cost effectiveness uncertain."	Minimal advantage to endoscopic of less pain, but not earlier return to work.
Atroshi 2009 (score=7.0)	Carpal Tunnel Release Surgery	RCT	Sponsored by research grants from Skane County Council's research and development foundation, Kristianstad University, and The Swedish Society of Medicine. No	N = 128 with idiopathic CTS.	Mean age 44 years; 40 males, 88 females	Open Surgery Group-4cm open (n = 65) vs. 2-portal endoscopic release-1cm endoscopic (n = 63).	Follow-up at 3 and 6 weeks and 3 and 12 months.	Symptom severity scores at 5 years were endoscopic 1.45±0.7 vs. open 1.42±0.7 (NS). 52/61 open vs. 53/63 endoscopic had "no pain" (NS). No differences in functional status scores, although both improved from pre-	"The improvements in symptoms of CTS and hand- related disability 5 years after open and 2- portal endoscopic carpal tunnel release were equivalent."	Very high response rate for 5-year study (only missing 2 who died). Suggests no long term differences. Same rates of palmar pain for both groups. No differences in

			mention of COI.					operative status (p <0.001). In 1st year, 1 open and 2 endoscopic required repeat surgery; between Years 1 and 5, 2 open and 1 endoscopic required repeat surgery.		reoperation rates.
Brown 1993 (score=6.5)	Carpal Tunnel Release Surgery	RCT	No sponsorship or COI.	N = 145 (169 hands) with CTS.	Mean age 56 years; 46 males, 99 females	Open Carpal Tunnel Release: Open incisions 3.5- 4.5cm (n = 75, 85 hands) vs. 2-portal endoscopic release- endoscopic incisions 2cm and 1.5cm (n = 76, 84 Hands).	Follow-up at 21, 42, 84 days.	Symptoms relieved in 98- 99% among each group. Open group more likely to have incisional tenderness (61% vs. 36%). Return- to-work occurred earlier for endoscopic group (p <0.05).	"Preliminary analysis suggests that functional outcomes are achieved more quickly when the endoscopic method is used. However, the greater rate of complications indicates that intraoperative safety must be improved before endoscopic carpal-tunnel release is performed on a widespread basis."	Suggested endoscopic superior.
Ferdinand 2002 (score=6.5)	Carpal Tunnel Release Surgery	Crossove r Trial	No mention of sponsorship. No COI.	N = 25 (50 hands) with bilateral CTS.	Mean age: 54.9 years; 5 males, 20 females	Open carpal tunnel release (n = 25) vs 1- portal endoscopic release (n = 25). Incision	Follow-up at 6, 12, 26, 62 weeks.	Data presented graphically. Persisting symptoms in 1 (4%) of open vs. 0% endoscopic. Persisting pain in	"In comparison with open release, single- portal endoscopic carpal tunnel release has a	No differences between groups in strength or return to hand function.

					sizes not specified.		1 in each group. No differences in grip strength. Mean operating time 10±2 minutes open group vs. 13±4 minutes endoscopic group. Difference significant (p<0.005).	similar incidence of complications and a similar return of hand function, but is a slightly slower technique to undertake."	
Trumble 2002 (score=6.5)	Carpal RC Tunnel Release Surgery	CT No mention of sponsorship. COI, one or more authors received grants or outside funding from Orthopaedic Research and Education Foundation, American Society for Surgery of the Hand, and Boeing Foundation. No author received payments or other benefits or commitment or agreement to provide such benefits from a commercial entity.	N = 147 (192 hands) with idiopathic CTS.	Mean age 56 years; 52 males, 95 females	Open carpal tunnel release group: Open incision 3-4 cm (n = 72, 95 hands) vs. 1- portal endoscopic release (n = 75, 97 hands).	Follow-up assessmen ts made at 2, 4, 8, 12, 26, and 52 weeks.	Symptom severity scores different for weeks 2; 3.1 vs. 2.3 (p <0.01), 4; 3.0 vs. 2.0 (p <0.01), 8; 2.7 vs. 1.9 (p <0.01), and 12; 2.5 vs. 1.8 (p <0.01) among open group vs. endoscopic group. Open group also showed significant increase in functional status score vs. endoscopic group at week 2; 3.0 vs. 2.2 (p<0.01), 4; 2.6 vs. 1.9 (p<0.01), 8; 2.5 vs. 1.9 (p <0.01), and 12; 2.4 vs. 1.7 (p <0.01). Median time to return to work 38 vs. 18	"Good clinical outcomes and patient satisfaction are achieved more quickly when the endoscopic method of carpal tunnel release is used. Single portal endoscopic surgery is a safe and effective method of treatment carpal tunnel syndrome."	Data suggest the long-term outcomes were identical, although the benefits were short-term for the endoscopic technique.

Wong 2003 (score=6.5)	Carpal Tunnel Release Surgery	Crossove r Trial	No sponsorship. No mention of COI.	N = 30 (60 hands) with bilateral idiopathic CTS.	Mean age 47 years; 2 males, 28 females	Open Group: using Strickland instrumentatio n. 1.5cm open incision (n = 15, 30 hands) vs. 2-portal endoscopic release (n = 15, 30 hands).	Follow-up 2, 4, 8, 16 weeks, 6 and 12 months.	days, (p = 0.0086), favoring endoscopic group. At 1 year, 17 (57%) of endoscopic vs. 19 (63%) of limited open had complete resolution (p = 0.65). Trend toward increased strength in open group (NS). Pain scores lower in limited open group 2 weeks: 2.5 vs. 3.3 (p = 0.004) and 4 weeks: 1.5 vs. 2.5 (p = 0.008).	"The results showed that the outcome was similar at follow- up of one year using both techniques. However, the LOCTR group had significantly less tenderness of the scar at the second and fourth postoperative week. There was also less thenar and hypothenar (pillar) pain after	Suggests limited open technique modestly beneficial compared with endoscopic.
Erdmann 1994 (score=6.0)	Endoscopic /Open Decompres sion	RCT	No mention of sponsorship or COI.	N = 105 with CTS.	Mean age 53.4 years; 28 males, 77 females	Open carpal tunnel release (n = 52) vs. 2- portal endoscopic release (n = 53). Incision sizes not specified.	Follow-up at 1 and 2 weeks; 1, 3, 6 and 12 months.	Symptoms relieved in 1.1 vs. 1.75 days. Return to work in 14 vs. 39 days (p <0.005) for the endoscopic group vs. the open group. Grip strength returned to preoperative values for the endoscopic group vs. the open group 28 vs. 90 days (p <0.005).	LOCTR)." "This trial illustrates that endoscopic carpal tunnel release has distinct advantages over open surgery, in a select group of patients, particularly relating to earlier recovery of hand strength and return to work."	Long incision likely used in 1994.

MacDermid 2003 (score=6.0)	Carpal	RCT	Sponsored by	N = 123	Mean age	Open carpal	Follow-up	McGill Pain	"No substantive	The data
	Tunnel	I NC1	physicians of	N = 123 with CTS.	47.1	tunnel	assessmen	Questionnaire	difference in	indicate less
	Release		Ontario through	with C15.	years; 39	syndrome (n =	ts at 1, 6	scores favored	benefit was	pain and better
	Surgery		Physicians		males, 84	32) vs. 2-	and 12	endoscopic	shown for these	grip strength at
	Surgery		Services		females	portal	weeks.	release, e.g.,	2 methods of	1 to 6 weeks in
			Incorporated		Temales	endoscopic	weeks.	Week 1: 13 vs. 28	carpal tunnel	the
			Foundation. No			release (n =		and Week 6:12 vs.	release."	endoscopically
			COI.			91). Incision			release.	
			COI.			sizes not		22, both (p		treated group
								<0.05). Symptom		
						specified.		Severity Scale		
								scores not		
								significantly		
								different. Grip		
								strengths at 1 and		
								6 weeks favored		
								endoscopic		
								release (e.g., week		
								1, 11 vs. 15kg, (p		
	0 1	DOT	N. C.	NI 477 141	N	0 1	F 11	<0.05)).	47 D 1 4 1	Baseline mean
Sennwald 1995 (score=5.5)	Carpal	RCT	No mention of	N = 47 with	Mean age	Open carpal	Follow-up	Grip strength	"The study is	
	Tunnel		sponsorship or	CTS.	52.6	tunnel release	at 4, 8 and	recovery	strongly in	grip strength
	Release		COI.		years; 10	(n = 22) vs. 1-	12 weeks.	significant at 4	favour of	approximately
	Surgery				males, 37	portal		weeks ($p = 0.005$),	endoscopic	26 vs. 32 (p =
					females	endoscopic		8 weeks $(p = 12)$	release.	0.29). Appears
						release-		0.003) and 12	However, this	to have
						Endoscopic		weeks (p =	technique does	contributed to
						incision 2cm		0.0002) in favor of	not allow any	post-operative
						(n = 25).		endoscopic group	analysis of the	differences.
								compared to open	pathology or	
								group. Endoscopic	structure to be	
								group could use	treated."	
								operated hand		
								normally after 24		
								days vs. 42 days		
								after open		
								procedure (p		
								<0.001).		

Ejiri 2012 (score=5.5)	Carpal Tunnel Release Surgery	RCT	No mention of sponsorship or COI.	N = 79 with CTS with distal motor latency to abductor pollicis brevis muscle greater than 4.5ms.	Mean age 58.5 years; 8 males, 71 females	Endoscopic carpal tunnel release (ECTR group) (n = 40, 51 hands) vs. Open carpal tunnel release (OCTR) (n = 39, 50 hands).	Follow-up assessmen ts at week 4 and 12.	At week 12, rate of improved cases higher in OCTR group vs. ECTR group (p = 0.08), however not significant. No significant differences between groups for improvement in ADL impairment. At week 4, mean improvement in grip strength significantly higher in ECTR group vs. OCTR; -4.6 vs8.1 (p = 0.04). But not significant at 12 weeks: -1.2 vs3.6 (p = 0.27).	"These results suggest that while no difference exists between ECTR and small incision methods in terms of improved subjective symptoms, sensation, or electrophysiologi cal findings, recovery of muscle strength is superior with ECTR."	At 4 weeks, ECTR was significantly better than OCTR for muscle strength, but ECTR may increase the risk of transient nerve dysfunction which resolved at 6 months.
Larsen 2013 (score=5.5)	Carpal Tunnel Release Surgery	RCT	No sponsorship or COI.	N = 90 with CTS.	Mean age: 51 years; 26 males, 64 females	Classic incision group 7cm curved incision (n = 30) vs. short incision group: incision 3cm in mid-palm (n = 30) vs. Endoscopic group- using Linvatec system (n = 30).	Follow-up at 1, 2, 3, 6, 12, 24 weeks.	No significant difference between groups for post-op pain at any time point (p >0.05). No significant difference for disappearance of paresthesia between treatment groups (p >0.05). Tendency for earlier return of	"These results are in accordance with the findings in the literature: faster rehabilitation and earlier return to work after ECTR (Endoscopic Carpal Tunnel Release), few complications but a risk of	At 24 weeks, the endoscopic group had quicker return to work and faster rehabilitation.

								grip strength (significant at weeks 2 and 3 only (p >0.05)), as well as ROM (significant at weeks 1 and 3) in endoscopic groups vs. other two groups.	nerve branch neuropraxy with transient neurological problems."	
Dumontier 1995 (score=5.0)	Carpal Tunnel Release Surgery	RCT	No mention of sponsorship or COI.	N = 96 with idiopathic CTS.	Mean age 52.3 years; 11 males, 85 females	Open carpal tunnel release group: Open incisions 3- 4cm (n = 40) vs. 2-portal endoscopic release (n = 56).	Follow-up assessmen ts made at 2 weeks, 1, 3, 6 months.	Loss of grip strength conventional group vs. endoscopic group (mean \pm SD): 2 W- pre-op: - 15.02 \pm 10.27/- 13.84 \pm 9.50 (p = 0.67); 1 M-pre- op.: -12.80 \pm 9.84/ -6.25 \pm 6.81 (p <0.01)3 M-pre- op: -8.26 \pm 6.37/- 3.66 \pm 6.84 (p = 0.02).	"No statistically significant differences were found regarding pain, disappearing of paresthesiae or time to return to work. However, better recovery of grip strength was observed in the endoscopic group at 1 and 3 months."	Possibly 2:1 assignment, not noted. Variable follow-ups with 45.3% dropout at 3 months.
Jacobsen 1996 (score=5.0)	Carpal Tunnel Release Surgery	RCT	No mention of sponsorship or COI.	N = 29 EDS confirmed (32 hands) with idiopathic CTS.	Mean age 46 years; 8 males, 21 females	Open carpal tunnel release group (n = 16 Hands) vs, 2- portal endoscopic release (n = 16 hands). Incision sizes not specified.	Follow-up at 2 and 6 weeks and 6 months.	Sick length average 17 days (0-31) in endoscopic group vs. 19 days (0-42 days) in open group. No significant difference between groups for average sick day length (p	No differences in surgical results were found, but three patients in the endoscopic group suffered transient numbness on the radial side of the ring finger."	Higher risks in endoscopic group.

Kang 2013 (score=4.5)	Carpal Tunnel Release Surgery	RCT	No mention of sponsorship. No COI.	N = 59 with bilateral CTS. Each hand randomly assigned to different surgery.	Mean age 55 years; 4 males, 48 females	Endoscopic Group: carpal tunnel release surgery performed with Agee technique (n = 59 hands) vs. Mini-Open Group: release performed with small (1.5cm) incision. (n = 59 hands).	Follow-up at 3 months post-op.	>0.05). At final follow-up, 8 in endoscopic group returned to normal vs. 9 in open group (p >0.05). Boston Carpal Tunnel Questionnaire symptom (BCTQ- S) and function (BCTQ-F) score main outcome. No significant differences between endoscopic vs. mini-open at 3 months for BQTC-S; 1.5 vs. 1.4 (p = 0.774) or for BQTC-F; 1.5 vs. 1.7 (p = 0.832). No significant difference in mean DASH (Disabilities of the Arm, Shoulder and Hand) score (p = 0.978).	"Endoscopic and mini-incision open carpal tunnel releases seem to have comparable early subjective outcomes after carpal tunnel release has been performed in patients who had idiopathic carpal tunnel syndrome."	Sparse methodology. Comparable outcome efficacy at 3 months, but patient preference towards endoscopic procedure.
Gümüştaş, 2015 (score=4.0)	Open Release/End oscopic Release	RCT	No mention of sponsorship. No COI.	N=41 patients diagnosed with carpal tunnel syndrome	Mean age: 45.5 years; 2 males, 39 females	Endoscopic Group: received endoscopic surgery (n=21) vs Open Group: received open carpal tunnel release surgery (n=20)	6 months	Symptom severity improved from 3.35±0.65 to 1.26±0.48 for endoscopic group (p<0.001) compared to 3.51±0.54 to 1.41±0.46 in the open group	"It was shown both clinically and electrophysiologic ally that endoscopic carpal tunnel surgery was as effective as open surgery as a treatment method	Both treatment groups demonstrated statistically significant improvement; however, there were no statistically

								(p<0.001). Functional capacity improved from 3.11 ± 0.82 to 1.2 ± 0.35 in the endoscopic group (p<0.001) compared to 3.43 ± 0.63 to 1.56 ± 0.48 in the open group (p<0.001).	for carpal tunnel syndrome."	significant differences between the 2 treatment groups.
Agee 1992 (score=4.0)	Carpal Tunnel Release Surgery	RCT	Sponsored in part by the 3M Orthopedic Products Division, St. Paul, Minn. No mention of COI.	N = 122 (147 hands) with CTS.	No mention of mean age or sex.	Open carpal tunnel release- Control Group (65 hands) vs. 1-portal endoscopic release- Endoscopic incision 2cm (n = 82 hands).	Follow-up at weeks 1, 2, 3, 6, 9, 13, and 26.	(p<0.001).Median return to work 25 days vs.46.5, (p <0.01).	"Improvement in most of the variables measured translated into earlier return to work and to ADL."	Suggests endoscopic superior to open.
				Open v	s. Mini Incisi	ion				
Jugovac 2002 (score=4.5)	Carpal Tunnel Release Surgery	RCT	Sponsored by Croatian Ministry of Science and Technology grant No. 0062076 to Dr Marin F. Stanèiæ. No mention of COI.	N = 72 with NCS finding of CTS.	Mean age 53.4 years; 18 males, 54 females	Open carpal tunnel release group (n = 36) vs. mini- incision group- using an operating microscope (n = 36).	3 month follow-up.	Symptomatic relief open (31/36 complete relief) vs mini (31/36) (NS). Hand function return to daily activities in 5 days with limited incision vs. 10 days open (p = 0.001). RTW	"Limited palmar incision CTR is as effective and safe as traditional CTR technique, but with better postoperative recovery and cosmetic results."	Some baseline differences. Follow-up timing unclear.

								15 vs. 30 days (p = 0.001).		
Tarallo 2014 (score=4.5)	Carpal Tunnel Release/Mi nimal	RCT	No sponsorship or COI.	N=120 patients with carpal tunnel syndrome	Mean age: 64 years; 60 males, 60 females	Group A: received carpal tunnel decompression by traditional open release (n=60) vs Group B: received carpal tunnel release by minimal access carpal tunnel release (n=60)	Follow up at 6 and 12 months	Patients in group B showed better results than group A at both 6 and 12 months (p<0.001).	"[M]ACTR showed statistically significant improvement compared to TOCTR. The patient tolerance is reasonably high and the procedure is compatible with the current minimal invasive trend in surgery."	Data suggest minimal access CTR better than open CTR for scaring and return to work.
Aslani 2012 (score=4.0)	Carpal Tunnel Release Surgery	RCT	No mention of sponsorship. No COI.	N = 105 who qualified for carpal tunnel release surgery.	Mean age 54.2 years; 10 males, 95 females	Open surgery group (n = 36) vs. Endoscopic surgery group (n = 32) vs. Mini Palmer incision group (n = 28).	Follow-up at 2 weeks, 4 weeks and 4 months.	Endoscopic (2 wrists showed weakness at 4 months) and Mini Palmer incision (0 wrists weakness) groups showed significant improvement in weakness vs. open surgery (4 wrists showed weakness) ($p < 0.05$). No other significant differences for other variables ($p > 0.05$). 0 participants expressed pain in the open group at final follow-up	"Satisfactory results with all three surgery techniques of open, mini- incision or endoscopic and has a low chance of complications. Endoscopic treatment and mid-palmar mini incision have less pain and greater satisfaction among patients in the first weeks, however, overall results are the same and	Cross- sectional study shows early patient satisfaction with endoscopic and mini techniques, but at 4 months comparable satisfaction between all groups.

Tarallo 2014 (score=4.0)	Carpal Tunnel Release Surgery	RCT	Sponsored by National Institutes of Health (NIH), Wellcome Trust, Howard Hughes Medical Institute (HHMI) and other(s). No COI.	N= 120 with CTS with moderate-to- severe symptoms.	Mean age 64 years; 60 males, 60 females	Group A: carpal tunnel release by traditional open carpal tunnel release (TOCTR) (n = 60) vs. Group B: carpal tunnel release by minimal- access carpal tunnel release	Follow-up at 7 days, 6 and 12 months.	and 4 participants expressed pain in both endoscopic and mini-palmer groups. At final follow-up mean static 2- point discrimination score difference not significant between Group A and B; 4.3 mm vs. 4.7mm (p >0.05). At final follow- up, 2 patients (3.6%) in Group A had evidence of	satisfactory in all three groups after 4 months." "In our opinion, median nerve release is strongly advocated by MACTR as a safe, easily reproducible, low-grade learning curve, low time and a low-cost surgery and it can be	MACTR group was significantly better than TOCTR group at 6 and 12 months.
				1 vs. 2 Lim	ited Open In	tunnel release (MACTR) (n = 60)				

Zhang, 2016 (score=4.0)Carpal Tunnel Tunnel Release SurgeryRCT Tunnel Tunnel No mention of sponsorship. No COI.N=207 sponsorship. No Policitus with a confirmed diagnosis of carpal tunnel syndromeGroup A: received double to 46 years; and under3 years, 46, received double 47 monthsMean severity of symptoms was symptoms was approaches is a approaches is a different than 1.2-0.45 for group beadlight and 1.2-0.45 for group"Carpal tunnel release by means significantly different types traction of double small syndromeMean age: received double symptoms significantly significantly and underMean age: received double symptoms wasMean age: received double symptoms was symptoms was symptoms was symptoms was symptoms was approaches is a different types tractically significantly different types tractical opens incision (n=65) vs Group C: received Chow double-portal endoscopic release (n=69)Mean severity of types"Carpal tunnel release to most and less to changed from symptoms was symptoms was and less to changed from to changed from <b< th=""><th>Zyluk 2006 (score=6.5)</th><th>Carpal Tunnel Release Surgery</th><th>RCT</th><th>No mention of sponsorship or COI.</th><th>N = 79 (82 hands) EDS confirmed CTS.</th><th>Mean age 48 years; 15 males, 50 females</th><th>1 limited incision group- Single (2cm) (n = 39, 44 hands) vs. 2 limited open incisions group 1 and 2cm incisions (n = 40, 40 hands).</th><th>Follow-up at 1, 3, 6, 12 months.</th><th>Functional scores not different. Total grip strength (kg) Method 1/Method 2: Pre- op: 16.6/18.1; at 1 month: 16.1/14.9; at 3 months: 20.3/18.9; at 12 months: 24.2/24.1. No significant differences between groups for grip strength (p >0.05).</th><th>"We found that the single incision method offers better results in respect of grip and pinch strengths: less weakness at 1 month after surgery and a faster improvement relative to pre- operative values which is statistically significant."</th><th>Minor advantage to one small incision.</th></b<>	Zyluk 2006 (score=6.5)	Carpal Tunnel Release Surgery	RCT	No mention of sponsorship or COI.	N = 79 (82 hands) EDS confirmed CTS.	Mean age 48 years; 15 males, 50 females	1 limited incision group- Single (2cm) (n = 39, 44 hands) vs. 2 limited open incisions group 1 and 2cm incisions (n = 40, 40 hands).	Follow-up at 1, 3, 6, 12 months.	Functional scores not different. Total grip strength (kg) Method 1/Method 2: Pre- op: 16.6/18.1; at 1 month: 16.1/14.9; at 3 months: 20.3/18.9; at 12 months: 24.2/24.1. No significant differences between groups for grip strength (p >0.05).	"We found that the single incision method offers better results in respect of grip and pinch strengths: less weakness at 1 month after surgery and a faster improvement relative to pre- operative values which is statistically significant."	Minor advantage to one small incision.
	Zhang, 2016 (score=4.0)	Tunnel Release	RCT	sponsorship. No	a confirmed diagnosis of carpal tunnel	46.4 years; 70 males, 137	received double small incisions and under headlight and surgical loupes (n=73) vs Group B: received standard open incision (n=65) vs Group C: received Chow double-portal endoscopic		changed from 3.7 ± 0.58 to 1.2 ± 0.45 for group A, 3.8 ± 0.62 to 1.2 ± 0.31 for group B, and 3.7 ± 0.52 to 1.5 ± 0.36 for group C after 3 year follow up (p>0.05). Mean functional status changed from 3.2 ± 0.71 to 1.2 ± 0.38 for group A, 3.2 ± 0.71 to 1.2 ± 0.41 for group B, and 3.5 ± 0.64 to 1.5 ± 0.42 for group C after 3 year	of double small approaches is a minimally invasive and less technically challenging procedure with good nerve visualization, resulting in good	significantly different than open CTR. 2 different types of minimally are not statistically significantly different for most outcomes excepting cost

Crnkovic 2012 (score=9.0)	Epineuroto my	RCT	No mention of sponsorship. No COI.	N = 50 with CTS and verified narrowing of median nerve within tunnel.	Mean age 51.75 years; 17 males, 33 females	Epineurotomy Group: Open field surgical release followed by longitudinal epineurotomy of nerve (n = 25) vs. No epineurotomy Group- Control Group- Open- field release without an epineurotomy (n = 25).	Follow-up at 90 and 180 days.	At 90 days, mean nerve volume increase somewhat higher in epineurotomy group vs. no epineurotomy group; 10.5 mm3 vs. 7.2 mm3 ($p = 0.056$); not significant. No significant difference found at 180 day follow- up ($p = 0.452$). Both groups significantly increased in nerve volume size compared to	"In conclusion, in line with other reports, the results suggest that even in selected patients longitudinal epineurotomy of the median nerve does not confer any relevant electrophysiologi cal or clinical benefit (nor harm), as compared to a simple dissection of the carpal ligament."	Failure to provide superiority for epineurotomy after carpal tunnel release, but some pain relief in the control group compared to study group.
Leinberry 1997 (score=7.0)	Epineuroto my	RCT	No sponsorship or COI.	N = 44 with EDS confirmed (50 hands) with CTS.	Mean age 64.8 years; 18 males, 26 females	Group 1: Release of transverse carpal ligament. No epineurotomy (n = 22, 25 hands) vs. Group 2: carpal tunnel release and adjuvant epineurotomy of median nerve (n = 22, 25 hands).	Follow-up 1 and 6 weeks; 6 and 12 months.	baseline (p<0.001). At 12-months, 60% of non- epineurotomy group vs. 56% of epineurotomy group asymptomatic (p >0.05). Two-point discrimination, grip strength and sensory nerve latencies all not significantly different.	"This suggests that epineurotomy of the median nerve offers no benefit compared with sectioning of the transverse carpal ligament alone."	Patient blinding unclear, but seems probable.

Blair 1996 (score=6.0) Foulkes 1994 (score=4.0)	Epineuroto my Epineuroto	RCT	No mention of sponsorship or COI.	N = 86 EDS confirmed (117 hands) with CTS.	Mean age 48.7 years; 13 males, 62 females Mean age:	Open release group- 4cm incision (n = 48) vs. carpal tunnel release with epineurotomy. 4cm incision (n = 27).	Follow-up for minimum of 24 months.	Synovial hypertrophy graded as marked or moderate in 18.8% of epineurotomy group vs. 33.3% of non-epineurotomy group. Non- significant trends in favor of epineurotomy present for pain (epineurotomy: 87.5% pre-op pain decreased to 12.5% 2 years post-op vs. no epineurotomy: 92.6% decreased to 29.6%). Nerve conduction velocities increased in both groups and did not differ between (pre/post- op): epineurotomy 31.1/43.8ms vs. 30.0/40.4 (p = 0.32). Patients happy/very happy with results in 73% epineurotomy vs. 70%. Results for	"The study data do not support the use of Epineurotomy as an adjunctive procedure during carpal tunnel release."	The trial is described as a comparative trial, but appears to involve a randomization procedure based on hospital chart number. Demographic variables were balanced between the two groups; however, the group sizes were not.
1 JUIKES 1774 (SCOIL-4.0)	my		or COI.	hands) with CTS who had not had previous	45.4 years; 16 males, 17 females	Group (n = 23, 26 hands) vs. Non- Epineurotomy Group- Non-	6, 12 months post-op.	sensibility not significant between groups at 6 months (p = 0.64) and 12	an adjunctive epineurotomy, although safe, offers no clinical benefit in the	methodologica l details. Operating surgeons cannot be

				surgery on same side.		treatment group (n = 10, 10 hands)		months ($p = 0.99$). No significant difference in grip strength between groups at 6 months ($p = 0.79$) or 12 months ($p =$ 0.28).	surgical treatment of carpal tunnel syndrome in our series of patients."	blinded. Epineurotomy not superior in carpal tunnel surgery.
				Ν	leurolysis					
Lowry 1988 (score=8.0)	Neurolysis	RCT	No mention of sponsorship or COI.	N = 50 hands EDS confirmed with CTS.	No mention of mean age or sex.	Standard ligament release Surgery alone group (n = 25) vs standard ligament release surgery with adjunctive interfascicular neurolysis (n = 25).	3 month follow-up after surgery.	Excellent or good results in 66.7% of neurolysis vs. 65.2% without. No electrodiagnostic parameters significantly different between 2 groups (e.g., distal sensory latencies baseline/3 months' post-op): neurolysis $(5.5\pm0.3/4.5\pm0.5)$ vs. no neurolysis $(5.8\pm0.6/$ $4.5\pm0.7)$. No significant differences were found between groups at follow- up. (p>0.05).	"The results of this study indicate that standard surgical release of the transverse carpal ligament is frequently warranted and usually beneficial in patients with severe carpal tunnel syndrome."	No benefit shown for severe CTS.
Mackinnon 1991 (score=8.0)	Neurolysis	RCT	No sponsorship. No mention of COI.	N = 79 with CTS.	Mean age 58.5 years; 11 males, 48 females	Open carpal tunnel release group with internal neurolysis (n =	Follow-up for 6 months.	Relief of symptoms 88% in release only group vs. 81% of neurolysis group.	"While the technique of internal neurolysis has been proven to be	No benefit

						29, 31 hands) vs. open carpal tunnel release without internal neurolysis (n = 30, 32 hands)		Among those with abnormal pre-op 2-point discrimination, 62% recovered normal sensation in open release group vs. 55% of neurolysis group. Grip strengths increase from 15- 19kg in open release only group vs. from 14 to 17kg in neurolysis group.	safe and is essential in the surgical evaluation of in continuity and in peripheral nerve reconstruction using interfascicular nerve grafting, it would appear from this study that it does not confer improved sensory or motor outcome in patients with primary CTS.	
Shum 2002 (score=4.5)	Carpal tunnel Release Surgery/Fle xor Tenosynov ectomy	RCT	No sponsorship or COI.	N = 87 EDS confirmed (88 wrists) with idiopathic CTS.	enosynovecto Mean age 58 years; 15 males, 72 females	Open carpal tunnel release with flexor tenosynovecto my (n = 44 wrists) vs. Open carpal tunnel release without flexor tenosyno- vectomy (n = 44 wrists).	Follow-up for 12 months.	Both groups' symptom severity scores improved after surgery (tenosynovectomy 3.0 ± 0.88 to 1.6 ± 0.68 vs. from 2.9 ± 0.64 to 1.6 ± 0.7 , (p ≤ 0.0002)). No correlations between pre- or post-operative symptoms severity scores and the intraoperative tenosynovial	"We observed neither an added benefit nor an increased rate of morbidity in association with the performance of a flexor tenosynovectomy at the time of carpal tunnel release. We identified no clinical correlations that might predict which individuals would benefit	No benefit. No relationship found with tenosynovial ratings of appearance.

				Superfici	al Nerve Spa	ring		or subsequent pathological analyses (r = 0.004 to 0.032).	tenosynovectomy on the basis of either the gross (intraoperative) or histological evaluation of the flexor tenosynovium."	
Siegmeth 2006 (score=6.5)	Decompres sion/Superf icial Nerve Sparing	RCT	No mention of sponsorship. No COI.	N = 42 (84 hands) with bilateral idiopathic CTS.	No mention of mean age or sex.	Open carpal tunnel release with superficial nerve sparing (n = 42, 42 hands) vs. open carpal tunnel release without superficial nerve sparing (n = 42, 42 hands).	Follow-up at 6 weeks, 3 and 6 months after surgery.	No differences in pain scores at any follow-up interval (graphic presentations of data, 6 weeks; (p = 0.73), 3 months; (p = 0.59), and 6 months; (p = 0.13)). No differences found between groups in PEM scores at 6 weeks (p = 0.93), 3 months (p = 0.43), and 6 months (p = 0.38).	"Scar pain scores in this series of open carpal tunnel decompressions were similar, whether or not an attempt was made to identify and preserve superficial nerve branches crossing the wound."	Small sample size. Comparable efficacy but the standard carpal tunnel decompression technique took less time to perform.
			Incisi	onal and Othe	r Intraoperat	ive Techniques				
Forward 2006 (score=8.5)	Carpal Tunnel Decompres sion	RCT	No sponsorship or COI.	N = 118 with CTS.	Mean age: 57 years; 34 males, 84 females	Preservation of parietal layer of ulnar bursa beneath flexor retinaculum during open release (n = 57) vs. Bursal division (n = 61).	Final follow-up at 8-9 weeks.	Grip strengths at follow-up 79% of pre-op values in those with ulnar bursal preservation vs. 82% among other group (p >0.05). One surgeon operated without	"In this group of patients, preservation of the ulnar bursa around the median nerve during open carpal tunnel release produced no significant	Suggests no benefits of preserving the ulnar bursa.

								tourniquet and data indicated those patients had higher grip and thumb key pinch strengths as well as among men and younger patients.	difference in grip strength or self- rated symptoms."	
Dias 2004 (score=8.5)	Carpal Tunnel Decompres sion	RCT	No mention of sponsorship or COI.	N = 26 EDS confirmed (52 hands) with bilateral CTS.	Mean age 56 years; 7 males, 19 females	Lengthening of retinaculum (n = 26 hands) performed on one hand vs. simple division of flexor retinaculum standard release (n = 26 hands) performed on other hand.	Follow-up at 2, 6, 12, and 25 weeks.	Levine symptom scores (baseline/Weeks 2/6/12/25): open 3.1/ 1.3/1.4/1.2/1.3 vs. lengthen 2.8/1.4/1.3/ 1.2/1.3 (p = 0.63). Function scores were negative (p = 0.66). Grip strengths not different (p = 0.79).	"The study has failed to demonstrate any measurable benefit for this technique. Simple division of the retinaculum is adequate."	No advantage to lengthening retinaculum.
Bolster 2013 (score=6.0)	Open Carpal Tunnel Release/Su tures	RCT	No mention of sponsorship. No COI.	N=89 hands in 88 patients with idiopathic carpal tunnel syndrome	Mean age: 55 years; 28 males, 60 females	Single Stitches: received a single stich (n=34) vs Donati Stitches: received vertical mattress stitches (n=37)	Follow up at 8 weeks	Scar formation was nice in 94% for singles stitches compared to 97% in Donati stitches. Donati stitches showed 2-fold higher VAS score for pain (p=0.01) and DASH score (p=0.06) compared to single stitches. VAS score for pain was lower in	"In conclusion, both Donati and single stitches are related to excellent scar formation. The Donati sutures are related to more prolonged postoperative pain."	Single stitches group had more improvement in pain. Scar rating was not significantly different.

								both groups at follow up (p<0.01 for both).		
Menovsky 2004 (score=5.0)	Nylon/Poly glactin/Stai nless Steel Sutures	RCT	No mention of sponsorship or COI.	N = 61 EDS confirmed with CTS.	Mean age 50.4 years; 14 males, 47 females	Nylon sutures in open release (n = 17) vs. Polyglactin 910 sutures (n = 25) vs. 4-0 stainless steel 4-0 sutures (n = 19).	Follow-up at 10 days and 6 weeks.	Mean pain scores at 10 days (nylon, polyglactin and stainless steel): 1.7 (+/-2.2), 3.1 (+/-2.3) and $1.9 (+/-2.3)$. At 6 weeks, pain scores were $3.6 (+/-3.1)$, 3.4 (+/-2.6) and 2.7 (+/-2.1). Infection rates were 0%, 8% and 0%. Suture granulomas more likely in polyglactin group (p <0.05). No differences in redness or wound hypertrophy.	"Nylon and stainless steel sutures are both suitable for skin closure after carpal tunnel surgery. Based on this study, absorbable vicryl sutures should not be used, since the incidence of infections and the presence of suture granulomas was much higher than in the nylon and steel suture groups."	Suggests nylon or steel sutures preferable to polyglactin.
Citron 1997 (score=4.0)	Carpal Tunnel Decompres sion	RCT	No mention of sponsorship or COI.	N = 47 with CTS.	Mean age 52.1 years; 9 males, 38 females	Standard incision parallel to thenar crease (n = 26) vs. Ulnar L- shaped incision $(n = 21)$.	Follow-up at 6 weeks, 3, 6, 9 and 12 months	No differences in grip strength, pillar tenderness or scar sensitivity (p >0.05).	"No difference was found in pillar pain between the two incisions, but one had a lower incidence of scar sensitivity."	No benefits.
Macaire 2008 (score=4.0)	Ultrasound /NSG Wrist Blocks	RCT	No mention of sponsorship or COI.	N = 60 undergoing ambulatory endoscopic carpal tunnel release.	Mean age: 47.5 years; 18 males, 41 females	Ultrasound Group-Nerve blocks guided using ultrasound (n = 30) vs. Nerve	Follow-up immediate ly after surgery.	Time to perform nerve block primary outcome. Ultrasound group took significantly less time (s) than	"The present study demonstrates that ultrasound- guided nerve blocks reduce the	Similar efficacy, but procedure times shorter in ultrasound

				Open Rel	ease vs. Knife	Stimulation- Nerve blocks using sensory- motor stimulation. (n = 30).		nerve stimulation to perform median nerve block; 55 s vs. 100 s (p = 0.002) and time (s) to perform ulnar block; 58 s vs. 80 s (p = 0.02). Mean VAS pain score not significant between groups for venipuncture (p = 0.26) and block puncture (p = 0.72).	performance time while the total time until readiness for surgery remains unaltered compared with nerve stimulation."	guided wrist blocks.
Bhattacharya 2004 (score=6.5)	Open Release/Kn ifelight	Crossove r Trial	No mention of sponsorship or COI.	N = 26 with bilateral CTS.	Mean age: 48 years; 9 males, 23 females	2.5cm open incision (n = 26, 26 hands) vs. 1-1.5cm Knifelight incision (n = 26, 26 hands).	Follow-up at 2 and 6 weeks.	Knifelight vs. Open release (Median): return to work (in weeks): 2.0 vs. 2.0 ($p = 0.80$); grip strength recovery (%): 89 vs. 84 ($p = 0.25$); scar tenderness: 1 vs. 10 ($p = 0.01$)	"There was little difference between the two techniques with regard to time taken to return to work, return of grip strength, symptom relief, complications, incidence of pillar pain and patient preference. However, the incidence of scar tenderness was significantly lower with the Knifelight technique."	No significant differences, other than less tenderness associated with Knifelight.

Helm 2003 (score=6.5)	Open Release/Kn ifelight	RCT	No mention of sponsorship of COI.	N = 82 with CTS.	Mean age: 53 years; 32 males, 50 females	Open release vs. Knifelight. Incision sizes not specified	Follow up at 2 and 6 weeks	Post-op CTS symptoms and grip strengths not different between groups. Mild or moderate scar tenderness Knifelight (89.7%) vs. open (48.8%) (p <0.001). Return to work Knifelight vs. open CTR: 20 vs. 28 days, (p <0.001).	"We found no difference in discomfort reported during surgery, in the operative time, in the grip strength measured at 2 and 6 weeks post-operatively or in the proportion of patients cured of their pre- operative symptoms. Knifelight group had a statistically significant improvement in the time to return to work and in	Faster return to work and less scar tenderness with Knifelight.
Lorgelly 2005 (score=4.0)	Open Release/Mi nimally invasive decompres sion	RCT	No mention of sponsorship or COI.	N = 185 with CTS.	No mention of mean age or sex.	Knifelight (2cm incision) (n = 92) vs. Limited open (3-4cm) (n = 89).	Mean 30 month follow-up.	First section Boston CTS questionnaire (baseline/19/30 months): Knifelight (3.84/1.46/1.28) vs. open (3.66/2.04/1.39). (NS other than 19 month, p <0.001). RTW 16.6 vs. 25.4 days (p	to work and in scar tenderness at 6 weeks post- operatively." "Minimally invasive carpal tunnel decompression appears to be more effective but more costly."	Some details sparse. No workers' compensation patients.

Chandra 2013 (score=5.0)	Early/Delay ed Surgery	RCT	No sponsorship or COI.	N = 100 affected by CTS.	Delayed Sur Mean age: 45.6 years; 17 males, 83 females	Early surgery group (<1 week after diagnosis) (n = 51) vs. delayed surgery group (>6 months after diagnosis) (n = 49). Delayed determined by wait-listing.	Follow-up after at least 6 months (range, 6- 13.2 months; mean, 7.2 months).	<0.001). Recurrent disease in Knifelight 1% vs. 5% (p <0.01). Both groups improved in pre- op clinical score (p <0.0001). Mean post-op clinical score lower in early surgery group vs. late surgery group at final follow-up; 8.11 vs. 18.19 (p <0.001). Early group had 100% return to normal activity compared to the late group with 89% (43) with partial return of activity and 11% (6) with normal return to activity (p<0.001).	"On the basis of this study, we propose early surgical (1 week) intervention in patients with moderately severe (grade 3– 4) CTS."	Early surgical intervention group superior to late surgical intervention group. Study only involved moderately severe CTS. Susceptible to wait-listed control bias. Non-operative management was NSAIDs, pregabalin "with or without splint" and PT, thus did not appear to follow highest quality evidence for treatment.
				-	elease vs Oth					
Kanchanathepsak 2017 (score=6.0)	Open Release/Hy pothenar Fat Pad	RCT	No mention of sponsorship. No COI.	N=41 patients with primary carpal tunnel syndrome	Mean age: 51.9 years; 2 males, 34 females	COR Group: received open carpal tunnel release(n=20) vs HTFPF Group: received	Follow up at 6 and 12 weeks	NCS showed improved DSL in HTFPF group at follow up compared to COR group (p<0.05). VAS score was	"There is no advantage outcome in primary CTS for having additional HTFPF procedure in	No statistically significant differences between groups for any outcome.

Cho 2016 (score=5.5)	Open Release/Sh ort Wrist Traverse Technique	RCT	No sponsorship or COI.	N=84 patients with idiopathic carpal tunnel syndrome	Mean age: 54.0 years; 6 males, 73 females	hypothenar fat pad flap procedure (n=21) Group A: received limited open technique (n=40) vs Group B: (n=49) received short wrist transverse open technique group	Follow up at 6 weeks, 3 and 6 months	decreased in both groups (p>0.05). Improvement in BWCTQ symptom severity scale and Functional status scale were observed for both groups (p=0.023, p=0.031, respectively). Scar discomfort resolved at 4.4 months in group A compared to 4.1 months in group B (p=0.465).	CTR. COR is still the standard treatment. Nevertheless, improvement of DSL and S-amp could be observed at 6 wk postoperatively." "In conclusion, this study shows no difference in outcome between a standard open CTR and a CTR with a short transverse incision."	Excluded B bilateral wrists but no definition of which were excluded. No significant differences between treatment groups for any outcome.
				Mini-Incision	vs Endoscopic	: Release				
Oh 2017 (score=4.5)	Mini- incision/En doscopic Release	RCT	No sponsorship or COI.	N=67 patients with carpal tunnel syndrome	Mean age: 52.4 years; 10 males, 57 females	Mini-incision (n=32) vs Endoscopic Release: (n=35)	Follow up at 24 weeks	Mean BCTQ-S scores improved from 3.2 ± 0.9 to 1.3 ± 0.3 in mini- incision group compared to 3.1 ± 0.8 to 1.2 ± 0.2 in the endoscopic release group. Mean BCTQ-F scores and mean DASH scores	"Both mini- incision and endoscopic carpal tunnel release significantly reversed the pathological changes in the median nerve morphology of patients with	No meaningful differences between groups.

								similarly for both groups. Mean CSA-I was decreased in mini- incision group $(13.2\pm4.6mm^2 to$ $9.9\pm2.5 mm^2)$ in contrast to mean CSA-M (8.4 ± 3.2 to 11.4 ± 2.6) and CSA-O (7.0 ± 2.3 to 10.8 ± 2.4) scores that increased (p<0.001). The endoscopic release group mean CSA-I decreased form 13.0 ± 6.0 to 10.1 ± 2.4 mm ² (p<.001). Mean CSA-M and CSA-O O were increased	CTS, with no significant differences between techniques."	
								O were increased (p<0.001) for the endoscopic release group.		
		L	l	Non-Inv	vasive Therap	pies	L			
Meems, 2017 (score=4.0)	Mechanical Wrist Traction	RCT	Sponsored by PAREL INVEST. No COI.	N=181 adult patients with EDX confirmed carpal tunnel syndrome	Mean age: 58.1 years; 60 males, 121 females	Intervention: received 12 treatment sessions (2 times per week for 6 weeks) of Phystrac mechanical traction device (used weights of 5 kg for session	3, 6 months	Patients receiving intervention showed longer time to surgery compared to care-as-usual group (90 days vs 41 days, respectively). More patients needed surgery in the care- as-usual group compared to	"Mechanical traction is associated with fewer surgical interventions compared to care as usual in CTS patients. Reductions in patient-reported symptoms at 6	Uusual care bias. Quality of, and tracking of usual care unknown renders results uninterpretable. Statistically fewer surgeries among traction group but no difference in

		1 and increased	intervention (43%	months' follow-up	symptom scores
		1 kg per session)	vs 28%; HR=2.27,	was similar in both	between the 2
		(n=94) vs Care	95% CI 1.35-3.80).	groups. The long-	groups.
		as Usual:	Symptom duration	term effects of	
		received regular	was longer in care-	mechanical	
		treatment from	as-usual group	traction require	
		health care	compared to	further	
		provider	intervention	evaluation."	
		(splints,	(HR=1.89, 95% CI		
		injections, or	1.11-3.24).		
		CTS surgery)			
		(n=87)			

Evidence for the Use of Perioperative Antibiotics There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: perioperative antibiotics or antibiotic prophylaxis, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 3 articles in PubMed, 177 in Scopus, 0 in CINAHL, and 41 in Cochrane Library. We considered for inclusion 0 from PubMed, Scopus, CINAHL, and 0 from other sources. Zero articles met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: perioperative antibiotics or antibiotic prophylaxis, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies; Carpal Tunnel Syndrome to find 3 articles. Zero articles met the inclusion criteria.

Evidence for Use of Anesthesia during Carpal Tunnel Release

There is 1 high-(973) and 8 moderate-quality RCTs(974-981) incorporated into this analysis. There are 7 low-quality RCTs in Appendix 2.(982-988)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: anesthesia, local, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomize

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: anesthesia, local, carpal tunnel syndrome, median neuropathy, CTS, carpal tunnel, median nerve, compression, entrapment, neuropathy, nerve disease, syndrome, median nerve, median neuropathy, burning, itching, numbness, tingling, hand, palm, finger, wrist, pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 3 articles. Of the 3 articles we considered for inclusion 0. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
Peng 2002 (score=9.5)	CTS/ Surgery/ Anesthesia	RCT	No mention of sponsorship or COI.	N = 40 patients undergoing hand surgery. Mean age for Lidocaine and Ropivacaine group: 43±19 and 42±13.	Mean age: 42.5 years; 24 females, 16 males	Group 1: Ropivacaine 0.375% injected over a period of 1 minute (n = 20) vs. Group 2: Lidocaine 0.5% forearm regional anesthesia (n = 20).	Follow-up for 15 minutes and at 24 hours post- op.	Onset of anesthesia 6.5±2.9 minutes for lidocaine vs. 8.0±4.1 minutes for ropivacaine. Pain ratings lower among ropivacaine group throughout first 90 minutes	"0.375% ropivacaine provides effective anesthesia and superior postoperative analgesia compared with 0.5% lidocaine when forearm IVRA is used."	Study demonstrates ropivacaine provides superior anesthetic effect to lidocaine in IV regional anesthesia for hand surgery.
Bigat 2006 (score=7.5)	CTS/ Surgery/ Anesthesia	RCT	Sponsored by Akdeniz University Scientific Research Project Unit, Antalya / Turkey. No mention of COI.	N = 75 patients undergoing elective carpal tunnel release surgery	Mean age 41.5 years: 28 females, 22 males	Group L: received 3mg/kg lidocaine (n = 25) vs Group LD: received 3mg/kg lidocaine plus 8mg dexamethasone (n = 25) vs. Group LDc: received 3mg/kg lidocaine for IVRA and 8 mg dexamethasone IV (n = 25).	Follow-up at 5, 10, 15, 30, 60, and 120 minutes	Duration of motor blockade 13 minutes LD group vs. 8 IVRA and 6 LDC, p = 0.04. LD requested less analgesics post- operatively (36% vs. 72% and 60%), p = 0.033. Mean analgesics consumed: IVRA 520 ± 390 vs. LD 200 ± 285 vs. LDC 420 ± 445 mg (p = 0.016 between LD and IVRA).	"The addition of 8mg dexamethasone to lidocaine for IVRA in patients undergoing hand surgery improves postoperative analgesia during the first postoperative day."	Baseline differences; blinding details sparse.
Alayurt 2004 (score=7.0)	CTS/ Surgery/ Anesthesia	RCT	No mention of sponsorship or COI.	N = 60 patients scheduled for surgery of hand or forearm	Mean age: 31.75 years; gender not specified	Group L: 35ml 0.5% lignocaine with 5ml saline (n = 15) vs. Group LS: sufentanil 25µg (n = 15)	Follow-up for 24 hours.	No difference between groups in intra-operative hemodynamic data, time to recovery of sensory block, onset and recovery of motor block, sedation scores or	"Addition of sufentanil, tramadol, or clonidine to lignocaine shortened the onset of the sensory block, delayed the onset time of the	Blinding details sparse.

Bigat 2005 (score=7.0) Bernard 1997	CTS/ Surgery/ Anesthesia	RCT	Sponsored by the Akdeniz University Scientific Research Project Unit, Antalya/Turkey. No COI.	N = 50 undergoing elective hand surgery for CTS	Mean age: 45.7 years; 22 Males, 28 Females Mean age:	vs. Group LT: tramadol 100mg (n = 15) vs. Group LC: clonidine 1µg.kg-1 (n = 15). Group R: received 1% ropivacaine (n = 25) vs. Group L: received 2% lidocaine intravenous regional anesthesia (n = 25).	Follow-up for 24 hours after the surgery	postoperative pain. Group with saline had a longer delay of sensory block ($p<0.001$). Pain scores elevated from 30-120 minutes lidocaine vs. ropivacaine group (graphic data, p < 0.05). Time to first analgesics lidocaine 226.4±237.1 for ropivacaine vs. 91.7±214.2 minutes ($p < 0.05$). (Data appear reversed between groups for that outcome). Mean paracetamol consumption 550±390 vs. 175±335mg, p <0.05. Most lidocaine patients (60%) used analgesics vs. 20% ropivacaine.	tourniquet pain and reduced the intraoperative consumption of opioid, but did not affect postoperative pain." "[R]opivacaine 1 mg/kg provided effective anaesthesia and long-lasting postoperative analgesia compared with lidocaine."	Randomization, allocation details sparse. No assessor blinding.
(score=7.0)	Surgery/ Anesthesia	KUI	No mention of sponsorship or COI.	N = 56 patients with CTS undergoing a release procedure	Mean age: 51 years; gender not specified	Group 1: $30\mu g$ clonidine in 400mg lidocaine group (n = 14) vs. Group 2: $90\mu g$ clonidine in 400mg lidocaine group (n = 14)	Follow-up at baseline, 20, 40, 60, 80, 140, 200 and 260 minutes post release.	sensory blockage significantly more prominent at all assessments vs. saline group (p <0.01). At 20 and 30 minutes, all clonidine-dose groups significantly higher sedation rates vs. saline control	[A] small dose of clonidine enhances the quality of the peripheral blocks from local anesthetics (lidocaine) and limits the α_{2} - agonist side effects to the sedation. The best dose to	sparse.

Lawrence 2002 (score=7.0)	CTS/ Surgery/ Anesthesia	RCT	Sponsored by the Wishbone Trust. No mention of COI.	N = 56 patients undergoing carpal tunnel decompressio n.	Mean age: 53.6 years; 22 males, 34 females	vs. Group 3: 300µg clonidine in 400mg lidocaine (n = 14) vs. Group 4: saline control group in 400mg lidocaine (n = 14) Group 1: Eutectic mixture off local aesthetics (EMLA) 5ml (n = 29) at least 1 hour before surgery. vs. Group 2: placebo 5ml (n = 27) at least 1 hour before surgery. vs. Group 2: placebo 5ml (n = 27) at least 1 hour before surgery. All then received 8ml 0.5% bupivacaine infiltrated over 60 second period	Follow-up post-op.	group, (p <0.01). Those in 30µg and 300µg clonidine groups exhibited significantly higher sedation rates at 20, 40, 140 minute assessments vs. those who received saline: 20 (p <0.05), 40 (p <0.01), 140 (p <0.05). At 40 minute assessment, 300µg group had higher sedation rate vs. 90µg group (p <0.05). Lower pain scores with EMLA group, 23±10, vs placebo, 35±16 for both needle insertion (p = 0.0012) and anesthetic injection, EMLA 29±14 vs. placebo 46±19 (p = 0.0005).	use clinically is between 30 µg and 90 µg."	Baseline details sparse.
Reuben 1996 (score=7.0)	CTS/ Surgery/ Anesthesia	RCT	No mention of sponsorship or COI.	N = 60 patients undergoing either elective carpal tunnel	Age and gender not specified.	Group 1 (control): no adjuvant (n = 20) vs.	Follow-up 24 hours post-op.	VAS scores lower in 2 groups who received ketorolac (p <0.05). Mean time from	"Ketorolac provides similar post-operative analgesia after ambulatory hand	Author with multiple fabricated and retracted research papers. Randomization, blinding, allocation details sparse.

Patil 2006 (score=5.5) Nabhan 2011 (score=5.0)	CTS/ Surgery/ Anesthesia CTS/ Surgery/	RCT	No sponsorship or COI.	release or tenolysis performed by the same surgeon. N = 20 patients with bilateral carpal tunnel syndrome N = 44 with CTS	Mean age: 54 years; 3 males, 17 females Mean age: 55 ±14	Group 2: 60mg ketorolac with IVRA n = 20) vs. Group 3: 60mg ketorolac infiltration to surgical site (n = 20). All groups: Given 40mL 0.5% lidocaine IV regional anesthesia and 1% lidocaine infiltration Group 1: (Modified Gale) 6mL 2% lignocaine site infiltration (n = 9) vs. Group 2: (modified Altissimi and Mancini) 3.5mL 2% lignocaine infiltrated in incision line and 2.5mL 2% lignocaine infiltrated intio carpal tunnel (n = 11). Group 1: received 20ml of	Follow-up 24 hours after surgery. Follow-up at baseline,	tourniquet release to first medication 109+/-73 minutes for Group 1, 467+/- 431 for Group 2, and 393+/-312 for Group 3 (p <0.05). Numbers of tablets taken: 4.1+/-1.3 Group 1; 1.8+/-1.2 Group 2; and 2.0+/- 1.3 Group 3 (p <0.05). Six patients experienced intra- operative pain with the Gale technique, versus none with the Altissimi and Mancini technique (p = 0.02). Both groups showed significant	surgery when administered with lidocaine either by IVRA or by wound infiltration." "The postoperative pain was not significantly different between the two groups, although the patients anaesthetised by the Altissimi and Mancini technique required significantly lower numbers of analgesic tablets."	Single blinding. Compliance rate unclear. Dropout rate high. Study described as crossover trial involving two surgical procedures of different hands at different times.
(\$010-3.0)	Anesthesia		COI.	confirmed by nerve conduction testing and physical exam	years; 18 males, 26 females	pilocaine via 22 gauge needle (n = 22) vs Group 2: Received 30ml	2 weeks and 6 months post-op.	improvement at 2 weeks and 6 months after procedure for hand function, ADLs, work	application of subcutaneous LA for ECTR was more effective than IVRA.	unterent between the 2 groups

				lasting >3		of 1% prilocaine		performance, pain,	Furthermore, LA is	
				months with		via 20 gauge		and patient	less invasive and	
				no prior		cannula		satisfaction values	simpler in	
				surgery		(n = 22).		when compared to	comparison to	
								baseline. Mean	surgery under	
								tourniquet inflation	IVRA."	
								time significantly		
								higher in IVRA		
								group compared to		
								LA group: 27.5		
								(±2.3) vs. 13.0		
								(± 2.8) minutes, (p =		
								0.01). Mean		
								operating room time		
								also higher in IVRA		
								group vs. LA group:		
								45 (±3.9) vs. 28		
								(± 3.5) minutes, (p =		
								0.01).		
Lee 2013	Local	RCT	Sponsored by	N = 25	Mean age:	Buffer Group:	No mention	Mean VAS score	"In open carpal	Blinding questionable, only bilateral
(score=4.5)	Anesthesia		Seoul National	patients with	57±10	received 1%	of follow-	for buffered group	tunnel surgery, the	CTS patients used. Data suggest
			University	bilateral	years; 2	lidocaine	up.	was 4.6±1.5	use of buffered	buffered lidocaine superior.
			Hospital research	carpal tunnel	males, 23	buffered with		compared to the	lidocaine for local	
			fund. No COI.	syndrome	females	8.4% sodium		non-buffered group	anesthesia reduces	
						bicarbonate		6.5±1.5 (p<.001).	the anesthetic pain	
						(1mEq/mL)		Mean VAS score	effectively."	
						solution (1 mL		after adjusted for		
						bicarbonate to 9		individual pain was		
						mL 1%		4.6 ± 1.5 for the		
						lidocaine) vs		buffered group		
						Non-buffered		compared to 6.6±1.7		
						Group: received		for the non-buffered		
						1mL 0.9%		group (p<.001).		
						sodium chloride				
						to 9 mL 1%				
						lidocaine non-				
						buffered. All				
						patients received				
						both injections				
	1	1	1					1		
						in random hands.				

Evidence for the Use of Initial Care

There are no quality studies incorporated into this analysis.

Rest

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Rest; relative rest / Triangular fibrocartilage complex (TFCC) tears ;controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed zero articles in PubMed, zero in Scopus, zero in CINAHL, and 1 in Cochrane Library. We considered for inclusion zero from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library and zero from other sources. Of the zero articles considered for inclusion, zero randomized trials and zero systematic studies met the inclusion criteria.

Splinting

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Splinting or Immobilization; Triangular fibrocartilage complex (TFCC) tears; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 6 articles in PubMed, 16 in Scopus, 1 in CINAHL, and 52 in Cochrane Library. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 1 from Cochrane Library and 2 from other sources. Of the 4 articles considered for inclusion, 0 randomized trials and 2 systematic studies met the inclusion criteria.

Ice

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Ice; Triangular fibrocartilage complex (TFCC) tears; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 0 articles in PubMed, 0 in Scopus,0 in CINAHL, 0 in Cochrane Library and 0 in other sources. Zero articles met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Heat, Self-application of heat; Triangular fibrocartilage complex (TFCC) tears controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized,

Evidence for the Use of Exercise

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Exercise; triangular fibrocartilage, TFCC, triangular fibrocartilage injuries, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed zero articles in PubMed, zero in Scopus, zero in CINAHL, and 1 in Cochrane Library. We considered for inclusion zero from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library and zero from other sources. Of the zero articles considered for inclusion, zero randomized trials and zero systematic studies met the inclusion criteria.

Evidence for the Use of Surgery

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Open surgical repair, triangular fibrocartilage, TFCC, triangular fibrocartilage complex, tears, injuries, lesions, tear, injury, triangular fibrocartilage injuries, controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 7 articles in PubMed, 29 in Scopus, 0 in CINAHL, and 0 in Cochrane Library. We considered for inclusion 3 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Zero articles met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: arthroscopic, subchondral, arthroscopy, arthroscopic, arthroscopy, open surgery repair, ulna shortening or wafer procedures, triangular fibrocartilage, TFCC, triangular fibrocartilage complex, tears, injuries, lesions, tear, injury, triangular fibrocartilage injuries; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 55 articles. Of the 55 articles we considered for inclusion 2. Of the 2 considered for inclusion, 0 are randomized controlled trials and 2 systematic reviews.

Evidence for the Use of MRI/CT

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: magnetic resonance imaging or MRI, CT, crush injury, upper extremity; diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, predictive value of tests, efficacy, efficiency. We found and reviewed 5 articles in PubMed, 18 in Scopus, 6 in CINAHL, 1 in Cochrane Library, and 1490 from Google Scholar. Zero articles met the inclusion criteria.

Evidence for the Use of Initial Care

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: rest, bed rest, initial elevation, initial care, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, systematic, systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion zero articles in PubMed, zero in Scopus, zero in CINAHL, 197 in Cochrane Library, 266 in Google Scholar and zero in other sources. Zero articles met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: splint, splints, nocturnal splint, splinting, upper extremity, wrist, wrist injury, crush injury, compartment syndrome, controlled trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 22 articles in PubMed, 11 in Scopus, 0 in CINAHL, 52 in Cochrane Library, and 1,929 in Google Scholar and zero in other sources. Zero articles met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: ice, self-application of ice, crush injuries, wrist injury, compartment syndrome, upper extremity, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 43 articles in PubMed, zero in Scopus, 2 in CINAHL, 4 in Cochrane Library and 5,690 in Google Scholar. We considered for inclusion 1 from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library, zero from Google Scholar and zero from other sources. Of the 5,739 articles considered for inclusion, zero randomized trials and 1 systematic studies met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: heat, self-application of heat, crush injuries, wrist injury, compartment syndrome, upper extremity, controlled clinical trial, controlled trials, randomized controlled trial

Evidence for the Use of NSAIDs/Acetaminophen

There is 1 moderate-quality RCT incorporated into this analysis.(1008) (Woo 05)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDs; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, systematic, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 3 articles in PubMed, 0 in Scopus, 0 in CINAHL, 110 in Cochrane Library, 510 in Google Scholar, and 1 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 1 from Cochrane Library, 0 Google Scholar, and 1 from other sources. Of the 2 articles considered for inclusion, 1 randomized trials and 1 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison	Results	Conclusion	Comments
Study Type	(0-11)		Group			
Woo 2005	5.5	N = 300 (No mention of	Paracetamol and placebo group	In stage 1 in the emergency department, analog pain scores and rest and with activity was >13 mm in all groups for the first	"Analgesic benefit of oral paracetamol–nonsteroidal	Baseline comparability questionable as diagnoses and distribution of group. No placebo group.
RCT Double-blind		Gender) w/ painful isolated limb injuries.	monitored every 30 minutes for 2 hours, same dosage for 3	hour. The diclofenac-paracetamol group achieved <13mm range at 90 minutes after ingestion as well as greatest pain reduction score in 2 hours. After 90 minutes all groups pain	anti-inflammatory drug combinations over single nonsteroidal anti-inflammatory drugs or paracetamol	
No mention of sponsorship or COI.		Mean Age: Paracetamol group 35.6±12.2;	days. (N =66) Vs Diclofenac and	score was <13mm. No statistical difference between groups at any time. In stage 2, the diclofenac-paracetamol group was only group to achieve <13mm average pain reduction score within the first day. It also saw more abdominal pain than any other	treatment is small and of doubtful clinical significance."	
		Diclofenac group 38.2±13.1; Indomethacin group 34.2±11.0; Diclofenac and	placebo group monitored every 30 minutes for 2 hours, same dosage for 3 days.	group. Median patient satisfaction scores (out of 10) with the oral analgesic treatment were 3.0 (3.0 to 4.0; P=.39) and with the study in general were 3.0 (3.0 to 4.0;		
		Paracetamol group 38.3±12.7	(N =69). Vs	P=.25).		

Indomethacin and
placebo group
monitored every 30
minutes for 2 hours,
same dosage for 3
days.
(N=71)
Vs
Diclofenac and
paracetamol group
monitored every 30
minutes for 2 hours,
same dosage for 3
days.
(N=94);
Follow-up at baseline
and at 5-8 days after
initial presentation.

Evidence for the Use of Exercise

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Exercise; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, systematic, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 3 articles in PubMed, 43 in Scopus, 5 in CINAHL, 3 in Cochrane Library, 150 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Hyperbaric Oxygen for Crush Injuries or Compartment Syndrome

There is 1 moderate-quality RCT incorporated into this analysis.(1009)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Hyperbaric oxygen therapy, hyperbaric oxygenation, HBOT, crush syndrome, crush injury, compartment syndrome, compartment syndromes, upper extremity, hand, arm, forearm; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 15 articles in PubMed, 11 in Scopus, 15 in CINAHL, 5 in Cochrane Library, 1050 in Google Scholar, and 0 from other sources. We considered for inclusion 6 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 2 Google Scholar, and 0 from other sources. Of the 8 articles considered for inclusion, 1 randomized trial and 5 systematic studies met the inclusion criteria.

Author/Year Score	Sample Size	Comparison	Results	Conclusion	Comments
Study Type (0-11)		Group			

				Hyperbaric Oxygen vs. Placebo		
Bouachour	6.5	N = 36 with	HBO therapy 100%	Complete wound healing without tissue necrosis requiring	"[T]his study shows the effectiveness of	Results suggest HBO beneficial for these more severe
1996		Class II or III soft	O2 at 2.5	surgical excision in 17 HBO patients vs. 10 placebo, (p <0.01).	HBO in improving wound healing and	injuries with better healing and less repeat surgery required.
		tissue injuries.	atmospheres for 90	Tissue necrosis 1/18 HBO vs. 8/18 placebo. New surgical	reducing repetitive surgery. We believe	
RCT		Surgery in 6 hours.	minutes, twice a day	procedure = 2 (1 patient) vs. 8 (6 patients), p = 0.03 (p = 0.04).	that HBO is a useful adjunct in the	
		Mean age HBO	for 6 days (N=18)		management of severe (grade III) crush	
Sponsored by		group 45.8±16.1	vs. placebo in		injuries of the limbs in patients more	
research grants		years, placebo group	hyperbaric chamber		than 40 years old."	
from the		51.5±20.9 years.	at pressure of 1.1			
Centre			ata for 90 minutes,			
Hospitalier			twice a day for 6			
Universitaire			days (N=18).			
of Angers. No			Assessments at the			
mention of			1st, 4th, 8th, and 12th			
COI.			sessions.			

Evidence for the Use of Surgery

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Surgery, surgical procedures, operative, general surgery, crush, wrist injuries, wrist injury, compartment syndrome, compartment syndromes, upper extremity, controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 212 articles in PubMed, 250 in Scopus, 17 in CINAHL, and 0 in Cochrane Library. We considered for inclusion 5 from PubMed, 0 from Scopus, 2 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 7 articles considered for inclusion, 0 randomized trials and 1 systematic study met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: Surgery, surgical procedures, general surgery, crush, wrist injuries, wrist injury, compartment syndrome, compartment syndromes, and upper extremity; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 82 articles. Zero articles met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Emergency fasciotomy, crush injuries, crush, injury, injuries, compartment syndrome, upper extremities, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 44 in Scopus, 0 in CINAHL, and 1 in Cochrane Library. We considered for inclusion 0 from PubMed, 3 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 3 articles considered for inclusion, 0 randomized trials and 2 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: Emergency fasciotomy, crush, wrist injuries, wrist injury, compartment syndrome, compartment syndromes, and upper extremity; controlled clinical trial, controlled

trials, randomized controlled trial, randomized controlled trials, random allocation, random^{*}, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

Evidence for the Use of X-rays

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Kienböck's disease, X-ray, radiography, radiograph; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 3 articles in PubMed, 347 in Scopus, 2 in CINAHL, 12 in Cochrane Library, 140 in Google Scholar and zero in other sources. Zero articles met the inclusion criteria.

Evidence for the Use of CT

There is 1 moderate-quality study incorporated into this analysis. (Nakamura 89)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: computed tomography or CT, Kienböck's disease; diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 33 articles in PubMed, 3 in Scopus, 0 in CINAHL, 0 in Cochrane Library, and 295 from Google Scholar. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 1 article considered for inclusion 1 diagnostic study met the inclusion criteria.

Author/Year Study Type	Score	Number	Area of Spine	Diagnoses	Type of CT	X-ray used	MRI Used	More than one rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Nakamura	4.	N = 20 (3)	Wrist	Wrist problems	High	-	-	-	-	-	-	-	-	16/17 cases of fracture a three-	"Three-dimensional CT	Small sample (N=20). Data
1989	Э	female and 17 male)		due to altered bony or joint	resolution CT scanner									dimensional CT image was believe to be useful to detect the	imaging provides a great deal of information that cannot be	suggest 3-D CT provides more diagnostic information than
Diagnostic		admitted		structures.	(Somatom									fracture line. 3 had a flattened	obtained by conventional	either plain radiography or
Diagnostie		for wrist		structures.	DRH) and									lunate due to Kienbock disease.	radiographs or CT images	conventional CT.
No mention		problems; 3			accompany									13 had deformity of the hamate	even at their present stage of	
of		with			ing									body seen on plain radiography	technical development."	
sponsorship		Kienbock's			software									and CT, but the three-dimensional		
or COI.		disease, 14			(3D									CT image. Presence and location		
		with			Display;									of small fragments not detected		
		fractures or			Version B									by plain radiographs and CT, but		
		dislocations			or C)									distinctly observed in seven cases		
		of the														

carpal		by using three dimensional CT
bones		images.
Age range from 18 to 64 years.		

Evidence for the Use of MRI

There are 2 moderate-quality studies incorporated into this analysis.(1020, 1021)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Magnetic Resonance Imaging, MRI, Kienböck's disease or Kienbock disease, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 82 articles in PubMed, 68 in Scopus, 1 in CINAHL, 0 in Cochrane Library, and 523 from Google Scholar. We considered for inclusion 2 from PubMed, 0 from Scopus, CINAHL, Cochrane Library, Google Scholar, and from other sources. Of the 2 articles considered for inclusion 2 diagnostic studies met the inclusion criteria.

Author/Year Study Type	Score	Number	Area	Diagnoses	Type of MRI used	Type of CT used	T1 weighted images	T2 weighted images	угуслодгариу Х-гау	More than one rater	Surgery Performed	Clinical outcomes assessed	Long term follow- up (mean when noted)	Results	Conclusion	Comments
Hashizume 1996 Diagnostic No mention of sponsorship or COI.	4.0	10 (2 female/ 8 male)	Wrist	Kienbock's Disease	1.5 Tesla signal, both T1 and T2 weighted images.	+	+	+	+ -	-	+	+	Mean follow- up 29.	Areas of collapse easily identified in x-ray, tomography, CT and microradiographic images. MRI showed complete loss of signal intensity in T1 images of lesion of lunate.	"MRI is at present unable to distinguish bone necrosis, the histological reactive interface or surrounding hyperaemia in detail."	Small sample size. Data suggest MRI unable to distinguish bone necrosis in detail.
Imaeda 1992 Diagnostic No mention of sponsorship or COI.	4.0	26 (7 female and 19 male)	Wrist	Kienbock's Disease	1.5 tesla signal with 3-inch surface coil. Both T1 and T2 weighted images.	-	+	+		-	+	+	-	For normal wrists, bone marrow showed high signal intensity on T1 and iso intensity on T2. For wrists with Kienbock's disease, T1 weighted images had decrease in signal intensity in all cases. After osteotomy of radius, signal intensity of lunate returned to normal in both T1 & T2.	"After osteotomy of the radius, the signal intensity of the lunate returned to normal and Lichtman's stage IL cases had better results than those in stage III. M.R. imaging is ideal for evaluating the lunate in Kienbock's disease."	Small sample. Data suggest a low signal intensity of lunate on T-1 weighted images is diagnostic of Kienböck's disease and signal intensity (if high) correlate to disease severity.

Evidence for the Use of Screening

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Screening for Systemic Disorders, steroid, trauma, Kienböck's disease or Kienbock disease, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, predictive value of tests, efficacy, efficiency, diagnostic, diagnosis, sensitivity, specificity value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 13 articles in PubMed, 0 in Scopus, 0 in CINAHL, Cochrane Library, and 127 from Google Scholar. We considered for inclusion 0 from PubMed, Scopus, CINAHL, Cochrane Library, Google Scholar, and from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Initial Care

There are no quality studies incorporated into this analysis.

Ice:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Kienböck's disease or Kienbock disease; Ice; Self Application; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 0 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Heat:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Kienböck's disease or Kienbock disease; HEAT/ Self-Application of Heat; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library and 0 in other sources. Zero articles met the inclusion criteria.

Splints:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Screening for Systemic Disorders, steroid, trauma, Kienböck's disease or Kienbock disease, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, predictive value of tests, efficacy, efficiency, diagnostic, diagnostic, diagnostic, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 13 articles in PubMed, 0 in Scopus, 0 in CINAHL, Cochrane Library, and 127 from Google Scholar. We considered for inclusion 0 from PubMed, Scopus, CINAHL, Cochrane Library, Google Scholar, and from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of NSAIDs/Acetaminophen There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDS, Acetaminophen, Kienböck's disease; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomiy; systematic,

systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 11 articles in PubMed, 2 in Scopus, zero in CINAHL, 3 in Cochrane Library, 132 in Google Scholar, and zero in other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Topical Medications

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Topical Cream, Topical Ointment, lidocaine patch, topical medication, Kienböck's disease, Kienbock disease; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 1 article in PubMed, 3 in Scopus, zero in CINAHL, 72 in Cochrane Library, 14 in Google Scholar and zero in other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Exercise

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: exercise, Kienböck's disease, Kienböck disease upper extremity, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized

Evidence for the Use of Surgery

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: surgery, surgical fixation, surgical repair, kienbock's disease, Kienböck's disease, controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 127 articles in PubMed, 17 in Scopus, 9 in CINAHL, 809 in Google Scholar and 1,348 in Cochrane Library. We considered for inclusion 4 from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library, 4 in Google Scholar and zero from other sources. Of the 8 articles considered for inclusion, zero randomized trials and 8 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: surgical repairs, operative, Kienböck's disease or Kienbock disease; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomized, retrospective, and prospective studies to find 48 articles. Zero articles met the inclusion criteria.

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: X-Ray, Wrist Sprain, Wrist Sprains, diagnostic, diagnostic, diagnostic, diagnostic, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 15 articles in PubMed, 0 in Scopus, 2 in CINAHL, Cochrane Library, and 55 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 57 articles considered for inclusion 0 diagnostic studies met the inclusion criteria.

Evidence for the Use of CT Scans

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Wrist Sprain, Wrist Sprain, Computed Tomography (CT), diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 13 articles in PubMed, 0 in Scopus, 0 in CINAHL, Cochrane Library, and 432 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 445 articles considered for inclusion 0 diagnostic studies met the inclusion criteria. Zero articles met the inclusion criteria.

Evidence for the Use of MR Arthrography

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: MR Arthrography, Wrist Sprain, Wrist Sprain, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 4 articles in PubMed, 0 in Scopus, 0 in CINAHL, Cochrane Library, and 244 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 248 articles considered for inclusion 0 diagnostic studies met the inclusion criteria.

Evidence for Initial Care

There is one moderate-quality RCT that shows heat is effective in reducing pain from wrist sprains.(1046) There are no quality studies evaluating relative rest, splints, or ice for wrist sprains. However, these treatments may help with symptomatic relief. Splints are recommended particularly for patients with moderate to severe sprains. (Physicians should be aware that as early mobilization of ankle sprains results in improved clinical outcomes and those results may be applicable to the wrist.) These interventions are not invasive, have no adverse effects, and are low cost, thus they are recommended.

Rest:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Rest, wrist sprains; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed zero articles in PubMed, 477 in Scopus, zero in CINAHL, zero in Cochrane Library, 1224 in Google Scholar, and zero from other sources. We considered for inclusion zero from PubMed, zero from Scopus, zero from CINAHL, and zero from Cochrane Library, zero Google Scholar, and zero from other sources. Zero articles met the inclusion criteria.

Splints:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: splint, splinting, Wrist Sprain, Wrist Sprain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, systematic, systematic, systematic review, retrospective, and prospective studies. We found and reviewed zero articles in PubMed, 15 in Scopus, zero in CINAHL, zero in Cochrane Library, zero in Google Scholar, and zero from other sources. Zero articles met the inclusion criteria.

Ice:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ice, hypothermia, cryotherapy, ice packs, wrist sprains, wrist sprain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, ran

Heat:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Wrist sprains, heat, hot temperatures, therapeutics ; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomiy; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1290 articles in PubMed, 9 in Scopus, 1 in CINAHL, zero in Cochrane Library, and 2610 in Google Scholar. We considered for inclusion one from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library, zero from google scholar, and zero from other sources. Of the one article considered for inclusion, 1 randomized trial and zero systematic studies met the inclusion criteria.

Author/Year Sample Size **Comparison Group** Results Conclusion **Comments** Score Study Type (0-11) **Conflict** of Interest (COI) Heat vs. Other treatments vs. Placebo Michlovitz 2004 5.5 N = 69(14)Self-applied heat wrap Mean pain relief Short (3 days) treatment. Results for acetaminophen and "Continuous low-level heat therapy is a novel strategy in the treatment of males, 15 greater in heat wrap musculoskeletal disorders. In this study, increased pain relief, functional unheated wrap not reported. group at 104° F RCT females) than oral placebo gains, and grip strength along with decreased joint stiffness and symptom (40°C) for 8 hours (mean pain relief severity were observed in subjects with CTS treated with the heat wrap as with acute daily Sponsored by 1.68±0.23 vs. compared to oral placebo. Additionally, subjects with SS/T/OA also had wrist pain, (N=29)Procter & Gamble mostly from 1.15 ± 0.21 (p = improved pain relief and significant improvements in grip strength as vs. Health Sciences sprains, 0.045). Grip strength compared with placebo. These results support the benefit of continuous low-Oral placebo Institute. COI tendinosis, improved more in level heat wrap therapy in the treatment of common upper-extremity (N=30)WRMSDs." Erasala, strains, heat wrap group vs. osteoarthritis Hengehold, and 6.44± 1.34kg Weingand are . or CTS: increase vs. employees of Mean (± SD)

Evidence for Heat for Wrist Sprain There is 1 moderate-quality RCT incorporated into this analysis.(1046)

Procter & Gamble.	age 44.13 (±	500mg acetaminophen	2.48 ± 1.34 kg (p =
Michlovitz is a	10.23) years	group; 2 tablets 4x	0.021).
paid consultant for	for all	daily	
Procter & Gamble.	groups.	(N=5)	
		VS.	
		Unheated placebo	
		wrap group	
		(N=5)	
		All groups received 3 days of treatment.	
		Assessments at	
		baseline, 3, 4 and 5	
		days.	

Evidence for the Use of NSAIDs/Acetaminophen There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDs, non-steroidal antiinflammatory drugs, Wrist Sprains; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 7 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 50 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Exercise

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: wrist, sprain, sprains, strain, strains, exercise, exercise therapy; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 22 articles in PubMed, 406 in Scopus, 3 in CINAHL, 5 in Cochrane Library, 330 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Surgery

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: surgery, surgeries, general surgery, general surgeries; wrist, sprain, sprains, strain, strains; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 213 articles in PubMed, 335 in Scopus, 2 in CINAHL, 0 in Cochrane Library, 2474 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: general surgery, wrist sprain or wrist sprains, wrist, sprains and strains; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 83 articles. Zero

Evidence for the Use of X-rays

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: x-ray, computed tomography, radiograph, mallet finger, baseball finger; diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 22 articles in PubMed, 10 in Scopus, 2 in CINAHL, 0 in Cochrane Library, and 243 from Google Scholar. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 2 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Splints

There are 5 quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: splint, splints, splinting, finger, mallet, baseball, drop, hammer; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 12 articles in PubMed, 68 in Scopus, 3 in CINAHL, 17 in Cochrane Library, 4,110 in Google Scholar, and 0 from other sources. We considered for inclusion 8 from PubMed, 3 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 0 from other sources. Of the 12 articles met the inclusion criteria.

Evidence for the Use of Splint Wear

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: failed splints, splint failure, surgery, finger, mallet, baseball, drop, hammer; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 7 articles in PubMed, 2 in Scopus, 1 in CINAHL, 3 in Cochrane Library, 407 in Google Scholar, and 0 from other sources. We considered for inclusion 2 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 3 from Google Scholar, and 0 from other sources. Of the 6 articles considered for inclusion, 0 randomized trials and 2 systematic studies met the inclusion criteria.

Evidence for the Use of Medications

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: mallet finger, baseball, hammer, NSAIDs, NSAID, acetaminophen, non-steroidal anti-inflammatory; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 1 in Scopus, 0 in CINAHL, 13 in Cochrane Library, 75 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources.

Evidence for the Use of Exercise

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: exercise, physical activity, mallet finger, baseball, drop, hammer; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 3 articles in PubMed, 5 in Scopus, 3 in CINAHL, 1 in Cochrane Library, 187 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 2 articles considered for inclusion, 0 randomized trials and 0 systematic studies met the inclusion criteria.

Evidence for the Use of Splints and Surgery for Mallet Finger

There are 7 moderate-quality RCTs incorporated into this analysis. (264, 1051, 1054, 1061-1064) (Tocco 13; Toker 15) There are 3 low-quality RCTs in Appendix 2.(1052, 1053, 1065)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: surgical procedure, surgical intervention, surgery, displaced fracture, finger, mallet, baseball, drop, hammer; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 7 articles in PubMed, 75 in Scopus, 0 in CINAHL, 29 in

Cochrane Library, 332 in Google Scholar, and 0 from other sources. We considered for inclusion 5 from PubMed, 4 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 9 articles considered for inclusion, 8 randomized trials and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: surgical procedures, operative or surgical intervention, displaced fractures, displaced fracture, finger, mallet or baseball or drop or hammer; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, retrospective, and prospective studies to find 7 articles. Of the 7 articles we considered for inclusion 1. Of the 1 considered for inclusion, 1 are randomized controlled trials and 0 systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
	Category: Mallet Finger Surgery			Sample size: N = 64 with acute type 1a or 1b mallet finger	Age/Sex: Mean age: 37.6 ± 1.9 years; 42 males, 22 females	(Dorsal aluminum (13- mm wide padded aluminum) splint group (N= 21) vs Thermoplastic splint (1.6mm Orfit classic soft micro- perforated) group (N=22) vs Stack splint control group (N=21). All groups received a 4 week		Results: No significant differences reported between groups for extension lag at 8, 10, 12 or 20 weeks. The dorsal splints and stack control group had significantly higher treatment failure rate compared to thermoplastic group: Dorsal split- 23.8% vs. Control- 23.8% vs. Thermoplastic - 0%, (p=0.04).	"Our findings demonstrate that the majority of mallet finger injuries treated with 8 weeks of immobilization and graded exercise thereafter achieve excellent or good results, adding weight to the argument that these injuries can be managed independently in hand therapist- led clinics. To	Comments: Data suggests comparable efficacy as no lag differences were observed between the three splint types. Data suggests increased lag occurs after the splint is discontinued.
						graduated exercise program after 8 weeks of splinting.			enable patients to comply with this protocol, the splint provided must be robust enough for daily living requirements and must not cause	

	1 1					1			1
								complications	
								which are	
								intolerable to the	
								patient. In this	
								study, there was	
								no significant	
								difference in the	
								outcomes	
								achieved in the 3	
								trial splints;	
								however, the	
								custom-made	
								thermoplastic	
								splint was	
								significantly less	
								likely to result in	
								complications	
								that lead to	
								treatment failure	
								thus supporting	
								its use in the	
								treatment of	
								mallet finger."	
Tocco 2013	Mallet RCT	No sponsorship	N = 57 with	Mean age:	Low	Follow up	At 12 weeks	"The findings of	Relatively small sample size. Compliance difficult to
(score=6.0)	Finger	or COI.	closed	45 years;	temperature	at 3-4	follow up (follow	this study	assess. Group instructions were different. Data
	Surgery		mallet	35 males,	thermoplastic	weeks, 6-	up 5), the LTTP	demonstrate that	suggest LTTP group had significantly greater
			fingers (60	22	lever-type	8 weeks,	group had	full-time	extensor lag than QC subjects at 12 weeks and age
			fingers total)	females	orthosis group	7-9	significantly	immobilization	and amount of edema negatively impacted D/P
			t with a		(LTTP)	weeks, 8-	higher extensor	with QC of Type	extensor lag.
			minimum of		(N=30; 30	10 weeks,	lag than the QC	1 mallet fingers	
			20 DIPj		fingers) vs	10-12	group, (p=0.05).	was more	
			active		Quickcast	weeks,	The QC group	effective than the	
			extensor lag		orthosis group	12-14	had significantly	traditional	
			that was		(QC) (N=27;	weeks and	higher average	approach of	
			correctable		30 fingers)	24-28	active extensions	fabricating an	
			passively,		Both groups	weeks.	of 5 degrees or	LTTP orthosis	
			with an		wore allocated		more compared	and instructing	
			injury onset		orthotic 24		with the LTTP	the patient to	
			of less than		hours a day.		group, (p=0.05).	remove it daily	
i	1 1	I		1	· ·····	1	6 - r, (r).	j	1]

	00.1			
	90 days	Success rates		
	prior to	were higher in		
	commencing	QC group	immobilization	
	the study.	compared with		
		LTTP group ar		
		approached	reduction, better	
		significance; 6		
		vs. 81%, (p=0.		
			detrimental	
			effects on finger	
			flexion or hand	
			and finger	
			strength. The	
			casting material	
			used in this study	
			offers similar	
			functional	
			advantages to	
			low temperature	
			thermoplastic.	
			Edema reduction	
			and age rather	
			than accidental	
			orthosis removal,	
			seemed to have a	
			more substantial	
			impact on the	
			successful	
			treatment of	
			mallet finger	
			injuries but	
			further	
			investigation into	
			this relationship	
			is warranted.	
			Additionally,	
			further	
			investigation of	
			the	
		I I	uit	

									immobilization duration and orthosis discontinuation process after a mallet finger injury is warranted to improve success rates, particularly in older patients and when edema is significant."	
Pike 2010 (score=5.5)	Mallet Finger Surgery	RCT	Sponsored by the Canadian Orthopedic Association. No COI.	N = 77 with acute mallet finger	Mean age: 43 years; 51 males, 26 females	Dorsal aluminum (with padding) splint group (N=26) vs Volar aluminum splint (without padding) group (N=27) vs Custom thermoplastic with circumferential coverage splint group (N=24) All groups received 6 weeks of treatment. No overnight splinting required.	Follow up at 7 weeks, 12 weeks and 24 weeks.	No statistically significant differences reported between groups for radiographic lag differences or improved outcomes at follow ups.	"No lag difference was demonstrated between custom thermoplastic, dorsal padded aluminum splint and volar padded aluminum splinting for Doyle I acute mallet fingers. Clinical measurement overestimates true lag in mallet injuries. Increased lag occurs after discontinuation of splinting. Increased age and complications correlate with worse	Data suggests comparable efficacy as no lag differences were observed between the three splint types. Data suggests increased lag occurs after the splint is discontinued.

									radiographic lag."	
Warren 1988 (score=5.0)	Mallet Finger Surgery	RCT	No mention of sponsorship or COI.	N = 114 mallet fingers presenting to the Accident and Emergency Departments at the Royal Hallamshire and Northern General Hospital in Sheffield during a one-year period.	Mean age: 46.1 years; 73 males, 41 females	Stack splint group (N=58) vs Abouna splint group (N=49) Splints worn continuously for 6 weeks, then nightly for 2 weeks	Follow up at 6 and 10 weeks.	Successes: Stack vs. Abouna splint: 19/58 (33%) vs 19/49 (39%) (NS); 20/70 (28.6%) without vs 17/33 (51.5%) with bony injury; Ages 10-39: 23/38 (60.5%); ages 40- 79: 15/69 (21.7%)	"The two splints were equally effective, producing a cure or a significant improvement in approximately 50% of cases. However, the Stack splint was much preferred by the patients, who found it more comfortable, more robust and easier to keep clean."	Type of splint appears immaterial. Overall healing rates were somewhat low. Lack of fracture and increased age predict worse prognosis.
Maitra 1993 (score=4.0)	Mallet Finger Surgery	RCT	No mention of sponsorship or COI.	N = 60 with mallet finger deformities	Mean age: 44.5 ± 16.6 years; 37 males, 23 females	Aluminum splint group (N=30) vs Stack splint group (N=30) All splints worn continuously for 6 weeks, then nightly for 3 weeks.	Follow up at 3, 6 and 9 weeks.	Success rates 37% vs. 33% (NS); skin complications aluminum vs. stack splint: number of fingers with skin complications: 6.6% vs. 33%; dorsal ulcer: 3% vs. 10%; skin maceration: 3% vs. 20%	"Both splints were equally effective in correcting the deformity but the aluminium [KH1] alloy splint was able to be fitted to a wider variety of finger shapes and sizes and caused significantly fewer skin complications."	Both splints equally efficacious. Fewer skin complications with aluminum splint.

Auchincloss 1982 (score=4.0)	Mallet Finger Surgery	RCT	No mention of sponsorship or COI.	N = 41 patients with mallet finger injuries attending the Bristol Royal Infirmary Accident Department from August 1978 to October 1979.	Mean age: 41 years; 29 males, 22 females	Kirschner wire percutaneous fixation (6 weeks) group (N=19) vs Pryor and Howard splint (6 weeks) (N=22)	Follow up 14 to 18 months after injury.	K-wire group vs P&H splint group: Normal function: 19/19 (100%) vs. 20/22 (90.9%). Good objective results: 11 (57.9%) vs. 11 (50%). Unchanged objective results: 1 (5.3%) vs. 4 (18.2%)	"Trial showed no particular advantage for either method, but suggested that patients presenting after some delay may achieve better results after internal fixation."	High dropout rates preclude strong conclusions.
				,		Displaced Frac	tures - Fixati	on		
Toker 2015 (score=4.0)	Mallet Finger Surgery	RCT	No sponsorship or COI.	N = 22 with mallet fractures	Mean age: 32 years; 17 males, 5 females	Extension block pinning group (N = 16) vs Open reduction and hook plate fixation group (N = 6)	Mean follow up 13 months	No significant differences reported between groups at follow up for VAS, mean extensor lag or mean flexion. Extension block pinning found to be more cost- effective than hook plate fixation.	"Extension block pinning and open reduction hook plate fixation comparable in efficacy. The cost of open reduction and plate fixation was higher than that of extension block pinning. This difference would be even higher if plate removal is required."	Small sample (N=22). Data suggest similar efficacy between extensor block pinning versus open reduction for mallet fractures and pinning more cost effective than open reduction.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: failed splints, surgery, finger, mallet, baseball, drop, hammer; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 27 articles. Of the 27 articles we considered for inclusion 0. Zero articles met the inclusion criteria.

Evidence for the Use of Diagnostic Studies There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Flexor Tendon Entrapment, Tenosynovitis, Trigger Finger Disorder, X-Rays, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 5 articles in PubMed, 24 in Scopus, 0 in CINAHL, 0 Cochrane Library, and 195 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Splints

There is 1 moderate-quality RCT incorporated into this analysis.(1066)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Splints, Flexor Tendon Entrapment, Tenosynovitis, Trigger Finger Disorder, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 20 articles in PubMed, 21 in Scopus, 5 in CINAHL, 1 in Cochrane Library, and 2130 from Google Scholar. We considered for inclusion 1 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 0 from other sources. Of the 3 articles considered for inclusion, 1 randomized trials and 1 systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Tarbhai 2012	4.0	N = 30 (17) females, 13	MCP Group: metacarpophalangeal	At 6 weeks, MCP group 77% success rate vs. 47% in DIP group, and slight	"Initiating conservative treatment with the MCP joint blocking splint has value for	Small sample. Trends towards different severity at baseline in outcome measures. Data suggest increase comfort with MCP joint blocking splint but both groups
RCT		males) with trigger digit.	joint blocking splint (n = 15, 15 digits) vs. DIP	decrease in grip strength; $4/13$ MCP vs. $3/15$ DIP (p >0.05). No identified		showed significant improvement at 6 weeks maintained for 1 year. Data do not show substantive differences between types of splints.
Supported by University Health Network Allied Health research fund.		Mean age 63.4 years.	Group: distal interphalangeal joint blocking splint (n = 15, 17 digits). Follow-up 3 and 6 weeks.	functional limitations. No significant difference in pain intensity, severity of triggering, frequency of triggering, functional limitations (p >0.05).	of the DIP joint splint was effective in about half of subjects."	

Evidence for the Use of Medications Trigger Digit

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Flexor Tendon Entrapment, Tenosynovitis, Trigger Finger Disorder, Anti-Inflammatory Agents, Non-Steroidal, non-steroidal anti-inflammatory, NSAIDS; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 12 articles in PubMed, 2 in Scopus, zero in CINAHL, one in Cochrane Library, 5730 in Google Scholar, and zero from other sources. We considered for inclusion 1 from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library, one from Google Scholar, and zero from other sources. Of the articles considered for inclusion, 1 randomized trial and 1 systematic studies met the inclusion criteria.

Evidence for the Use of Exercise Trigger Digit

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: exercise, exercising; flexor tendon entrapment, trigger finger disorder, trigger thumb, trigger digit, thumb, thumbs, digit, digits; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 0 in Scopus, 0 in CINAHL, 1 in Cochrane Library, 12,060 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Glucocorticosteroid Injections for Flexor Tendon Entrapment

There are 2 high-(38, 1069) and 12 moderate-quality RCTs incorporated into this analysis.(1070, 1071, 1079, 1082-1090) (Jianmongkol 07; Cecen 15)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Glucocorticosteroid injection/ flexor tendon entrapment, trigger finger disorder, trigger thumb, trigger digit, tenosynovitis; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 31 articles in PubMed, 36 in Scopus, 0 in CINAHL, and 0 in Cochrane Library. We considered for inclusion 18 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 18 articles considered for inclusion, 13 randomized trials and 3 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: glucocorticoids, glucocorticosteroids, flexor tendon entrapment, tenosynovitis, trigger finger disorder, trigger thumb, and trigger digit; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 13 articles. Of the 13 articles we considered for inclusion 5. Of the 5 considered for inclusion, 5 are randomized controlled trials and 0 systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
				Cor	ticosteroid Inj	jection vs. Placebo)			
Baumgarten 2007 (score=9.0)	Corticosteroi d Injection vs. Placebo	RCT	Sponsored by Orthopaedic Research and Education Foundation (OREF). COI: One or more authors received funding and grants.	N = 59 diabetic patients with subjective symptoms of pain, catching, or triggering along the A1 pulley, consistent with sterile flexor tenosynovitis	Mean Age: 62.6 years; 21 males, 38 females.	Diabetic Corticosteroid Group: Injected with 1.0mL (6mg) or betamethasone sodium phosphate/ acetate solution and 0.5mL (5mg) of 1% lidocaine (n=16) vs Diabetic Placebo Group: Injected with .05mL (5mg) of 1% lidocaine ad 1 mL of sterile saline solution (n=14)	Follow up at 6 weeks, 3 months, 1 year, and more on if having increased or persistent symptoms.	Non-diabetics: 22/29 (75.9%) responded to 1 injection; 6 required 2nd injection; 86% responded to 1 or 2 injections. Diabetics: 11/19 (57.9%) responded to 1 injection; 63.2% to 1 or 2 injections. Results after 2nd injection significant.	"Corticosteroid injections were significantly more effective in the digits of nondiabetic patients than in those of diabetic patients. In patients with diabetes, corticosteroid injections did not decrease the surgery rate or improve symptom relief compared with the placebo."	Glucocorticoster oids also effective in diabetics, though less effective.
Murphy 2015 (score=8.0)	Corticosteroi d Injection vs. Placebo	RCT	No mention of sponsorship or COI.	N = 24 patients with primary TF	Mean Age: 56 years; 9 males, 15 females	1mL of celestone (6mg) plus 3mL 1% lidocaine vs. 4mL 1% lidocaine only in the placebo group	Follow up at 3 weeks, and 4 months	At 3-week follow- up: steroid group 10/14 (71.4%) vs. 2/10 (20%) asymptomatic. 4- month follow-up, 9/14 (64.3%) vs. 2/10 (20%) asymptomatic (p <0.05).	"Since the treatment was well tolerated by patients and without complications, it is reasonable to offer steroid and lidocaine injection as the initial treatment for primary TF."	Modest sample size and intermediate- term follow-up.
Lambert 1992 (score= 6.0)	Corticosteroi d Injection vs. Placebo	RCT	No mention of sponsorship or COI.	N = 41 patients with a diagnosis or trigger finger or thumb,	Mean Age: 54 years; 16 males, 25 females.	20mg methylprednisol one acetate plus lignocaine (n=20) vs.	Follow up at 1 month.	Steroid group success rate 12/20 (60%) vs. 3/16 (18.8%) for placebo (p <0.02).	"Our prospective, controlled, double- blinded trial shows that steroid injection is a	Depot preparation may have unblinded the treating physician.

				which had been present for at least three months.		0.05ml 1% lignocaine injection (n=21)			satisfactory treatment for trigger finger in 60% of patients. There were no complications and success rate may be even better if repeat injections are used."	
Peters- Veluthamanin gal 2008 (score=6.0)	Corticosteroi d Injection vs. Placebo	RCT	Financially sponsored by the "Fund for Common Disorders" of the Dutch College of General Practitioners. COI: CP-V received an unrestricted educational grant from BristolMyers Squibb.	N = 50 patients with a clinical diagnosis of trigger finger	Mean Age: 63.2 years; 22 males, 28 females.	1ml triamcinolonacet onide (TCA) injection vs. 0.9 % NaCl.	Follow up at 12 months.	Immediate reductions in triggering were 13/24 (54.2%) vs. 6/22 (27.3%), p = 0.053. Pain scores significantly improved with TCA (p < 0.0005); 80% TCA group improved at 12 months.	"Local injection with triamcinolone- acetonide is effective and safe for treating trigger fingers as compared to placebo injection. The effects of steroid injections last up to 12 months."	Mean symptoms duration differ at baseline and favored placebo (7 vs. 24 weeks, p = 0.023).
Axelsen 2013 (score=4.0)	Corticostero id Injection vs Placebo	Post Hoc Analysis ofstudy	Sponsored by an unrestricted grant from AbbVie, Denmark. COI.	N = 85 disease- modifying antirheumatic drug-naïve patients with early rheumatoid arthritis (ERA)	Mean age: 55 years; 32 males, 53 females.	All patients received and MRI of the right 2nd–5th metacarpophala ngeal (MCP) joints and the wrist joint at baseline. All patients received oral methotrexate that increased to 20 mg/week over 2 months along with either: placebo (n=43) or 40 mg of Adalimumab	Follow up monthly for the first 3 months, and then every 3 months after. At all follow ups, patients received a 20 mg/ 0.5 mL triamcinolo ne hexacetoni de injection with a max.	At baseline, the synovitis score was 7 (range 0-21), the osteitis score was 1 (0-35) and the tenosynovitis score was 4 (0-26). At 6 months, the synovitis score was 5 (range 0-13) (p<0.0001), the osteitis score was 0 (0-35) (p=0.001) and the tenosynovitis score was 0 (0-18) (p<0.0001). At 12 months, the synovitis score was	"In conclusion, in this randomised double-blind trial, we found that a treat-to-target strategy with methotrexate and intra- articularglucocorti costeroid, with or without adalimumab, effectively decreased MRI disease activity in patients with ERA, and no MRI structural damage progression was	Both groups improved over time and no clinical differences between groups

						(n=42) subcutaneously every other week.	of 4 joints and 4mL per visit.	4 (range 0-15), the osteitis score was 0 (0-36) and the tenosynovitis score was 0 (0-0) (all p<0.0001).	found after 1-year of follow-up. The findings suggest that addition of adalimumab was associated with further suppression of osteitis and tenosynovitis."	
					Injection vs. O	ther Treatments				
Goldfarb 2007 (score=7.5)	Injection vs. Other Treatments	RCT	No mention of sponsorship or COI.	N= 125 patients with trigger finger or de Quervains tenosynovitis	Mean Age: 59 years; 32 males, 93 females.	Group 1: Injection of steroid, lidocaine, bupivacaine alone (standard injection, acidic pH) $(n = 57)$ vs. Group 2: Injection of steroid, lidocaine, bupivacaine, bicarbonate (balanced injection, neutral pH) $(n = 68)$.	Follow-up for 6 weeks.	Both injections provided significantly immediate pain relief reflected in VAS scores (p < 0.001). No significant difference between groups for pre- injection VAS (p = 0.89). Group 2 lower VAS scores than group 1 on each of first 7 days. But, differences in VAS scores between groups only significant at days 5, 6, and 7 (p = 0.4 on each day).	"Patients respond to extra-articular steroid injections with gradual improvement over the course of the first weekA pH- balanced injection did not significantly decrease the risk of a flare reaction."	Data suggest an extra-articular steroid injection gradually benefits patients over first week with about 1/3 of patients reporting a flare response in the days following the injection. A pH-balanced injection did not significantly decrease risk of flare response.
Zyluk 2011 (score=5.5)	Injection vs. Other Treatments	RCT	No mention of sponsorship or COI.	N= 105 patients with trigger digits	Mean Age: 56 years; 28 males, 67 females.	Surgery Group: A1 pulley release (n = 43 patients, 46 digits) vs. Injection Group- Steroid injection of 1ml 2% plain lidocaine (n = 52 patients, 59 digits).	Follow-up at 1 and 6 months.	At 1 month, surgery group significantly lower active ROM of fingers vs. injection group: 264 vs. 270 (p <0.05). Also significantly weaker in surgery group: 85% vs. 99% (p <0.05). No significant	"We conclude that percutaneous A1 pulley release is more effective medium-term therapy for trigger digit than steroid injection, because of lower risk of recurrence."	Data suggest percutaneous A1 pulley release is better than steroid injection for trigger finger due to lower risk of recurrence (11% vs. 0%). Pain (VAS) was 0.4 in pulley

Sato 2012 (score=5.0)	Injection vs. Other	RCT	No mention of sponsorship or	N = 137 patients with	Mean Age: 54.4 years;	were injected using a 26- gauge needle from the palmar side into the A1 pulley at an angle of 45- degrees distally (n=20) Open: Conventional	Follow-up after 1, 2	Cure of trigger finger (N): open 56	"The levels of effectiveness of	Data suggests comparable
	Treatments		COL	150 trigger fingers	18 males, 132 females.	open surgery of A1 pulley (n = 56) vs. injection: 2ml of methylprednisol one acetate 40mg at site corresponding to A1 pulley (n = 49) vs. Percutaneous: percutaneous release of A1 pulley (n = 45).	weeks and 1, 2, 4, and 6 months.	vs. 1 injection 28 vs. 2 injections 42 vs. percutaneous 45 (p = 0.004). Topical pain (N) open vs. injection vs percutaneous: 1 week 38 vs. 9 vs. 30 (p = 0.000); 2 weks 36 vs. 9 vs. 30 (p = 0.000); 1 month 22 vs. 5 vs. 15 (p = 0.008); 2, 4, and 6 months (p = NS). Joint pain (N) open vs. injection vs percutaneous: 1 week 17 vs. 3 vs. 13 (p = 0.014); 2 weeks 18 vs. 3 vs. 12 (p = 0.023); 1 month 15 vs. 3 vs. 13 (p = 0.029); 2, 4, and 6 months (p = NS). Total active motion (TAM) average open vs. injection vs. percutaneous: 1 month 176.41 vs. 207.18 vs. 201.76 (p = 0.012); 2 months 184.89 vs. 208.53 vs. 207.78 (p =	open surgical and percutaneous methods were superior to the conservative method of using CSs based on the cure and reappearance rates of the trigger."	efficacy between percutaneous and open surgery and both invasive techniques were superior injection to treat trigger finger. Yet recurrence rates were 0% (open/percutane ous) vs. 86% 1-2 injections.

								0.048); 4 months and 6 months (p = NS).		
Ring 2008 (score= 4.0)	Injection vs. Other Treatments	RCT	Sponsored by AO Foundation, Wright Medical, Joint Active Systems, Smith and Nephew, Small Bone Innovations, and Biomet. No mention of COI.	N = 84 patients with idiopathic trigger finger.	Mean Age: 64.0 years; 44 males, 40 females.	Dexamethaxone 4mg/ml (n = 40) vs. Triamcinolone 10mg/ml (n = 44).	Follow-up at 6 weeks and 3 months after their initial injection.	NS between groups at 6 weeks for average DASH score ($p = 0.43$) and 3 months ($p = 0.61$). Absence of triggering rate at 6 weeks: triamcinolone 22 of 35 patients vs. dexamethasone 12 of 32 patients (p <0.05).	"Although there were no differences 3 months after injection, our data suggest that triamcinolone may have a more rapid but ultimately less durable effect on idiopathic trigger finger than does dexa-methasone."	Data suggest at three months there were no differences between groups although triamcinolone acted fester but its effects wore off quicker than dexamethasone.
Shakeel 2012 (score=4.0)	Injection vs. Other Treatments	RCT	No sponsorship or COI.	N = 100 patients clinically diagnosed with trigger digits at least grade 2 by Quinnell and without previous treatment of trigger digit.	Mean Age: 57.5 years 30 males, 70 females.	20 mg triamcinolone acetonide (n = 50) vs. 12.5mg diclofenac sodium injection (n = 50).	Follow up at 3 weeks and 3 months after injection.	Mean improvement in Quinnel grading corticosteroid vs. NSAID: 3 weeks 1.8 vs. 0.9 (p = 0.002); 3 weeks to 3 months 0.3 vs. 0.8 (p = 0.002).	"We concluded that, although steroids gave quicker relief, NSAID injections are equally effective at 3 months in the treatment of trigger digits. We were unable to detect a statistically significant difference in the response of patients with and without diabetes to either treatment"	Data suggest steroids act faster, but at 3 months, NSAIDS equally effective.
Callegari 2011 (score=4.0)	Injection vs. Other Treatments	RCT	Supported by IBSA Institut Biochimique SA, Pambio- Noranco, Switzerland. No COI.	N = 30 patients with ultrasound- confirmed diagnosis of trigger finger.	Mean Age: 52.5 years; 10 males, 20 females.	Group A- ultrasound- guided injection of methylprednisol one acetate (40 mg/mL) with 0.8 mL lidocaine with 1mL	Follow-up at 6 weeks, and 3, 6, and 12 months.	At 6 months complete symptom resolution was observed in 14/15 (93.3%) patients in group A. All 15 patients in group B achieved complete resolution of impairment by 3	"the results of this explorative study suggest that ultrasound-guided injection of a corticosteroid and hyaluronic acid could be a safe and feasible approach for the	Open label study with small sample size. Data suggest US guided injection of a corticosteroid and HA may be appropriate for trigger finger,

Pataradool 2011 (score=4.0)	Injection vs. Other Treatments	RCT	No mention of sponsorship. No COI.	N= 40 with primary trigger fingers.	Mean Age: 57.5 years; 4 males, 36 females.	hyaluraonic acid 0.8% 10 days later (N = 15) Vs Group B- Open surgical release of the first annular pulley (N = 15). CI Group: conventional injection technique 0.1% triamcinolone acetonide 1ml and 1% lidocaine hydrochloride without epinephrine 1ml (n = 20) vs. P1I Group: Proximal phalanx injection technique (n = 20).	Follow-up 3 months	weeks after surgery, but 10 patients needed physical therapy to reach complete resolutions of symptoms approximately 30- 40 days after surgery. There were no significant differences between groups for VAS, DASH< and SVAS scores (p>0.05). At final follow-up, mean VAS score 7.3 in CI group vs. 3.2 in P1I group. Difference significantly lower in P1I group (p <0.001). Rise of recurrent symptoms occurred in both groups at 3 month follow-up, 3/20 (15%) in CI group and 5/20 (25%) in P1I group. Difference not statistically significant (p >0.05).	treatment of trigger finger." "We concluded that the P11 technique is less painful than the CI technique without any significant difference in recurrence rate between the two groups at three months follow- up."	but a larger study is required to confirm preliminary results. Data suggest P1I less painful than CI, but complication, recurrence rates and general outcome measures comparable.
			Ir	ntrasheath Glucoc	corticosteroid In	ijection vs Subcutan	eous Injection			
Taras 1998 (score=6.0)	Intrasheath Glucocortico steroid Injection vs. Subcutaneou s Injection	RCT	No sponsorship or COI.	N = 95 patients with 107 trigger digits	Mean Age: 61.0 years; 37 males, 58 females.	Intrasheath glucocorticoster oid injection group (n=48) vs. subcutaneous injection along sheath	Follow up at 2 weeks	Intrasheath complete in 19/55 (37%), 24/55 (46%) partial, 9/55 (17%) no evidence of intrasheath injection.	"The results of this study suggest that true intrasheath injection offers no apparent advantage over subcutaneous injection in the	Evidence suggests subcutaneous injections may be superior. Intrasheath injections

Jianmongkol 2007 (score=4.5)	Intrasheath Glucocortico steroid	RCT	No mention of sponsorship or COI.	N=103 trigger fingers	Mean Age: 53.0 years; 14 males,	(betamethasone acetate suspension 6mg with 0.5mL 1% lidocaine with Omnipaque) (n=47) Conventional technique of injection (CI	Follow up at 1, 3, and 6 weeks.	Intrasheath group overall: 27/52 (52%) good, 10/52 (19%) fair, 15/52 (29%) poor results. Complete intrasheath injection 47% good, 16% fair, 37% poor. Partial injection 50% good, 17% fair, 33% poor. Subcutaneous injection 70% good, 11% fair, 19% poor. Subcutaneous group: 39/55 (71%) good, 4/55 (7%) fair, 12/55 (22%) poor results. After insertion of injections the mean pain score for the	treatment of trigger digits." "In conclusion, the injection technique by Carlson and	usually not completely successful. Excluded those >6 months duration, and diabetes.
	Injection vs. Subcutaneou s Injection				87 females.	technique) (n=53) Vs. Mid-Axial injection technique (MAI technique): (n=48)		MAI technique group was 40.19 and the mean pain score for the CI technique group was 48.39. No statistical significance in mean paracetamal count during follow up periods for both groups. Chi-squared test revealed a score of 5.7 with statistical significance of p<0.05 for both groups. In CI technique group, two fingers had recurrent symptoms and no recurrent	Curtis' approach can provide the good results of treatment and there were no complications from the injection. The technique can be easily used and safe for injection in the primary trigger finger."	comparability is questionable. Data suggest MAI technique had less reported post injection pain associated with procedure compared to CI technique. But at 6 weeks there were no differences in reported VAS pain scores.

					Ultrasound-G	uided Injection		symptoms in the MAI technique group.		
Cecen 2015 (score=4.5)	Ultrasound- Guided injection	RCT	No mention of sponsorship. No COI.	N=74 patients with persistent or increasing symptoms of a single trigger digit.	Mean Age: 55 years; 15 males, 55 females.	Ultrasound- guided group (USG): a Philips IU22 ultrasound system with high-frequency linear-array probe 17 MHz was positioned on the volar aspect of the hand and a 26- gauge needle was used to inject methylprednisol one acetate 40 mg/1 mL into the sheath of the flexor tendons, distally to the A1 pulley (n=37) Vs.Blinded group (BIG): treated with blinded corticosteroid injection (n=37). All patients were injected under aseptic conditions using 40 mg/1 mL methylprednisol one acetate	Follow up at 6 weeks and 6 months.	Of the 35 patients treated in BIG, 29 responded to a single corticosteroid injection and 6 required a second injection. Thirty- two of the 35 USG group responded to a single injection and 3 required a second injection. There was no significant difference between BIG and USG for requirement of second injection (p>0.05). Both groups showed significant improvement in Quinnell grades, but no significant improvement between the pre- steroid, post-steroid 6 week, and post- steroid 6 month scores. Both groups showed significant improvement in VAS scores. BIG VAS scores decreased from 4.80 to 1.5 at 6 weeks and 0.5 after 6 months. USG VAS	"In conclusion, corticosteroid injection can be recommended as a sound, low- risk primary treatment option for trigger finger, which can be given in an office setting, as a low-cost procedure. The use of ultrasound- guided injection of corticosteroid may be associated with extra time and effort, and seems to have no superior clinical benefits compared to the blinded technique."	Higher rate of diabetics in BIG group and more females in USG group. Data suggest non superiority of US guided injections (USG) versus blinded injections (BIG).

			scores decreased	
			from 4.7 to 1.6 at 6	
			weeks and to 0.5	
			after 6 months. VAS	
			in each group	
			showed significant	
			reduction. (p<0.01).	

Evidence for Surgery for Flexor Tendon Entrapment

There are 10 moderate-quality RCTs incorporated into this analysis. (1083, 1084, 1091, 1092, 1096, 1097, 1099, 1101-1103) (Pegoli 08)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: flexor tendon entrapment, trigger finger disorder, trigger thumb, trigger digit, tenosynovitis Surgery, Open release surgery, percutaneous release surgery; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 147 articles in PubMed, 13 in Scopus, 8 in CINAHL, 23 in Cochrane Library, 570 in Google Scholar, and 3 from other sources. We considered for inclusion 5 from PubMed, 0 from Scopus, 0 from CINAHL, 1 from Cochrane Library, 1 Google Scholar, and 3 from other sources. Of the 10 articles considered for inclusion, 10 randomized trial and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: surgery, open release, flexor tendon entrapment, tenosynovitis, and trigger finger disorder, trigger thumb, and trigger digit; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 122 articles. Of the 122 articles we considered for inclusion 2. Of the 2 considered for inclusion, 1 are randomized controlled trials and 1 systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:			
	Percutaneous Release with Steroid Injection vs. Steroid Injection												
Maneerit 2003 (score=5.5)	Flexor Tendon Entrapment Open/Percut aneous Release	RCT	No mention of sponsorship or COI.	N = 115 patients with N = 127 idiopathic trigger thumbs	Mean age: 52.5 years; No mention of gender.	Percutaneous release with steroid injection (n=66) vs. steroid injection alone (n=61)	Follow-up at 2 and 6 weeks and 6 months.	Surgical results satisfactory in 59/65 (90.8%) treated surgically vs. 28/60 (46.7%) treated with injection, p = 0.001. No significant differences in pain ratings or paracetamol tablets required post- procedure. After 2nd injection, success rate 56.7% for injections.	"We conclude that percutaneous trigger thumb release combined with steroid injection has a higher success rate than that of steroid injection alone."	Success rates, especially in injection arm, low compared with other quality evidence raising questions about subject selection/other issues. No mention of gender.			
	Open vs. Percutaneous Release												

Gilberts 2001 (score=5.5)	Flexor Tendon Entrapment Open/Percut aneous Release	RCT	No mention of sponsorship. No COI.	N = 96 patients with N = 100 trigger fingers with symptoms for at least 1 month.	Mean age: 61.1 years; 56 male, 44 female	Open surgical release of the first annular pulley group (n=46) vs. percutaneous surgical release of the first annular pulley group (n=54)	Follow-up at 10 days, 6 and 12 weeks after surgery.	Open vs. percutaneous release – Operative time 11 vs. 7 minutes, p <0.0001. Mean post-op pain 5.7 vs. 3.1 days, p = 0.039. Motor recovery 18 vs. 7 days, p <0.002 . Return to work 7.5 vs. 3.9 days, p <0.001. Complications 3 vs. 2. Success rate 98 vs. 100%, NS	"We conclude that percutaneous correction of trigger digits is a quicker procedure, is less painful, and shows significantly better results in rehabilitation than open surgery."	All measures favored percutaneous release. Discrepancy with patient number and gender.
Bamroongs hawgasame 2010 (score=4.5)	Flexor Tendon Entrapment Open/Percut aneous Release	RCT	No mention of sponsorship or COI.	N= 142 patients with N = 160 trigger fingers and thumbs.	Mean age: 47.4 years; 58 male, 84 female	Open Group: Open release surgery (N = 70 patients, N = 80 digits) vs. Percutaneous group (N = 72 patients, N= 80 digits).	Follow-up 3 and 6 weeks.	Mean time of open surgery 2.2 mintes; percutaneous 1.8 minutes (p> 0.05). Post-op patient satisfaction scores similar at weeks 3 and weeks 6 (p> 0.05). Percutaneous surgery group had lower mean pain score vs. open group at weeks 1, 2, 3 and 4.	"Percutaneous trigger digit surgery using the full handle knife 45° is effective and safe, and results functional outcomes equal to those with open trigger digit surgery."	Data suggest comparable efficacy between open and percutaneous release in trigger digits
Dierks 2008 (score=4.5)	Flexor Tendon Entrapment Open/Percut aneous Release	RCT	No mention of sponsorship or COI.	N= 36 patients with trigger fingers.	Mean age: 62.9 years; 16 male, 20 female	Open group- Open surgical release of the A-1 pulley (n = 16) vs. Percutaneous	Follow-up at 1 and 12 weeks.	Both groups showed decrease in pain level, but no significant difference between groups (p	"Because of lower costs and quicker procedure with equal functional outcome when compared with open surgery, we recommend the percutaneous technique using a L15 blade for trigger finger release."	Sparse methodological details. Data suggest percutaneous release of A1- pulley for stenosing tendovaginitis as it is quicker, less costly and has comparable efficacy to surgery.

NYS WCB MTG - Hand, Wrist and Forearm Injuries 289

Pegoli 2008 (score=4.0)	Flexor Tendon Entrapment Open/Percut aneous Release	RCT	No mention of sponsorship or COI.	N = 200 patients with a trigger finger.	Mean age: 58.5 years; 60 male, 140 female	group- percutaneous release of A-1 pulley (n = 20). Group A-open surgical release of the A-1 pulley (N=100) vs Group B- endoscopic surgical release of the A-1 pulley (N=100)	Follow-up pre- operativel y and at 7, 30, and 90 days post- operativel y.	 >0.05). Mean surgery time 26 s in percutaneous group; 4 minutes 17 s open group (p <0.05). Active ROM of PIP joint significantly lower open group at 1 week; 81 vs. 95 (p <0.05). No significant difference for ROM at 12 weeks. Three patients in Group A reported dyesthesia for 10 days that resolved and 8 patients from Group B reported dyesthesia for 6 days that resolved. The sum of excellent and good results (questionnaire) at 90 days post- operation was similar for both groups with a pravalence of 	"The main complaint of the patients after an open trigger finger release is a discomfort at the incision site. In this prospective study, we compared the two consecutive groups of patients with trigger fingers. One was treated by an open approach and the other by the endoscopic release of the A1 pulley. Pre- and post-operative evaluation at seven, 30 and 90 days showed a faster recovery from the discomfort with a faster return to daily and working activities, after the endoscopic procedure."	Sparse methodological details. Data suggest the endoscopic procedure showed faster recovery at all times of evaluation (7 days, 30 days & 90 days) compared to open procedure although surgical times for both procedures are similar.
								90 days post- operation was similar for both	working activities, after the	

								operation. Group B showed faster recovery. Aesthetic appearance of incision site had significant statistical analysis ($p<0.001$) with a variable percentage of 30% between the groups and pain under load ($p<0.017$)		
						Sectioning Differ	ent Thirds of	the A1 Pulley		
Topper 1997 (score=4.5)	Flexor Tendon Entrapment Open/Percut aneous Release	RCT	No mention of sponsorship or COI.	N = 19 patients with trigger fingers who had failed a trial of non- operative management	No mention of age or gender.	The proximal third of the pulley group (n=7) vs the middle third of the pulley group (n=7) vs the distal third of the pulley group (n=5)	Follow-up post- surgery.	"In all 19 patients, a partial resection of the first annular pulley resulted in continued clinical triggering with active digital flexion. At this point, a standard complete first annular pulley release was performed, with resolution of clinical triggering of the involved digit in all patients."	"We conclude that there is no "critical third" of the first annular pulley responsible for clinical digital triggering."	Suggests release of the entire pulley is preferred treatment. No mention of gender.
Yiannakop	Flexor	RCT	No mention of	N = 50	Mean age:	Topical Anesthe Transdermal	sia vs. Lidoca Follow up	Visual analogue	"Percutaneous trigger finger release	EMLA requires 2-3 hours for effectiveness
oulos 2006 (score=5.5)	Tendon Entrapment		sponsorship or COI.	patients with trigger	60.0 years; 20	anesthesia using eutectic	during anaesthesi	visual analogue pain scale EMLA vs Lidocaine:	can be performed as an office procedure with the use of EMLA	potentially resulting in NS satisfaction scores despite marked differences in pain

NYS WCB MTG - Hand, Wrist and Forearm Injuries 291

	Open/Percut aneous Release			finger syndrome undergoing percutaneou s release of the A1 annular pulley	male, 28 female	mixture of lidocaine and prilocaine (EMLA) group (N = 25) vs 3ml lidocaine 1% infiltration group (N = 25)	a and during operation.	VAPS: 0 vs. 5.96±2.41 (p <0.05); Patient Satisfaction: 4.6±0.2 vs. 4.4±0.3 (NS)	avoiding the use of injectable local infiltration anaesthesia."	scores. *The number of males and females compared to the groups does not add up.
	I I						vs. Surgical 1			
Zyluk 2011 (score=5.5)	Flexor Tendon Entrapment Open/Percut aneous Release	RCT	No mention of sponsorship. No COI.	N= 105 trigger digits in N = 95 patients with trigger finger.	Mean age: 56 years; 28 male, 67 female	Surgery Group- A1 pulley release (n = 43, 46 digits) vs. Injection Group- Steroid injection of 1ml 2% plain lidocaine (n = 52 patients, 59 digits).	Follow-up at 1 and 6 months.	At 1 month, surgery group significantly lower active range of motion of fingers vs. injection group: 264 vs. 270 (p <0.05). Also significantly weaker group in surgery group: 85% vs. 99% (p <0.05). No significant differences with regards to other parameters. At 6 months, 11% recurrence rate in injection group vs. 0% in surgery group (p = 0.005). At 6 months surgery group showed significantly lower VAS score: 0.4 vs. 1.3 (p <0.05) and	"We conclude that percutaneous A1 pulley release is more effective medium-term therapy for trigger digit than steroid injection, because of lower risk of recurrence."	Data suggest percutaneous A1 pulley release is better than steroid injection for trigger finger due to study suggesting a lower risk of recurrence. Pain (VAS) 0.4 in pulley release group vs 1.3 in steroid group at 6 months, and ROM varied only 5 degrees.

Chao 2009 (score=4.5)	Flexor Tendon Entrapment Open/Percut aneous Release	RCT	No mention of sponsorship. No COI.	N= 83 patients with N = 93 trigger thumbs.	Mean age: 48.5 years; 26 male, 57 female	Group A- miniscalpel- needle percutaneous release (n = 41, 46 thumbs) vs. Group B: Steroid injection 1ml triamcinolone acetonide (10 mg/ml) injected (n = 42, 47 thumbs).	Follow-up at 1 and 12 months	significantly worse range of motion; 265 vs. 270 (p <0.05) vs. injection group. Group A achieved successful release in 93% at 1 month and 86% at 12 months. 45% of thumbs in group B satisfactory at 1 month and 26% were satisfactory at 12 months. The mean percent decrease in pain intensity was significantly higher in group A vs. group B at 1 month; 65.7% vs.	"Percutaneous release with a miniscalpel-needle had a higher success rate than steroid injection."	Data suggest percutaneous release via miniscalpel-needle had better efficacy than steroid injection.
Callegari 2011 (score=4.0)	Flexor Tendon Entrapment Open/Percut aneous Release	RCT	Sponsored by IBSA Institut Biochimique SA, Pambio- Noranco, Switzerland. No COI.	N = 30 patients with ultrasound- confirmed diagnosis of trigger finger.	Mean age: 52.5 years; 20 male, 10 female	Group A: ultrasound- guided injection of methylprednis olone acetate (40mg/mL) with 0.8mL lidocaine with 1mL hyaluraonic acid 0.8% 10 days later (n =	Follow-up for 12 months.	and 12 months; 89.4% vs. 6.8% (p <0.001). At 6 months complete symptom resolution observed in 14/15 (93.3%) in group A. All 15 in group B achieved complete resolution of impairment by 3 weeks after surgery, but 10	"the results of this explorative study suggest that ultrasound-guided injection of a corticosteroid and hyaluronic acid could be a safe and feasible approach for the treatment of trigger finger."	Open label study with small sample size. Data suggest US guided injection of a corticosteroid and HA may be appropriate for trigger finger, but a larger study is required to confirm preliminary results.

15) vs. Group	needed physical
B: Open	therapy to reach
surgical	complete
release of first	resolutions of
annular pulley	symptoms
(n = 15).	approximately 30-
	40 days after
	surgery. No
	significant
	differences
	between groups
	for VAS, DASH<
	and SVAS scores
	(p >0.05).

Evidence for the use of Special Studies - Extensor Compartment Tenosynovitis

There is 1 moderate-quality study incorporated into this analysis.(1107) (Chien 01)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: X-Rays, Tomography Scanners, X-Ray Computed, Extensor Compartment Tenosynovitis, De Quervain's Stenosing Tenosynovitis; diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 13 articles in PubMed, 7 in Scopus, 1 in CINAHL, 0 in Cochrane Library, and 393 from Google Scholar. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, from Google Scholar, 0 from Cochrane Library and 0 from other sources. Of the 1 articles considered for inclusion, 1 diagnostic study met the inclusion criteria.

Author/Year Study Type	Score	Number	Area of Spine	Diagnoses	Type of X-rays	CT used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Chie n	6.5	N = 45, (11	Wrist	de Quervain	Not give	-	-	+	+	-	-	+	-	The association between focal radial styloid	"Focal radial styloid abnormality is an indicator of de Quervain stenosing tenosynovitis of the	A retrospective review of radiography Showed that focal radial steroid abnormalities to be an
2001		Men		tenosyno	n									abnormality and de Quervain	wrist."	indicator of de Quervain stenosing tenosynovitis.
		(24%),		vitis										tenosynovitis, for both		
Diag		34		confirme										observers, $(p < 0.05)$.		
nosti		Women		d										The areas under the receiver		
с		(76%))												operating characteristic		
N.		with de												curves for both observer:		
No menti		Quervai n												0.71 (95%) CI, 0.62–0.79%) and 0.76		
on of		tenosyn												(95% CI, 0.67-0.84%). The		
spons		ovitis.												Kappa values for inter		
orshi		Mean												observer		
p or		age, 43												variability = 0.44 (moderate		
COI.		years.												agreement), and intra		
														observer variability $= 0.62$		
														(substantial).		

Evidence for the Use of MRI to Diagnose Extensor Compartment Tenosynovitis

There are 2 moderate-quality studies incorporated into this analysis.(1108, 1109) There is 1 low-quality study in the Appendix 2.(1110) (Hadidy 09)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: MRI OR Magnetic Resonance Imaging Extensor Compartment Tenosynovitis, De Quervain's Stenosing Tenosynovitis, diagnostic, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 12 articles in PubMed, 60 in Scopus, 0 in CINAHL, and 0 in Cochrane Library, and 1020 from Google Scholar. We considered for inclusion 2 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 3 articles considered for inclusion, 3 diagnostic studies met the inclusion criteria.

Author/7 Study Ty Conflict (COI)	Score	Number	Area	Diagnoses	Type of MRI used	Type of CT used	T1 weighted images	x-rav T2 w	Mvel	More than one rater	Surgery Performed	Clinical outcomes	Long	Results	Conclusion	Comments
uthor/Year tudy Type 'onflict of Interest COI))er		loses	of M	of C	eight	weighted	ívelogranhv	than	ery P	cal ou	ong term follow-up	5	lusio	nent
yar e Inte					RI u	I use	ed im	ed im	ohv	1 one	erfor	itcon	folle		P	
rest					sed	d	lages	l images		ratei	med	les	ow-u]			
Nieuwenhuis	6.5	N = 69	Wrist	RA	1.5T	N/A					-	+	+	65% had MRI-detected tenosynovitis. RA patients	"MRI-detected	MRI-detected tenosynovitis occurrence frequently in early arthritis.
2015		with												had tenosynovitis vs. non-RA patients, $(p = 0.023)$.	tenosynovitis is	RA patients found to have tenosynovitis more often than non RA
		RA.												Flexor tendons at MCP5/ extensor tendons at MCP2	commonly seen in	patients. Flexor tendons at MCPs, extensor tendons at MCP2 and
Diagnostics		Mean												and MCP4 in extensor compartment I of wrist	early arthritis."	first extensor compartment of wrist most likely affected in RA
Sponsored by		age 54.2 ±												affected in RA vs non-RA; 2.8, 95% CI: 1.9- 42.8/14.2, 95% CI: 1.7 – 115.9 and 4.0, 95% CI: 1.4		patients.
EU Seventh		15.2.												-11.1.		
Framework																
and DAF. Drs.																
Nieuwenhuis,																
Krabben, and van der Helm-																
van Mil's																
supported by																
DAF and Vidi																
grant, and Drs.																
Stomp and Reijnierse's																
sponsored by																
TRACER																
project grant.																
Dr. Stomp																
received																
speaking fees from GE health																
care.																

Parellada 2007	5.5 N	= 5	Wrist	Ten	1.5-T	N/A	+	+	 +	-	+	+	+ 5 signs of tenosynovitis/ 4 had tendons of 2nd and	"Distal intersection	Distal intersection tenosynovitis may be related to pulley effect
	wi	ith		osy	scann								3 rd extensor compartments affected/5 had signs of	tenosynovitis may be	exerted by Lister's tubercle on EPL tendon as it leaves 3rd
Diagnostics	pa	ain on		novi	er								tenosynovitis of ELP tendon/3 showed tenosynovitis	related to the	compartment and cross over extensor carpi radialis tendons.
	th	e		tis									proximal and distal to point of intersection; 2 of 3	biomechanical pulley	
No mention of	do	orsal											had discrete point of intersection.	effect exerted by	
sponsorship or	an	nd												Lister's tubercle on the	
COI.	ra	dial												EPL tendon as it leaves	
	as	spect												the third compartment	
	of	f the												and crosses over the	
	WI	rist.												extensor carpi radialis	
	М	Iean												tendons, as well as the	
	ag	ge, 49												constraining effect of	
	ye	ears.												the extensor	
														retinaculum."	

Evidence for the Use of Splints Extensor Compartment Tenosynovitis

There are 3 moderate-quality RCT incorporated into this analysis.(1112-1114) (Mardani-Kivi 14; Mehdinasab 10)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Splinting, thumb spica, Extensor Compartment Tenosynovitis (Including De Quervain's Stenosing Tenosynovitis and Intersection Syndrome); controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 7 articles in PubMed, 3 in Scopus, 3 in CINAHL, 295 from Google Scholar, and 51 in Cochrane Library. We considered for inclusion 3 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 2 from other sources. Of the 359 articles considered for inclusion, 3 randomized trials and 6 systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Conflict of	(* 11)					
Interest (COI)						
Menendez 2015	5.0	N = 83 (49 females, 9 males in	Forearm-based thumb spica	No significant differences reported	"Our study supports the following concepts: (1) there is	High dropout rate in full time splinting group.
		final randomization) with	splint to be worn full-time (n	between full-time and as-desired	no difference in patient-reported outcomes and grip	Data suggest strict splint vs. selective splint wear
RCT		clinically diagnosed extensor	= 43) vs. forearm-based	groups for grip strength, pain intensity,	strength with full-time and as-desired splinting, and	to treat de Quervain tendinopathy is palliative at
		compartment tenosynovitis, or	thumb spica splint to be	disability and satisfaction with	patients can wear the splint as they prefer; (2) de	best and should be left to patient preference as
No mention of		de Quervain tendinopathy.	worn as desired $(n = 40)$.	treatment.	Quervain tendinopathy appears to be a self-limited	data suggest equal outcome efficacy.
sponsorship or			Both groups received		condition in the majority of patients; (3) depressive	
COI.		Mean (\pm SD) age 50 (\pm 13) for	allocated treatment for 6		symptoms are strongly associated with greater	
		full-time group and 50 (± 15)	weeks. Follow-up at 6		disability."	
		for as-desired group.	weeks.			
Mardani-Kivi	4.0	N = 67 patients (12 males, 47	Corticosteroid injection	At 3 weeks and 6 months follow-up,	"The results of this study indicated that the CSI + TSC	Differences in success percentages at follow up
2014		females) with extensory	(CSI) and thumb spica cast	CSI+TSC group had significantly	treatment method was superior to CSI alone with	due to dropout. Data suggest a combination of
		compartment tenosynovitis, or	(TSC) (3 weeks casted)	higher percentages of success	regards to success rate and functional outcomes."	spica casting and corticosteroid injection was
Randomized		de Quervain tendinopathy,	group $(n = 33)$ vs.	compared to TSC alone group: 3		superior to injection alone.
prospective		radial pain of the wrist, a	Corticosteroid injection only	weeks-97% vs. 76%, (p = 0.027), 6		
trial		positive Finkelstein test,	group ($n = 34$). Both groups	months- 93% vs 69%, (p = 0.021). At		
		tenderness of the first dorsal	40mg of methylprednisolone	6 months follow-up, CSI+TSC group		
No sponsorship		compartment and a pain score	acetate with 1cc of lidocaine	had significantly higher percentages of		
or COI.		>6	2%. Follow-up at 3 weeks	decreased VAS scores vs. CSI-only		
			and 6 months.	group: 96% vs. 80%, (p <0.001). At 6		
		Mean (\pm SD) age 42 (\pm 13) for		months, CSI+TSC group significantly		
		CSI+TSC group and 45 (±12)		higher mean (±SD) reduction of		
		for CSI only group.				

				QuickDASH score vs. CSI only group:		
				74 (±15) vs. 66 (±18), (p <0.001).		
Mehdinasab	4.0	N=73 patients (9 males, 64	Injection Group- Injection of	Overall success rate at final follow-up	"Support of the wrist with casting alone had less	Data suggest casting the wrist plus
2010		females) with de Quervain's	methylprednisolone acetate	(6 months) 86.4% in injection group	favorable outcome in de Quervain's tenosynovitis.	methylprednisolone injections was beneficial in
		tenosynovitis. Mean age was	in first dorsal compartment	and 36% in casting group. Difference	Adding methylprednisolone acetate injection into the	the treatment of de Quervain's tenosynovitis
RCT		32.6 years.	of wrist followed by wrist	significant (p <0.001) with regards to	_rst dorsal compartment of the wrist is necessary for	over casting alone measured by improvement in
			thumb spica cast $(n = 37)$ vs.	final VAS pain score at 6 months: 6.70	more optimal results."	wrist pain, tenderness and Finkelstein test.
No mention of			Casting Group- Casting only	vs. 17.3. Both groups showed		
sponsorship or			(n = 36). Follow-up for 6	significant differences in VAS pain		
COI.			months,	score and cure rate vs. baseline (p		
				<0.05).		

Evidence for the Use of NSAIDs for Extensor Compartment Tenosynovitis There are 2 high-(1115, 1116) and 1 moderate-quality (1117) RCTs incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Extensor Compartment Tenosynovitis, De Quervain Disease, De Quervain Stenosing Tenosynovitis, Intersection Syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 3 articles in PubMed, zero in Scopus, 2 in CINAHL, zero in Cochrane Library, 163 in Google Scholar, and zero from other sources. We considered for inclusion 3 from PubMed, zero from Scopus, zero from CINAHL, and zero from Cochrane Library, zero Google Scholar, and zero from other sources. Of the 2 articles considered for inclusion, 3 randomized trials and zero systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Interest (COI)						
				Diclofenac Gel vs. Placet)0	
May 2007 RCT	6.5	N = 42 (36 males/ 6 females) with Kayakers in 5-day marathon. Mean age: 36±12 years	Diclofenac 2.5g 1% gel vs. placebo gel applied 3 times before each day's race. All received ice, massage, stretches, night bandage.	Pain higher on diclofenac than placebo gel especially in days 2 and 3. Comparisons with day 1: 2 (1.7), 3 (0.5), 4 (-0.1), 5 (-0.9).	"[S]tandard treatment appears to be sufficient for the management of wrist extensor tenosynovitis during competition."	Applications from kayaking marathon to occupational settings unclear. May be more analogous to acute, unaccustomed forceful use. Applications not throughout day may limit conclusions.
	1			NSAIDs vs. Placebo		
Mazieres 2005	10.0	N = 172 (98 female/74 male) with tendinitis of	Ketoprofen patch $(n = 87)$ vslacebo $(n = 85)$.	Changes from baseline in pain on daily activity (100mm VAS) in ketoprofen vs.	"This trial suggested that a 3-14 day course of treatment by ketoprofen patch is useful in nonarticular	Many diagnoses included and results not stratified by diagnosis.
RCT		upper or lower limbs. Age 18-70 years.		placebo: D0: 69.1±12.9 vs 70.1±11.5 p = 0.5876; D3-4: 48.6±23.2 vs.	rheumatisms, the duration of treatment depending on the results obtained."	

No mention of				56.1±20.0 p = 0.0491; D7±1: 30.8±23.8		
sponsorship or				vs. 44.3±25.6 p = 0.0013; D14±2:		
COI.				25.1±25.9 vs. 36.4±27.6 p = 0.0146.		
				Injection with vs. without N	SAID	
Jirarattanaphochai	9.0	N = 160 (144 female/16)	Injection 10mg of	No significant differences reported	"[S]teroid injection alone was safe and effective in the	Data suggest nimesulide does not enhance
2004		male) with de Quervain	triamcinolone acetonide and	between the nimesulide and placebo	treatment of de Quervain's disease, but the oral	effectiveness of a single triamcinolone injection
		disease, positive Finkelsein	0.5mL of 1% lidocaine and	groups for VAS pain scores, success	administration of nimesulide did not provide any	in de Quervain's disease treatment. Disease
RCT		test, radial styloid	either 200mg daily oral	rates, adverse reactions and probability	additional benefit beyond that of the injection."	recurrence was correlated to the presence of
		tenderness, pain on first	nimesulide group ($= 80$) vs.	of recurrence.		crepitation in the first dorsal compartment at
No sponsorship.		extensor compartment with	placebo control group (n =			thumb extensor abduction.
One or more		thumb abduction or	80). Follow-up at 1 week, 6,			
authors received		extension. Mean (±SD) age	12, 18 and 24 months.			
grants or outside		48.98 (±9.10) for				
funding from		nimesulide group; 46.87				
Faculty of		(±12.79) placebo.				
Medicine, Khon						
Kaen University.						

Evidence for the Use of Exercise - Extensor Compartment Tenosynovitis

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following term Exercise, Physical Activity, Extensor Compartment Tenosynovitis, De Quervain Disease, De Quervain's Stenosing Tenosynovitis, Intersection Syndrome, controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion zero articles in PubMed, zero in Scopus, 1 in CINAHL, 1 in Cochrane Library, zero in Google Scholar and zero in other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Iontophoresis - Extensor Compartment Tenosynovitis

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Iontophoresis, Extensor Compartment Tenosynovitis, De Quervain Disease, De Quervain's Stenosing Tenosynovitis, Intersection Syndrome; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomized, review, retrospective, and prospective studies. We found, reviewed and considered for inclusion Zero articles in PubMed, Zero in Scopus, Zero in CINAHL, Zero in Cochrane Library, 25 in Google scholar and zero in other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Acupuncture - Extensor Compartment Tenosynovitis

There is 1 moderate-quality RCT on acupuncture.(1120) (Hadianfard 14) There are no quality studies incorporated into this analysis for manipulation and mobilization or massage.

Manipulation & Mobilization:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Manipulation and Mobilization, Extensor Compartment Tenosynovitis, De Quervain Disease, De Quervain's Stenosing Tenosynovitis, Intersection Syndrome; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion Zero articles in PubMed, Zero in Scopus, Zero in CINAHL, Zero in Cochrane Library, 169 in Google Scholar, and zero other sources. Zero articles met the inclusion criteria.

Acupuncture:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms; Acupuncture, Extensor Compartment Tenosynovitis, De Quervain's Stenosing Tenosynovitis, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1 articles in PubMed, 6 in Scopus, 0 in CINAHL, and 2 in Cochrane Library, and 206 from Google Scholar. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 1 from Cochrane Library and 0 from other sources. Of the 3 articles considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

Massage:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Massage, Massage Therapy, Extensor Compartment Tenosynovitis, De Quervain Disease, De Quervain Stenosing Tenosynovitis, Intersection Syndrome; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion Zero articles in PubMed, 38 in Scopus, 1 in CINAHL, 1 in Cochrane Library and 121 in other sources. Zero articles met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	(0-11)	_				
Hadianfard	5.0	N= 35 (6 Males	Acupuncture group-	At the last follow-up the Q-DASH score	"We demonstrated short-term	Acupuncture and Glucocorticosteroid related.
2014		and 24 Females)	Received 5 acupuncture sessions of 30 minutes	decreased by 55.1 in the injection group vs.	improvement of pain and function in	Data suggests methylprednisolone injections
		patients with	duration	54.6 in the acupuncture group. No	both groups.	somewhat better than acupuncture for improved
RCT		clinical diagnosis	(N=18)	significant differences between groups. The	Although the success rate was	pain and function in deQuervain's tenosynovitis
		of De Quervain's	Vs.	difference between baseline and final VAS	somewhat higher with corticosteroid	although both groups improved from baseline at
Supported by		tenosynovitis.	Injection Group- 1 methylprednisolone acetate	score decreased significantly between	injection, acupuncture can be	2 and 6 weeks.
Vice-		Mean age was	injection in the first dorsal compartment of the wrist	groups, but was not significant between	considered as an alternative option	
Chancellery of		40.7 years.	(N=17)	groups (p>0.05).	for treatment of De Quervain's	
Research and					Tenosynovitis."	
Technology of			Follow-up for 6 weeks.			
Shiraz						
University						
of Medical						
Sciences,						
Shiraz, Iran.						
No mention of						
COI.						

Evidence for the Use of Glucocorticosteroid Injections for Wrist Compartment Tendinoses

There are 2 high-(1079, 1115) and 5 moderate-quality (1113, 1114, 1120, 1126, 1135) RCTs incorporated in this analysis. There are 3 low-quality RCTs and 1 longitudinal study (1121, 1122, 1132, 1136) in Appendix 2.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Glucocorticosteroid injection, corticosteroid injection, glucocorticoids, extensor compartment tenosynovitis, de Quervain's stenosing tenosynovitis, and intersection syndrome, de Quervain disease; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 10 articles in PubMed, 43 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 19 in Google Scholar, and 2 from other sources. We considered for inclusion 7 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 2 from other sources for inclusion, 7 randomized trials and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: glucocorticoids, glucocorticosteroids, flexor tendon entrapment, tenosynovitis, trigger finger disorder, trigger thumb, and trigger digit; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 5 articles. Of the 5 articles we considered for inclusion 1. Of the 1 considered for inclusion, 0 are randomized controlled trials and 1 systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
					Glucocort	ticosteroid vs. Salin	e Injections			
Jirarattanapho chai 2004 (score=10.5)	Glucocortico steroid	RCT	No sponsorship. COI: One or more authors received grants or outside funding from the Faculty of Medicine, Khon Kaen University.	N = 160 with de Quervain disease, positive Finkelsein test, radial styloid tenderness, pain on first extensor compartment with thumb abduction or extension.	Mean Age: 47.9 years; 16 males, 144 females.	Injection of 10mg of triamcinolone acetonide and 0.5mL 1% lidocaine and either 200mg daily oral nimesulide group (n = 80) vs. placebo control group (n = 80). Both groups received allocated treatment for 7 days.	Follow-up at 1 week, 6, 12, 18 and 24 months.	No significant differences reported between the nimesulide and placebo groups for VAS pain scores, success rates, adverse reactions and probability of recurrence.	"[S]teroid injection alone was safe and effective in the treatment of de Quervain's disease, but the oral administration of nimesulide did not provide any additional benefit beyond that of the injection."	Data suggest nimesulide does not enhance effectiveness of a single triamcinolone injection in de Quervain's disease treatment. Also, disease recurrence was correlated to the presence of crepitation in the first dorsal compartment at thumb extensor abduction.
Peters- Veluthama- ningal 2009 (score=7.5)	Glucocortico steroid	RCT	No mention of sponsorship or COI.	N = 21 clinical diagnosis of de Quervain's with Finkelstein's or crepitations on exam.	Mean age: 51.8 years; 8 males, 13 females.	NaCI, 1-2 injection 1ml triamcinolonacet onide (n = 12) vs. placebo or TCA, 1mL NaCI at site of maximal tenderness. Second injection by different MD at 2 weeks if not satisfied with results; 12 month follow-up (n = 9).	Follow-up at 1, 3, 6, and 12 months.	Short-term results of mean pain severity in the past week of saline 4.3 vs. corticoid 1.3. Patients much better or better: 2/12 (33%) saline vs. 7/9 (77.8%), p = 0.047. Maintained improvement over 12 months.	"One or two local injections of 1 ml triamcinolonacetoni de 10 mg/ml provided by general practitioners leads to improvement in the short term in participants with de Quervain's tenosynovitis when compared to placebo."	Under enrollment. Small sample size. Considerable differences nevertheless suggest efficacy.
					Glucocortico	steroid with Norma	l vs. Acidic pl	н		
Goldfarb, 2007 (score=8.0)	Glucocortico steroid	RCT	No sponsorship or COI.	N = 125 with trigger finger	Mean age: 59±15 years; 32	Balanced group, methylprednisol one acetate	Follow-up at 5 min, daily for a	All immediately responded to injection. Pain	"A pH-balanced injection did not significantly	No placebo group. Some trends in baseline differences of unclear significance. Purpose to assess steroid

NYS WCB MTG – Hand, Wrist and Forearm Injuries 303

				or de Quervain's.	males, 93 females.	40mg, lidocaine, bupivacaine alone (n = 68) vs. Standard group or injection except balanced solution and neutral pH (n = 57); 6 week follow-up.	week, and at 6 weeks.	rebounded at one day, and then gradually decreased. 23/68 (33.8%) in balanced group vs. 18/57 (31.6%) in acidic pH group had flare reactions (NS).	decrease the risk of a flare reaction."	flare and whether normal pH could reduce this adverse effect. Study suggests steroid flare unrelated to pH.
					Glucocortic	osteroid with vs. w	ithout NSAID			
Jirarattanapho chai, 2004 (score=10.5)	Glucocortico steroid	RCT	No sponsorship. COI: One or more authors received grants or outside funding from the Faculty of Medicine, Khon Kaen University.	N = 160 patients with de Quervain disease, positive Finkelsein test, radial styloid tenderness, pain on first extensor compartment with thumb abduction or extension.	Mean age: 47.9 years; 16 males, 144 females.	Injection of 10mg of triamcinolone acetonide and 0.5mL of 1% lidocaine and either 200mg daily oral nimesulide group (n = 80) vs. Placebo control group (n = 80). Both groups received allocated treatment for 7 days.	Follow-up at 1 week, 3 weeks, and 6, 12, 18, and 24 months.	Success rates after 1 injection: 67% nimesulide vs. 68% placebo (NS). Overall success 95% both groups. Risk for recurrence doubles with crepitation (RR = 2.13, 95% CI 1.19- 3.8).	"Supplemental oral administration of the nonsteroidal anti-inflammatory drug nimesulide does not improve the effectiveness of a single injection of triamcinolone acetonide in the treatment of de Quervain disease."	No placebo; no recording of pain scores for purposes of evaluating reduced pain after injection. Variable follow-up. Data suggest NSAID provides no incremental benefit to prevent recurrence in addition to steroid injection.
					Injec	tion vs. Other Trea	tments			
Hadianfard, 2014 (score=5.0)	Glucocortico steroid	RCT	Sponsored by Vice-Chancellery of Research and Technology of Shiraz University of Medical Sciences, Shiraz, Iran. No mention of COI.	N= 30 patients with clinical diagnosis of De Quervain's tenosynovitis.	Mean age: 40.7 years; 6 males, 24 females.	Acupuncture group: Received 5 acupuncture sessions of 30 minutes duration (n = 15) vs. Injection Group: 1 methylprednisol one acetate injection in first	Follow-up at baseline, 2 weeks, and 6 weeks.	At last follow-up Q- DASH score decreased by 55.1 in injection group vs. 54.6 in acupuncture group. No significant differences between groups. Difference between baseline and final VAS score	"We demonstrated short-term improvement of pain and function in both groups. Although the success rate was somewhat higher with corticosteroid injection, acupuncture can be	Data suggests methylprednisolone injections somewhat better than acupuncture for improved pain and function in deQuervain's tenosynovitis although both groups improved from baseline at 2 and 6 weeks.

						dorsal compartment of wrist (n = 15).		decreased significantly between groups, but not significant between groups (p> 0.05).	considered as an alternative option for treatment of De Quervain's Tenosynovitis."	
Kume, 2012 (score=4.5)	Glucocortico steroid	Randomiz ed prospectiv e trial	No sponsorship or COI.	N = 44 wrists patients with diagnosed de Quervain's disease	Mean age: 44.8 years; 5 males, 39 females.	Ultrasound guided injection group (n = 22) vs. Manual injection group (n = 22). Both groups received 20 mg of triamcinolone and 1 ml of 1% lidocaine.	Follow-up at baseline and 4 weeks.	Reduction in mean VAS pain from baseline to 4 weeks significantly higher in ultrasound guided group vs. manual injection group: 80.3 to 25.6 vs. 78.0 to 58.2, (p = 0.0007). No adverse reactions related to treatment for either group.	"[U]S-guided injection targeting the EPB of dQD with septation was found to be more effective than clinically guided manual injection."	Data suggest US guided injection targeting EPB in deQuervain's patients with septation is better than manual injection although both groups showed improvement in pain on VAS.
Mardani-Kivi 2014 (score=4.0)	Glucocortico steroid	Randomiz ed prospectiv e trial	No sponsorship or COI.	N = 67 patients with extensory compartment tenosynovitis, or de Quervain tendinopathy, radial pain of the wrist, a positive Finkelstein test, tenderness of the first dorsal compartment and a pain score >6	Mean age: 47 years; 12 males, 55 females.	Corticosteroid injection (CSI) and thumb spica cast (TSC) (3 weeks casted) group (n = 33) vs. Corticosteroid injection only group (n = 34). Both groups 40mg of methylprednisol one acetate with 1cc of lidocaine 2%.	Follow-up at 3 weeks and 6 months.	At 3 weeks and 6 months follow-up, CSI+TSC group had significantly higher percentages of success compared to TSC alone group: 3 weeks-97% vs. 76%, ($p = 0.027$), 6 months- 93% vs 69%, ($p = 0.021$). At 6 months follow- up, CSI+TSC group had significantly higher percentages of decreased VAS scores vs. CSI-only group: 96% vs. 80%, ($p < 0.001$). At 6 months, CSI+TSC group significantly higher mean (±SD) reduction of QuickDASH score vs. CSI only group:	"The results of this study indicated that the CSI + TSC treatment method was superior to CSI alone with regards to success rate and functional outcomes."	Differences in success percentages at follow up due to dropout. Data suggest a combination of spica casting and corticosteroid injection was superior to injection alone.

NYS WCB MTG – Hand, Wrist and Forearm Injuries 305

								74 (±15) vs. 66 (±18), (p <0.001).		
Mehdinasab 2010 (score=4.0)	Glucocortico steroid	RCT	No mention of sponsorship or COI.	N= 73 with de Quervain's tenosynovitis.	Mean age: 31.2 years; 9 males, 64 females.	Injection Group- Injection of methylprednisol one acetate in first dorsal compartment of wrist followed by wrist thumb spica cast (n = 37) vs. Casting Group- Casting only (n = 36).	Follow up monthly for 6 months.	Overall success rate at final follow-up (6 months) 86.4% in injection group and 36% in casting group. Difference significant (p <0.001) with regards to final VAS pain score at 6 months: 6.70 vs. 17.3. Both groups showed significant differences in VAS pain score and cure rate vs. baseline (p <0.05).	"Support of the wrist with casting alone had less favorable outcome in de Quervain's tenosynovitis. Adding methylprednisolon e acetate injection into the _rst dorsal compartment of the wrist is necessary for more optimal results."	Data suggest casting the wrist plus methylprednisolone injections was beneficial in the treatment of de Quervain's tenosynovitis over casting alone measured by improvement in wrist pain, tenderness and Finkelstein test.

Evidence for the Use of Surgery - Extensor Compartment Tenosynovitis There is 1 moderate-quality RCT incorporated into this analysis. {Abrisham, 2011 #3501} (Abrisham 11)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: extensor compartment tenosynovitis, de Quervain's stenosing tenosynovitis, and intersection syndrome, de Quervain disease; Surgical release; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 30 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 Google Scholar, and 0 from other sources. In randomized trials and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: surgery, surgical release, surgery release, flexor tendon entrapment, tenosynovitis, trigger finger disorder, trigger thumb, and trigger digit; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 1 articles. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
		Extensor	Compartment Teno	synovitis (Inclu	ding De Quer	vain's Stenosing 7	Fenosynovitis	and Intersection Sync	lrome)	
Abrisham 2011 (score- 5.5)	Surgery	RCT	No sponsorship or COI.	N = 120 patients with positive Finkelstein's tests and no response to conservative treatment for three months.	years; 24	Transverse Incision (N = 60) vs Longitudinal Incision (N =60).	Followed for three months. An additional follow up of 2 weeks to remove sutures and finally three months for final assessmen t	Complications of surgical treatment with longitudinal incision were lower than the transverse incision. Longitudinal incision had five hypertrophic scars and no injury to nerve or vein reported. Transverse incision had 3 lesions to superficial branch of radial nerve, five injuries to vein in snuffbox area, and five hypertrophic scars.	"Longitudinal incision can be recommended for surgical treatment of De Quervain disease."	Data suggest longitudinal incision is superior to transverse incision for treatments of De Quervain tenosynovitis in terms of post-op complication. After a period of 3 months, 14 patients (8 transverse and 6 longitudinal) did not cooperate in follow up from the first time.

EVIDENCE FOR THE USE OF ELECTRODIAGNOSTIC STUDIES - Ulnar Nerve Entrapment at the Wrist

THERE ARE 4 MODERATE-QUALITY STUDIES INCORPORATED INTO THIS ANALYSIS.(1139-1142)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Electrodiagnostics nerve conduction study, electromyography, Ulnar Nerve Entrapment at the Wrist (Including Guyon's Canal Syndrome and Hypothenar Hammer Syndrome) diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 0 articles in PubMed, 48 in Scopus, 2 in CINAHL, 3 Cochrane Library, and 350
NYS WCB MTG – Hand, Wrist and Forearm Injuries 308

from Google Scholar. We considered for inclusion 0 from PubMed, 2 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 2 from other sources. Of the 4 articles considered for inclusion 4 diagnostic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score	Study Design	Population/ Case Definition	Investigative Test	Gold Standard / Comparative Test	Results	Conclusion	Comments
Lander 2007	6.0	Cross- sectional study	N = 162 referred for hand-arm vibration syndrome or HAVS assessment at specialist occupational health clinic, plus history of exposure to vibrating tools. Mean age onset of symptoms 38.4 (9.0).	Nerve conduction studies (NCS) and current perception threshold (CPT). Using Stockholm sensorineural or SSN scale and quantitative sensory tests (QSTs) measuring vibration and temperature perception.	NCS vs. CPT tests for both upper extremities. Perception measured at 5 Hz, 250 Hz and 2 kHz at index finger for median nerve and at little finger for ulnar nerve.	160 (99%) complained of numbness and/or tingling. CPT in left hand abnormal in 99 subjects, In left hand, overall CPT results ($x^2 = 9.87$, $p = 0.007$) and results from ulnar nerve ($x^2 = 11.27$, p = 0.004); significantly associated with SSN staging. CPT and NCS results significantly associated for each of ulnar, median and overall nerve results in right hand and left hand, ($p = 0.0001$).	"Workers being assessed for HAVS should have nerve conduction testing to detect neuropathies proximal to the hand."	Data suggests NCS and CPT significantly associated for the overall results and for ulnar and median results in each hand.
Hirata 2007	5.0	Age- matched	N = 75 males and controls with hand-arm vibration syndrome (VS). Mean age 58.7 years.	Sensory nerve conduction velocities (SCVs); 0.1-ms rectangular electric pulses at 1 Hz	Associations between frequency of slowed SCV and reduced AMP and frequency of neuropathy types	In median nerve, SCVfp-fd, SCVw-e, AMPw-fp and AMPw-fd significantly reduced vs. controls, ($p = 0.005, 0.011$, 0.024, 0.013). In ulnar nerve, SCVfp'-fd', SCVw'-fp', AMPw'-fp', AMPw'-fd', AMPfo'-fp' and AMPup-fp' significantly reduced in VS patients vs. controls ($p =$ 0.000, 0.015, 0.007, 0.000, 0.027 and 0.008). In radial nerve, AMPfo'-th significantly reduced in VS patients vs controls, ($p = 0.003$).	"These findings suggest that VS affects all three nerves in the hand. According to classification results, the main disorders of peripheral nerves comprise digital neuropathy."	Small sample size. Data suggests that vibration syndrome affects all three hand nerves and neuropathy due to VS may in fact represent a multi-focal neuropathy.
Alaranta 1977	4.5	An automatic analysis of the electromyog raphic activity.	N = 38 forest workers and pneumatic- tool operators. Male workers	Velocity of lower motor fibers (CVSF) of ulnar nerve and motor distal latency(DL) of median nerve	Subgroup 0 = normal conduction velocity of CVSF and distal latency DL Subgroup 1 = Only one CVSF of ulnar nerve or DL Subgroup 2 = polyneuropathic	Exposed workers had statistically significantly lower CVSFs of ulnar nerve ($p < 0.001$) and dSCVs of median nerve ($p < 0.001$), longer DLs of median nerve ($p < 0.01$), and slightly slower dSCVs of ulnar nerve ($p < 0.05$) and SCVs of median nerve ($p < 0.05$) vs. none exposed, as a group.	"In accordance with previous reports the CVSF of the ulnar nerve was a potent factor in differentiating the vibration exposed workers from those nonexposed."	Data suggests conduction velocity of slower motor fibers of ulnar nerve, distal sensory conduction velocity and motor distal latency of median nerve most sensitive measurement for separation of those with traumatic vasospastic disease from those not exposed.

			aged 26 to 61 years.		findings vs vibration syndromes, at least 2 abnormal CVSF or DL findings.			
Chatterjee 1982	4.0	Exploratory /observatio nal	N = 31 rock- drillers and controls. Age range 24-57, mean age 37.9 (9.6).	Exploratory electromyography; Disa-type 14 A 30 3-channel electromyography with a 14 G 01 digital average capable of averaging up to 1024 successive stimuli.	Motor and sensory conduction velocities in median and ulnar Nerves; and latency, duration, and the amplitude of evoked action potentials measured.	Significant difference between groups, in 1st (p <0.05), 2nd (p <0.01), fourth (p <0.05) digits supplied by median nerve in right hand and first and fourth digits, (p < 0.05). Sensory duration varied from 2.1msec to 2.6 msec in right hand and 1.9 msec to 2.2 msec in left hand vs. controls 1.8 msec and 2.1 msec. Vibration groups significant in first (p < 0.05), second (p < 0.05), third (p < 0.01), fourth (p < 0.01) digits supplied by median nerve and other half of fourth digit (p < 0.05) supplied by ulnar nerve in right hand vs. controls.	"The results showed that apart from sensory duration the control group had values that were closest to the students while the vibration group had values furthest away."	Small sample. Data suggests neurophysiological changes are frequent in those who regularly use vibrating tools and with the exception sensory duration, the median nerve is affected more than the ulnar nerve.

Evidence for the Use of MRI and Ultrasound - ULNAR NERVE ENTRAPMENT AT THE WRIST

There are no quality studies incorporated into this analysis.

MRI:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Magnetic resonance imaging, MRI, Ulnar Nerve Entrapment, Guyon's Canal Syndrome, Hypothenar Hammer Syndrome, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 88 articles in PubMed, 0 in Scopus, 0 in CINAHL, 3 in Cochrane Library, 85 from Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Ultrasound:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ultrasound, Ultrasonography, Ulnar Nerve Entrapment at the Wrist (Including Guyon's Canal Syndrome and Hypothenar Hammer Syndrome), diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 69 articles in PubMed, 2 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 95 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of CT - ULNAR NERVE ENTRAPMENT AT THE WRIST There are no quality studies incorporated into this analysis. A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: CT, CAT, X-Ray CT, Ulnar Nerve Entrapment, Guyon's Canal Syndrome, Hypothenar Hammer Syndrome, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 Cochrane Library, and 300 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Activity Modification FOR ULNAR NERVE COMPRESSION AT THE WRIST There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Rest, resting, Ulnar Nerve Entrapment at the Wrist (Including Guyon's Canal Syndrome and Hypothenar Hammer Syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 1 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 0 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 1 articles considered for inclusion, 0 randomized trials and 1 systematic study met the inclusion criteria.

Evidence for the Use of Splints for ULNAR NERVE COMPRESSION AT THE WRIST There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: splint, splints, splinting; ulnar nerve compression syndromes, ulnar nerve entrapment, wrist, guyon's canal syndrome, guyon syndrome, ulnar tunnel syndrome, hypothenar hammer syndrome; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 68 articles in PubMed, 6 in Scopus, 0 in CINAHL, 9 in Cochrane Library, 283 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of NSAIDs for Ulnar Nerve Compression at the Wrist There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDs, acetaminophen Ulnar Nerve Entrapment at the Wrist (Including Guyon's Canal Syndrome and Hypothenar Hammer Syndrome; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 150 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Glucocorticosteroids for Ulnar Nerve Compression at the Wrist There are no quality studies incorporated into this analysis. A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Glucocorticosteroids, glucocorticoids, Ulnar Nerve Entrapment at the Wrist (Including Guyon's Canal Syndrome and Hypothenar Hammer Syndrome ; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 3784 in Scopus, 0 in CINAHL, 1 in Cochrane Library, 150 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 1 articles considered for inclusion, 0 randomized trials and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: glucocorticoids, glucocorticosteroids, ulnar nerve compression syndromes, and ulnar nerve entrapment; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 2 articles. Zero articles met the inclusion criteria.

Evidence for the Use of Physical Methods/Rehabilitation for Ulnar Neuropathy at the Wrist There are no quality studies incorporated into this analysis.

Iontophoresis

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: iontophoresis; ulnar nerve compression syndromes, ulnar nerve entrapment, wrist, guyon's canal syndrome, guyon syndrome, ulnar tunnel syndrome, hypothenar hammer syndrome; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 0 in Scopus, 0 in CINAHL, 2 in Cochrane Library, 41 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria

Ice

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ice; Self Application, Ulnar Nerve Compression Syndromes, Ulnar Nerve Entrapment, Wrist, Guyon's Canal Syndrome, Guyon Syndrome, ulnar tunnel syndrome, Hypothenar Hammer Syndrome; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 1 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 350 in Google Scholar and 0 in other sources. Zero articles met the inclusion criteria.

Heat

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Heat; Self Application, Ulnar Nerve Compression Syndromes, Ulnar Nerve Entrapment, Wrist, Guyon's Canal Syndrome, Guyon Syndrome, ulnar tunnel syndrome, Hypothenar Hammer Syndrome, controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 1 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 730 in Google Scholar, and 0 in other sources. Zero articles met the inclusion criteria.

Manipulation/Mobilization

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: manipulation, mobilization, Ulnar Nerve Entrapment at the Wrist including Guyon's Canal Syndrome and Hypothenar Hammer Syndrome, controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in

CINAHL, 0 in Cochrane Library, and 0 in Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 0 articles considered for inclusion, 0 randomized trials and 0 systematic studies met the inclusion criteria.

Massage

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Massage, Ulnar Nerve Compression Syndromes OR Ulnar Nerve Entrapment, Wrist, Or Guyon Syndrome or Guyon's Canal Syndrome or ulnar tunnel syndrome or Hypothenar Hammer Syndrome; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, and 0 in Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 0 articles considered for inclusion, 0 randomized trials and 0 systematic studies met the inclusion criteria.

Acupuncture

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: acupuncture, Ulnar Nerve Entrapment at the Wrist (Including Guyon's Canal Syndrome and Hypothenar Hammer Syndrome) ;controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, and 0 in Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar and 0 from other sources. Of the 0 articles considered for inclusion, 0 randomized trials and 0 systematic studies met the inclusion criteria.

Evidence for the Use of Exercise for Ulnar Neuropathy at the Wrist There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: exercise, exercising, physical activity; ulnar nerve compression syndromes, ulnar nerve entrapment, wrist, guyon's canal syndrome, guyon syndrome, ulnar tunnel syndrome, hypothenar hammer syndrome; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 9 articles in PubMed, 3 in Scopus, 0 in CINAHL, 16 in Cochrane Library, 468 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Surgery for Ulnar Neuropathy at the Wrist There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: surgery, surgeries, surgical decompression; Ulnar Nerve Compression Syndromes, Ulnar Nerve Entrapment, Wrist, Guyon's Canal Syndrome, Guyon Syndrome, ulnar tunnel syndrome, Hypothenar Hammer Syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomiz, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 224 articles in PubMed, 12 in Scopus, 3 in CINAHL, 12 in Cochrane Library, 628 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: surgical decompression, ulnar nerve compression syndromes, and ulnar nerve entrapment; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomiz, randomly; systematic, retrospective, and prospective studies to find 97 articles. Of the 97 articles, we considered for inclusion 1. Of the 1 considered for inclusion, 1 is a randomized controlled trial and 0 are systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
Schmidt 2015 (score: 4.5)	Ulnar Nerve Entrapment at the Wrist	RCT	No mention of sponsorship or COI.	N = 54 patients and 56 arms with cubital tunnel syndrome. However, methods only defined above/below elbow conduction slowing, without inching technique	Mean age: 49.2 years; 32 males, 22 females	Endoscopic Neurosurgical decompression procedure (N =29) vs Standard Open Decompressio n procedure (N =27)	Follow- ups conducted at 3, 6, 12 and 24 months	There were no significant differences between both methods concerning numeric analog scale (P=.84) and Bishop-Score (early follow-up P=1.00, long-term follow-up P=.47). Additionally there was no difference between the methods concerning wound pain (P=.56) and the postoperative electrophysiological findings (P=.62).	"The endoscopic technique showed no additional benefits to open surgery. We could not detect relevant compressions distal to the FCU arch. Therefore, and extensive far distal endoscopic decompression is not routinely required. The open decompression remains the procedure of choice at our institution."	Methods did not differentiate whether included only cubital tunnel or also condylar groove ulnar neuropathy. No meaningful differences between groups, both showed improvements in outcomes over time. Significantly more hematomas in the endoscopic treatment vs. open treatment groups.

Evidence for the Use of Electrodiagnostic Studies FOR RADIAL NERVE MOTOR NEUROPATHY

There are no quality studies incorporated into this analysis. There are 2 low-quality studies in Appendix 2.(1146, 1147) (Spindler 90; Verhaar 91)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: electrodiagnostic study, nerve conduction study, electromyography, radial nerve entrapment, radial tunnel syndrome, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 6 articles in PubMed, 86 in Scopus, 0 in CINAHL, 1 in Cochrane Library, and 160 from Google Scholar. We considered for inclusion 2 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 3 articles considered for inclusion 2 diagnostic studies met the inclusion criteria.

Evidence for the Use of Ultrasound FOR RADIAL NERVE MOTOR NEUROPATHY There is 1 moderate-quality study incorporated into this analysis.(446)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ultrasound, diagnostic, diagnostic, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 7 articles in PubMed, 93 in Scopus, 0 in CINAHL, 0 in Cochrane Library, and 8540 from Google Scholar, and 0 from other sources. We considered for inclusion 2 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. One article met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score	Ν	Area	Diagnoses	Type of Ultrasound	CT used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Lo 2008 Diagnostic No mention of sponsorship or COI.	7.0	10 (3 female/7 male) with suspected radial neuropathy	HWF	Radial nerve entrapm ent	Medtronic Keypoint EMG Machine	-	+	+	-	-	-	-	-	Ultrasound correctly identified all 6 with radial neuropathy. Significantly less mean (SD) time for US exam time vs. NCS/EMG: 6.1 (1.1) minutes vs. 30.3 (2.7), p <0.001.	"US is of value as a rapid diagnostic adjunct for the localization of radial nerve entrapment."	Data suggests US has adjunct value along with EP testing for radial entrapment neuropathy.Small sample. Data suggest US is beneficial as an adjunct in diagnosing radial nerve entrapment and takes less time than EP testing.

Evidence for the Use of Splints for RADIAL NERVE COMPRESSION NEUROPATHY

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: splint, splinting, thumb spica, radial nerve entrapment, radial tunnel syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 3 in Scopus, 2 in CINAHL, 7 in Cochrane Library, 180 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of NSAIDs for RADIAL NERVE COMPRESSION NEUROPATHY There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDs, acetaminophen, nonsteroidal anti-inflammatory, radial nerve entrapment, radial tunnel syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 10 in Scopus, 0 in CINAHL, 2 in Cochrane Library, 170 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of MRI and Ultrasound for Radial Nerve Compression at the Wrist There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: oral, injection, intravenous, glucocorticosteroid, corticosteroids, steroid, radial nerve entrapment, radial tunnel syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 53 in Scopus, 2 in CINAHL, 5 in Cochrane Library, 236 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 2 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 3 articles considered for inclusion, 0 randomized trials and 3 systematic studies met the inclusion criteria.

Evidence for the Use of Physical Methods/Rehabilitation for Radial Neuropathy at the Wrist

There are no quality studies incorporated into this analysis.

Ice:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ice; Self Application of Ice, Radial Nerve Entrapment, Radial Tunnel Syndrome, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 6 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 5670 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Heat:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Heat; Self Application of Heat, Radial Nerve Entrapment, Radial Tunnel Syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 2384 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Manipulation & Mobilization:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Manipulation, mobilization, Radial Nerve Entrapment, Radial Tunnel Syndrome; controlled trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, randomized, randomized, of in Scopus, 0 in CINAHL, 0 in Cochrane Library, and 0 in Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 0 articles considered for inclusion, 0 randomized trials and 0 systematic studies met the inclusion criteria.

Massage:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Massage, friction massage, Radial Nerve Entrapment, Radial Tunnel Syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized

Acupuncture:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Acupuncture, Radial nerve entrapment, Radial tunnel syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized,

Iontophoresis:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Iontophoresis, Radial Nerve Entrapment, Radial Tunnel Syndrome,; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 34 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 60 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Exercise for Radial Neuropathy at the Wrist There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: exercise, exercising, physical activity, radial nerve entrapment, radial tunnel syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 94 in Scopus, 0 in CINAHL, 7 in Cochrane Library, 16,630 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: surgical release, surgery release, surgery, surgical procedures, radial tunnel release, radial nerve entrapment, radial tunnel syndrome; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 6 articles in PubMed, 97 in Scopus, 8 in CINAHL, 10 in Cochrane Library, 423 in Google Scholar, and 0 from other sources. We considered for inclusion 2 from PubMed, 2 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 4 articles considered for inclusion, 0 randomized trials and 2 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: surgical release or surgery release, radial nerve entrapment, radial tunnel syndrome; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 4 articles. Zero articles met the inclusion criteria.

Evidence for the Use of Rheumatological Studies and Joint Aspiration There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Non-specific hand, wrist, and forearm pain, Arthocentesis, Joint Effusion, Nonspecific, Hydrarthrosis, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 0 articles in PubMed, 9 in Scopus, 1 in CINAHL, 6 in Cochrane Library, 50 from Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CinAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Electrodiagnostic Studies to evaluate non-specific hand, wrist, or forearm pain There is 1 low-quality study in Appendix 2.(1151) A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Electrodiagnostic, studies, Nerve conduction, study, NCS, Electromyography, EMG, Non-specific, hand, wrist, forearm, paint controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomization, randomly; systematic review, retrospective, and prospective studies. We found and reviewed 31 articles in PubMed, 10870 in Scopus, 298 in CINAHL, 183 from Google Scholar, and 7 in Cochrane Library. We considered for inclusion 1 from PubMed, 0 from Scopus, 1 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 11358 articles considered for inclusion, 1 randomized trials and 1 systematic studies met the inclusion criteria.

Evidence for the Use of X-rays for Evaluation of Non-specific Hand, Wrist, or Forearm Pain There is 1 moderate-quality study incorporated into this analysis.(1152)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: X-ray, Non-specific, HWF, pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 7 articles in PubMed, 332343 in Scopus, 0 in CINAHL, 0 in Cochrane Library and 277000 in other sources. We considered for inclusion 1 from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library and zero from other sources. Of the 1 articles considered for inclusion, 0 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year Study Type	Score	Number	Area of upper extremity	Diagnoses	Type of X-rays	CT used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Huellner 2013 Diagnostic	6.0	32	Hand and wrist	Non- specific hand or wrist pain.	Plain radio- graphs	X	х	x	x	-		x	20 months and 16 months (group depend ent)	Plain radio-graphs accuracy (25%-31%), sensitivity (24%-30%), and specificity (20%- 60%). PPV (66%-76%) SPECT/ CT diagnostics resulted in 44%-77% accuracy, 41%-74% sensitivity, and 60%-90% specificity. PPV (88%-98%)	SPECT/ CT resulted in the best imaging modality for non- specific hand and wrist pain. MRI showed better result when comparing typify-cation of lesion.	Data suggest inter-observer agreement for imaging non-specific wrist pain via SPECT/ CT good and only MRI better.

Evidence for the Use of Relative Rest for Acute Non-specific Hand, Wrist, or Forearm Pain

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: rest or relative rest, bed rest, nonspecific, non-specific, hand pain, wrist pain, and forearm pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized controlled trials, randomized, ran

Evidence for the Use of Splints for Acute or Subacute Non-specific Hand, Wrist, or Forearm Pain There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: splint, splints or splinting; nonspecific, non-specific, hand pain, wrist pain, forearm pain; controlled trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 43 in Scopus, 0 in CINAHL, 9 in Cochrane Library, 8,360 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Ice/Heat for Acute or Subacute Non-specific Hand, Wrist, or Forearm Pain There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: ice, icing; nonspecific, nonspecific, hand pain, wrist pain, forearm pain; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 11 in Scopus, 0 in CINAHL, 18 in Cochrane Library, 32,300 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: heat, heating, heat therapy, hot temperature; nonspecific, non-specific, hand pain, wrist pain, forearm pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 75 in Scopus, 0 in CINAHL, 45 in Cochrane Library, 269 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of NSAIDs/Acetaminophen for Acute or Subacute Non-specific Hand, Wrist, or Forearm Pain

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDs, acetaminophen, nonsteroidal anti-inflammatory, acetaminophen, ibuprofen, non-specific, hand, wrist, forearm, pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 83 in Scopus, 0 in CINAHL, 9 in Cochrane Library, 420 in Google Scholar, and 1 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 1 from other sources. Of the 3 articles considered for inclusion, 2 randomized trials and 1 systematic studies met the inclusion criteria.

Evidence for the Use of Physical or Occupational Therapy for Acute, Subacute, or Chronic Non-specific Hand, Wrist, or Forearm Pain There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms physical therapy, occupational therapy, nonspecific, non-specific, hand pain, wrist pain, forearm pain; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 13 articles in PubMed, 172 in Scopus, 8 in CINAHL, 3 in Cochrane Library, 150 in Google Scholar and 0 in other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Exercise for Acute, Subacute, or Chronic Non-specific Hand, Wrist, or Forearm Pain

There are 2 moderate-quality RCTs incorporated into this analysis.(1153, 1154) (

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library and Google Scholar without date limits using the following terms exercise, physical activity, nonspecific Hand, Wrist, Forearm Pain, controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random, random, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 14 articles in PubMed, 38 in Scopus, 1 in CINAHL, 3 in Cochrane Library, and 437 in Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 in Google Scholar and 0 from other sources. Of the 1 articles considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments		
Study Type Conflict of Interest	(0-11)							
(COI)								
van Eijsden-	5.0	N = 88 with non-specific	Postural exercise group. Received	No significant difference in decrease in pain between the	"Postural exercises showed no	Data suggest no significant differences		
Besseling 2008		upper limb disorders;	6 postural therapy sessions first 3	groups at 3 months (0.6 cm, 95% CI 0.0 to 1.2), 6 months	additional benefits to recovery when	between types of exercises (comparable		
RCT		Mean age PE group	weeks, then tapered to 3 sessions	(0.2, 95% CI –0.3 to 0.7), or at 12 months (0.1, 95% CI –	compared to strength and fitness	efficacy). Some baseline differences in		
_		33.3±7.7 and SFE group	in 3 weeks, 2 sessions in 2 weeks,	0.6 to 0.8)	exercise. Roughly 55% of patients	groups for potentially compromising		
Sponsored by		34.8±7.7.	then home exercise $(n = 44)$ vs.		reported being complaint free after	comparability.		
Research Stimulation		PE group Gender, M:F.	strength/fitness exercise group.		one year."			
Fund of University		(19:25)	Received 9 strength/fitness					
Hospital Maastricht,			therapy sessions first 3 weeks,					
Institute for		SFE group Gender M:F	then tapered to 6 sessions in 3					
Rehabilitation		(19:25)	weeks, 2 sessions in 2 weeks, and					
Research,			finally home exercise $(n = 44)$.					
Hoensbroek, The			Follow-up at baseline and months					
Netherlands. No			3, 6, and 12.					
mention of COI.								

Evidence for the Use of X-rays for scaphoid fractures There are 7 moderate-quality studies incorporated into this analysis.(1157-1163) (Herneth 01)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: x-ray, scaphoid fracture, diagnostic, diagnostic, sensitivity, specificity, positive predictive value, negative predictive value, predictive value, predictive value of tests, efficacy, efficiency, diagnostic, diagnostic, diagnostic, sensitivity, specificity, positive predictive value, negative predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 2 articles in PubMed, 934 in Scopus, 2 in CINAHL, 9 Cochrane Library, and 0 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 1 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 2 from other sources. Of the 3 articles considered for inclusion 3 diagnostic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interst (COI)	Score	Number	Area of Body	Diagnoses	Type of CT	X-ray used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes	Long term follow-up (mean when noted)	Results	Conclusion	Comments
allee 2011 agnostic	6.5	N = 34	Wrist	Suspected scaphoid fracture	Presence of sharp lucent line within trabecular bone pattern, break in continuity of cortex, sharp step in cortex, or dislocation of bone fragments		+	+	+	-	-	-	+	Follow-up for 6 weeks. CT imaging resulted in a diagnosis of 20 fractures in 17 patients. For scaphoid fractures there was a sensitivity of 67% and specificity of 96% with an accuracy of 91% in depicting scaphoid fractures. MRI showed sensitivity of 67% for scaphoid fracture, specificity 89% and accuracy 85%.	"CT and MRI had comparable diagnostic characteristics. Both were better at excluding scaphoid fractures than they were at confirming them, and both were subject to false-positive and false- negative interpretations. The best reference standard is debatable, but it is now unclear whether or not bone edema on MRI and small unicortical lines on CT represent a true fracture."	Data suggest comparabl e between CT and MRI for suspected scaphoid fractures.
emarsadeghi 2006 agnostic	5.5	N = 29, mean age 34 years	Wrist	Wrist trauma accompanied by severe pain over scaphoid with negative radiograph.	Multi-detector with 4-detector row scanner	+	+	+	+	-	-	-	-	At 6-week follow-up with radiographs, 11 of 29 (38%) had scaphoid fracture; 8 had cortical fracture; 3	"Multi- detector CT is highly accurate in depicting occult cortical scaphoid fractures but appears inferior to MR	Small sample. Data suggest similar performan ce efficacy between CT and

NYS WCB MTG – Hand, Wrist and Forearm Injuries 324

Fotiadou 2011	5.0	N = 34	Wrist	Wrist trauma,	16 multislice rows	+		_		had trabecular involvement. MR imaging identified all 11 scaphoid fractures: 100% sensitivity and 100% specificity. 2 of 8 cortical fractures could be seen: 38% sensitivity, 100% specificity and 55% accuracy. Multidetector CT identified 8 cortical scaphoid fractures: 100% sensitivity/10 0% sensitivity/10 0% sensitivity/10 0% sensitivity/10 0% secificity. No trabecular fractures detected. MRI vs. CT p = 0.25 scaphoid fractures; p = 0.03 cortical involvement. In 21 of 22	imaging in depicting solely trabecular injury. MR imaging is inferior to multidetector CT in depicting cortical involvement."	MRI for occult scaphoid fracture detection, but CT superior for cortical involveme nt detection.
Diagnostic	- · · •	mean age 23 years		both acute and chronic.	CT scanner					general hospital patients, MRI method of choice following x- rays. CT	MRI might be considered in patients with acute or chronic wrist injury, clinical dilemma and	sample. Data suggest similar efficacy between CT and

Temple 2005	4.5	N = 11	Wrist	Cadaveric	Sagital	+		+			performed in 1 case. At university hospital CT solely performed in 5/12 cases and was first method of choice in another 3 cases, followed by MRI. Bone injury detected in 17/34 cases. In 7/9 (77.8%) fracture not detected on initial radiographs. Ligament trauma identified solely on MRI in 11 patients. In 4 patients with both MRI and CT, CT revealed 2 fractures not found on MRI.	normal initial radiographs, depending on the availability and the individual institution policies."	MRI but both with limitations
Experimental		cadavers		wrists.									study. Data suggest sagittal CT not superior to xray for

Smith 2000	4.5	N 21	White	Caraba' l	Due ou CT									Madia	"Decent di	detecting scaphoid fractures.
Smith 2009 Diagnostic	4.5	N = 31 mean age 29 at time of injury	Wrist	Scaphoid fracture	Pre-op CT scans performed in longitudinal axis of scaphoid. Used GE LightSpeed 16-slice helical scanner. Slice thickness 0.625mm with reconstructions every 0.50mm (120 per kilovoltage, 80 mili-amps, and 0.5 seconds per rotation).			+	+		+		+	Median time from injury to CT scan 6 months and median time from injury to surgery 6 months. 20 had histologic avascular necrosis according to criteria established by Ficat. With CT increased radiodensity of proximal pole had strongest correlation with avascular necrosis (p = 0.004). Increased radio density of proximal pole significantly correlated with post-op union rates.	"Preoperative longitudinal CT of scaphoid nonunion is of great value in identifying avascular necrosis and predicting subsequent fracture union."	Small sample. Data suggest CT effective for detecting avascular necrosis of scaphoid proximal pole and non-union after fixation.
Ilica 2011 Diagnostic	4.0	N = 54; mean age 22 years	Wrist	Clinically suspected scaphoid fracture with negative radiograph.	MDCT with a 64- detector multislice system.	+	+	+	+	-	-	-	-	In 20 of 55 (36%) wrists, MRI identified 22 fractures: 16 scaphoid fractures. MDCT	"MDCT offers highly accurate results, especially concerning cortical involvement,	Data suggest MDCT useful in detecting cortical involveme nt, but not

											identified 19 fractures in 17 of 55 (30%) wrists. 3 fractures missed: 2 scaphoid fractures. MDCT 100% specificity, 86% sensitivity, 100% PPV, and 91% NPV.	and is a useful alternative in facilities lacking MRI."	superior to MRI for scaphoid fracture detection.
Herneth 2001 Diagnostic No mention of sponsorship or COI.	4.0	N = 15 (7 male and 8 female) with acute wrist trauma had scaphoid fractures. Age range 15.8 – 55.2.	HWF	Wrist trauma and scaphoid fractures	High–spatial resolution 10-5-MHz probe	+	-		+	9 or 60% of the 15 patients with acute wrist trauma had scaphoid fractures. At high- spatial- resolution US, 7/9 or 78% had positive results, and 22% false negative. 8/9 or 89% had clinical signs of scaphoid fractures, 3/6 or 50% had false positive	"High-spatial- resolution US is a reliable diagnostic tool for the evaluation of occult scaphoid fractures and should be considered an adequate alternative diagnostic tool prior to computed tomography or MR imaging."	Small sample size. Data suggest high spatial resolution US "may" assist in diagnosing scaphoid fractures when conventional radiography is negative for fractures.	

	,
results,	
and 1/9 or	
11% had	
false-	
negative	
results.	
Sensitivity	
of high-	
spatial-	
resolution	
US in	
depicting	
scaphoid	
fractures	
was 78%,	
and the	
specificity	
was	
100% vs	
with 56%	
and 100%	
obtained	
for	
conventio	
nal nal	
radiograph	
s and	
89% and	
50%	
obtained	
for clinical	
examinati	
on.	

Evidence for the Use of MRI for Scaphoid Fracture

There are 30 moderate-quality studies incorporated into this analysis.(1157, 1158, 1162, 1164, 1165'Beeres, 2008 #3210, 1172-1195) (Mallee 11; Fotiadou 11; Tiel-van Buul 96; Bergh 15; Ilica 11; Bretlau 99; Hunter 97; Jorgsholm 13; Kitsis 98; Kusano 02; Moller 04; Raby 01; Lozano-Calderon 06; Larribe 14) There are 6 low-quality studies in Appendix 2.(1021, 1166, 1196-1199) (Imaeda 92; Sharifi 15; Gaebler 96; Senevirathna 13; Schmitt 11)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Scaphoid Fracture, Magnetic Resonance Imaging, MRI, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 267 articles in PubMed, 762 in Scopus, 22 in CINAHL, 2 in Cochrane Library, and 1940 from Google Scholar. We considered for inclusion 10 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 29 from other sources. Of the 40 articles considered for inclusion 36 diagnostic studies met the inclusion criteria.

Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
6.5	N = 37 (24 female/13 male) suspected scaphoid	MRI group $(n = 11)$ vs. Control group $(n = 11)$	\$44.37 (Australian) per day saved from unnecessary immobilization by use of MRI. Early MRI improved	"Use of MRI in the management of occult scaphoid fracture reduces the	Study may be biased toward justification of early MRI in universal health care
	fractures in 5 hospitals. Age for MRI and	= 17).	date of confirming diagnosis by 7 days, Day 3 vs. Day 10 ($p = 0.003$). When only subjects diagnosed as	number of days of unnecessary immobilisation and use of healthcare	models.
	Control: 35.0 (27-41) and 29.0 (24.75-50).		having no fracture included in analysis, median number of days unnecessarily in plaster in MRI group 3 days, which is significantly less than median of 10 days in control group ($p = 0.006$).	units."	
	. ,	6.5 N = 37 (24 female/13 male) suspected scaphoid fractures in 5 hospitals. Age for MRI and Control: 35.0 (27-41) and	6.5 $N = 37 (24 \text{ female}/13 \text{ male})$ suspected scaphoid fractures in 5 hospitals. Age for MRI and Control: 35.0 (27-41) and MRI group (n = 11) vs. Control group (n = 17).	6.5N = 37 (24 female/13 male) suspected scaphoid fractures in 5 hospitals. Age for MRI and Control: 35.0 (27-41) and 29.0 (24.75-50).MRI group (n = 11) vs. Control group (n = 17).\$44.37 (Australian) per day saved from unnecessary immobilization by use of MRI. Early MRI improved date of confirming diagnosis by 7 days, Day 3 vs. Day 10 (p = 0.003). When only subjects diagnosed as having no fracture included in analysis, median number of days unnecessarily in plaster in MRI group	6.5N = 37 (24 female/13 male) suspected scaphoid fractures in 5 hospitals. Age for MRI and Control: 35.0 (27-41) and 29.0 (24.75-50).MRI group (n = 11) vs. Control group (n = 17).\$44.37 (Australian) per day saved from unnecessary immobilization by use of MRI. Early MRI improved date of confirming diagnosis by 7 days, Day 3 vs. Day 10 (p = 0.003). When only subjects diagnosed as having no fracture included in analysis, median number of days unnecessarily in plaster in MRI group 3 days, which is significantly less than median of 10"Use of MRI in the management of occult scaphoid fracture reduces the number of days of unnecessary immobilisation and use of healthcare units."

Author/Year Study Type	Score	Number	Area of Body	Diagnoses	Type of MIRI used	Type of CT used	T1 weighted images	T2 weighted images	X-ray	Myelography	More than one rater	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Ng 2013 Diagnostic	7.0	N=35 patients (34 male, 1 female) Mean age: 27.4±9.4 years	Ha nd	Scaphoid fracture delayed- union or non-union who underwent surgery within 12 months of imaging.	Dynamic contrast- enhanced (DCE); 3T imaging system using phased array wrist coil with 8 elements of 1.5T imaging system using 2 element surface flex coil.	-	+	+	•	•		+	-	-	Unenhanced MRI vascularity at surgery (sensitivity/ specificity/ PPV/ NPV/ accuracy): impaired 70/48/35/80/54; fair 25/74/11/89/69; poor 67/76/36/92/74. Contrast MRI vascularity at surgery (sensitivity/ specificity/ PPV/ NPV/ accuracy): impaired 56/64/36/80/62; fair 25/73/11/88/68; poor 60/93/60/93/88. DCE MRI vascularity at surgery (sensitivity/ specificity/ PPV/ NPV/ accuracy: impaired 67/86/67/86/80; fair 67/96/67/96/93; poor 67/92/67/92/87.	"Comparative relative enhancement in the proximal scaphoid fragment with that in the distal fragment on DCE MRI improved diagnostic accuracy for assessment of proximal fragment vascularity in scaphoid delayed and non-union compared to non-contract and contrast-enhanced MRI examination."	Data suggest DCE MRI is superior to both non-enhanced MRI or contrast enhance MRI for assessing proximal fragment vascularity in scaphoid delayed union and non-union fractures. Incorporation of the time frame between injury and MRI is essential to accurate interpretation.
Low 2005 Diagnostic	7.0	N=50 patients (40 males, 10 females) Mean age: 29 years	Ha nd	Scaphoid fracture	0.2T dedicated extremity system	-	+	-	+	-	+	-	-	-	Observer agreement: 2 fractures identified by all 4 observers; 3 fractures by 3 observers; 5 fractures by 2 observers; incorrectly judged as normal 13 times by 4 observers. Observers saw poor sensitivities (11/9/43/49) and low NPV (31/30/39/40) but good specificities (93/93/87/80).	"[T]he present study findings show that follow- up radiography for detection of scaphoid fracture after normal initial radiographs, has poor sensitivity when MRI is adopted as the gold standard and poor reliability as assessed by reliability analysis of inter-observer agreement of four expert observer. "	Data suggest follow-up radiography for acute scaphoid fracture has suboptimal sensitivity, negative predictive value, and reliability for those patients who were initially diagnosed with normal radiographs.

Gäbler	65	N=121 patients	Ha	Occult scaphoid fracture	1.0 T unit and - + + + +	6 weeks	MRI injury detection:	"[R]epeated clinical and	Data suggests that when performed by
2001	0.5	(77 males, 44	nd	Securi scaphola fracture	circular	0 WOOKS	none 39 patients, injuries	radiographic examinations	experienced clinicians, standard
2001		females) Mean	nu		surface coil		detected 112 in 82	are still state of the art.	clinical and radiological procedures are
Diagnostic		age:			surface con		patients. 10 days after	They allow diagnosis of	reliable in the diagnoses of occult
Diagnostic		30.3±13.2 years					injury: of 62 patients	OFSs and other wrist	fractures of the carpus and wrist MRIs
		50.5±15.2 years					with MRI detectable	injuries with high	are indicated for early diagnosis.
							injures 39 diagnosed	reliability."	are indicated for early diagnosis.
							correctly and another 7	renability.	
							partially correct. 24 days		
							after injury: 14 patients		
							with MRI-detectable		
							injuries, correct diagnosis		
							in 6 cases and partially		
							correct in 2, another 6		
							cases were diagnosed as		
							negative which was		
							incorrect. All 28		
							scaphoid fractures were		
							diagnosed correctly;		
							occult fractures		
							diagnosed after a mean of		
							14.9±9.3 days. Negative		
							diagnosis correctly		
							achieved after mean		
							12.2±5.12 days. No false-		
							positives in study		
Unay 2009	6.5	187 (29 males, 12	На	History of fall on	1.5 T - + +	-	Test-10: sensitivity 0.73,	"[T]he MRI results of	Data suggest pronation of the forearm
		females) Mean	nd	outstretched hand and	superconducto		specificity 0.75, positive	patients presenting with	and thumb-index pinch were highly
Diagnostic		age: 28.9 years		tenderness upon palpation	r		predictive value 0.96,	tenderness at the anatomical	correlate to MRI confirmed bone
				of anatomical snuffbox			negative predictive value	snuffbox and scaphoid	injury in patients with clinically
				and scaphoid tubercle			0.23, and accuracy 0.73.	tubercle after a fall on the	suspected occult scaphoid fracture.
				without angulation				outstretched hand without a	· ·
				C C				radiographically evident	
								bony injury could indicate any of the following conditions: no bony injury, scaphoid fracture, distal radial fracture, bone-bruise, or triquetral fracture."	

Mallee	6.5 N = 34 patients (25	We	Scaphoid fracture	Presence of	-				Follow-up for 6	"CT and MRI had	Data suggest comparable	
Mallee 2011			scapiloiu fracture		-	+	+ + ·	- - - +				
2011	males, 15	ist		sharp lucent					weeks. CT	comparable diagnostic	between CT and MRI for	
D	women)with			line within					imaging	characteristics. Both were	suspected scaphoid	
Diagnostic	suspected scaphoid			trabecular					resulted in a	better at excluding	fractures.	
	fracture			bone pattern,					diagnosis of 20	scaphoid fractures than		
				break in					fractures in 17	they were at confirming	Follow up include only 34	
				continuity of					patients. For	them, and both were	patients of original 40.	
				cortex, sharp					scaphoid	subject to false-positive		
				step in cortex,					fractures there	and false-negative		
				or dislocation					was a	interpretations. The best		
				of bone					sensitivity of	reference standard is		
				fragments					67% and	debatable, but it is now		
				0					specificity of	unclear whether or not		
									96% with an	bone edema on MRI and		
									accuracy of	small unicortical lines on		
									91% in	CT represent a true		
									depicting	fracture."		
									scaphoid			
									fractures. MRI			
									showed			
									sensitivity of			
									67% for			
									scaphoid			
									fracture,			
									specificity 89%			
									and accuracy			
									85%.			
Patel 2013	6.0 N=91 patients (37	Hn	Occult scaphoid fractures	1.0T Philips	-	+	+	+	42 days	Scaphoid fractures: MRI	"Early MRI in occult	Data suggest early MRI minimally cost
1 4001 2010	males, 47 females	ad		Intera using		•			12 days	3, control group 4.	scaphoid fractures is	effective, driven by PT, r-rays and
Diagnostic	males, 17 Terrares	uu		C3 surface						Normal MRI scan: MRI	marginally cost saving	appts rather than lost work.
Diagnostie				coil						28.9% vs. control 84.6%	compared with	uppts futier than lost work.
				com						(p=0.03). Mean±SD	conventional management	Lost to follow up: 7 people
										clinical fracture	and may reduce potentially	Lost to follow up. 7 people
										appointment: MRI	large societal costs of	
										1.1 ± 0.5 vs. control	unnecessary	
										2.3 ± 0.8 (p=0.001).	immobilisation."	
										2.5 ± 0.8 (p=0.001). Mean \pm SD plain		
										radiographs: MRI 1.2±0.8 vs. control		
										1.7±1.1 (p=0.03).		
										Mean±SD perceived		
										effect of injury (MRI vs.		
										control): day 42, work		
				<u> </u>						0.6±0.9 vs. 1.2±1.6		

															(p=0.03); hindrance 6.3 vs. 4.9 (p=0.03).		
Fox 2010 Diagnostic	6.0	N=29 patients (25 males, 4 females) Mean age: 21 years	Wr ist	Scaphoid fracture	1.5 tesla MRI scan	-	+	+	-	-	+	+	-	-	The mean interval from the date of MRI to the date of surgery was 54 days. When comparing the MR and surgical findings, there were 6 true positive results, 17 true-negative results, 1 false-positive result and 5 false-negative results. There was a sensitivity of 55% and a specificity of 94%.	"T1-weighted unenhanced MRI is an acceptable alternative to delayed contrast-enhanced MRI in the preoperative assessment of the vascular status of the proximal pole of the scaphoid in patients with chronic fracture nonunions."	Data suggest T1 weighted MR images can be an acceptable alternativeto enhance MRI for preoperative assessment of the vascular status of scaphoid proximal pole in those with a non-union.
Fowler 1998 Diagnostic No mention of sponsorship of COI.	6.0	N=45 patients (21 males, 22 females) with acute trauma and clinical symptoms of scaphoid fractures. Mean age: 32 years.	Wr ist	Acute wrist trauma and suspected scaphoid fracture	1.0 T unit	N/ A	+	+	+	-	+	-	+	+	MRI results showed 100% sensitivity and 100% specificity while Bone Scintigraphy showed 83% sensitivity and 95% specificity.	MRI was found to be more effective than Bone Scintigraphy for the diagnostic potential for scaphoid fractures. MRI has increased convenience for the patient and no use of radiation.	Data suggest MRI more sensitive and specific for occult scaphoid waist fractures compared with bone scan. Two patients dropped.

Bretlau 1999 Diagnostic No mention of sponsorship or COI.	6.0	N=52 patients (27 males, 25 females) Mean age: 44	Wr ist	Clinical suspicion of scaphoid bone fracture after trauma	Dedicated E- MRI, 2 sequences: T1-weighted turbo gradient echo 3D and fast short inversion recover STIR	+ -		- + -		+	E-MRI detected occult fractures of the scaphoid in 9 patients, and of the distal radius in a further 6 patients. All these fractures were confirmed at follow-up radiographs. Furthermore, EMRI revealed a fracture of the capitate bone in 1 patient, and of the triquetrum in 2 patients, and in 8 patients, bone bruise in 1 or more of the carpal bones. However, these fractures and bone lesions could not be confirmed by the follow-up radiographs. The agreement between the two examiners was high (kappa = 0.8) for E-MRI detection of fractures.	"E-MRI seems to be better than radiographs in the early diagnosis of occult"	Data suggest extremity MRI (E-MRI) better than radiographs for early diagnosis of occult scaphoid fractures.
---	-----	---	-----------	---	---	-----	--	-------	--	---	--	---	--

Lozano-	6.0	30	Wri	Scaphoid	Not mentioned	1	_	+	+	-						_	Not mentione	1 CT scans had a	"This study suggests that	Data sugest CT is useful in ruling out
Calderon	0.0	30	st	fracture	Not mentioned	т	-	Ŧ	Ŧ	-					-	-	Not mentioned	interobserver reliability	computed tomography	scaphoid fractures displacement but
2006		Gender and	51	macture														value of $0.44 (95\% \text{ CI} =$	scans are useful for ruling	not in the diagnosis of.
2000																		0.16 - 0.44. p<0.001)	out displacement but not for	not in the diagnosis of.
Dreamantive		age not																compared to the	diagnosing it."	
Prospective		mentioned																	diagnosing it.	
																		radiography value of $0.16 (95\% \text{ CI} = 0 - 0.25,$		
																		p<0.01).		
																		CT had a sensitivity of		
																		72% (95% CI = 58-		
																		87%), specificity of 80%		
																		(95% CI =72%-87%) and		
																		an accuracy of 77%		
																		(95% CI = 70% - 83%).		
																		Radiography had values		
																		of 75% (95% CI = 67%-		
																		88%), 64% (95% CI		
																		=52%-70%), 68% (95%		
																		CI = 60% - 74%),		
																		respectively. However,		
																		when both viewed at the		
																		same time, the sensitivity		
																		increased (80% (95% CI		
																		= 70% - 94%) while the		
																		specific and accuracy		
																		decreased (73% (95% CI		
																		= 65%-89%) and 75%		
																		(95% CI = 67% - 82%),		
																		respectively).		
De Zwart	5.5	N=62MRI sca	ans of	Wr Scaph	oid fractures	1.	5 Tesla I	MRI	-	+	+	-	-	+	-	-	-	Among 319 rated MRI	"The specificity of MRI for	Data suggest MRI has a high
2012		31 healthy		ist		sc	anner w	as										scans 247 were	scaphoid fractures is high	specificity but false positives occur.
		volunteers (44	4			us	ed.											diagnosed with no injury,	(96%), but falsepositives	Even radiologists have only moderate
Diagnostic		male scans, 2	0															13 with scaphoid	do occur. Radiologists have	consensus regarding MRI reults in
		female scans))															fracture, 23 with other	only moderate agreement	healthy volunteers suggesting MRI is
		Mean age: 28	;															fracture and 36 as a bone	when interpreting MRI	not the preferred reference standard for
		years.																bruise. Based on these	scans from healthy	R/O scaphoid fractures.
																		data, the specificity of	volunteers. MRI is not an	_
																		MRI was estimated as	adequate reference standard	
																		95.9%.	for true	
																			fractures among patients	
																			with suspected scaphoid	
																			fractures."	

Larribe 2014 Diagnostic	5.5	I \	Wr ist	Acute scaphoid fracture	1.5-Tesla imaging system with a dedicated wrist coil 7 days or less before surgery.	- + +	+		The mean interval between MRI and surgery was 0.7 days. 4 of the 6 necrotic fragments were correctly classified into the necrotic group and 2 patients into the viable group. The was a sensitivity of 67%, specific of 67%, positive predictive value of 50% and a negative predictive value of 80%.	"Our data are consistent with previously reported data supporting contrast- enhanced MRI for assessment of viability, and showing that dynamic imaging with time-intensity curve analysis does not provide additional predictive value over standard delayed enhanced imaging for acute scaphoid fracture."	Data suggest dynamic gadolinium enhance MRI does not provide more information to increase the predictive value in evaluation of acute scaphoid fractures over standard delayed enhance imaging.
Cook 1997 Diagnostic	5.5	males, 7 females) skeletally immature with radiographic evidence of open physeal plates in distal ulna and radius and potential scaphoid fracture. Mean age:(11 years males, 12 years females)	H/ W/ F	Scaphoid fractures	1.5 T MR scanner (Gyroscan ACS II)	N + + A			During MRI analysis, 10 with T1 and T2 signal intensities correlating to scaphoid fractures or bone marrow edema. Six had scaphoid fractures and 4 had scaphoid bone marrow edema; 5 with scaphoid fractures also had dorsal soft tissue edema affecting signal intensity.	"[I]t may be worth considering early application of MRI in the diagnostic algorithm of skeletally immature patients sustaining wrist trauma. A normal initial MR has a negative predictive value of 100% as early as 2 days after injury, whereas clinical and radiographic findings are not as reliable; also, scaphoid fractures may be identified on MR earlier than on radiographs in many patients. Additionally, MRI identified a large number of other injuries of both osseous and soft tissue structures."	Small sample size, all children. Data suggest normal MRI has 100% NPV.
Kusano 2002 Diagnostic No mention of sponsorship or COI.	5.5	males, 20 females)	WI RS T	Scaphoid Fracture	MRI (0.2 T) coronal T1- weighted spin-echo and (2) T2- weighted turbo spin- echo.	+ + +	+ +	+ +	In 18 of the 53 wrists, fracture was detected on MRI. Fracture was also found in the distal end of the radius in 11 patients and in the capitate in one patient. A bone contusion was found in the distal end of the radius in two	"This study may provide useful information in choosing treatment methods. Three (19%) of 16 patients with fracture evidence on MRI but without a fracture line on	Data suggest MRI as well as CT are useful when diagnosing occult carpal scaphoid fractures.

											patients. A fracture line was found in 13 of 16 diagnosed scaphoid fractures via CT.	the initial CT did well without surgery and demonstrated evidence of a healed fracture on the follow-up CT. The drawback of MRI and CT examination is its high cost; however, may avoid unnecessary treatment or decrease treatment period and thus reduce total expense.	
Fotiadou 2011 Diagnostic	5.0	N = 34 mean age 23 years	Wr ist	Wrist trauma, both acute and chronic.	16 multislice rows CT scanner	+	+			In 21 of 22 general hospital patients, MRI method of choice following x- rays. CT performed in 1 case. At university hospital CT solely performed in 5/12 cases and was first method of choice in another 3 cases, followed by MRI. Bone injury detected in 17/34 cases. In 7/9 (77.8%) fracture not detected on initial radiographs. Ligament trauma identified solely on MRI	"Both CT and MRI might be considered in patients with acute or chronic wrist injury, clinical dilemma and normal initial radiographs, depending on the availability and the individual institution policies."	Small sample. Data suggest similar efficacy between CT and MRI but both with limitations. No mention of gender.	Small sample. Data suggest similar efficacy between CT and MRI but both with limitations

										in 11 patients. In 4 patients with both MRI and CT, CT revealed 2 fractures not found on MRI.			
Brydie 20035.0DiagnosticNo sponsorship or COI.	N=195 patients (112 males, 83 females) with suspected scaphoid fracture. Mean age: 36 years	Wr ist	Suspected scaphoid fracture	0.2-T low field scanner	N + / A	+	+ -	+ -	+	+	Of 195 patients, 99 (51%) had normal MRI results, 20 (10%) showed carpal or distal radius bone bruising. 74 patients (38%) were diagnosed with fractures, 37 (19%) with scaphoid fractures and 28 (14.4%) with distal radius fractures.	"MRI can now justifiably be regarded as the gold standard investigation for clinical scaphoid fracture. Using MRI we have determined that the incidence of occult scaphoid fracture is 19%. MRI enables the correct diagnosis to be reached early and by directing appropriate patient management, prevents the unnecessary overtreatment of the majority of patients thus bringing both health and economic benefits."	Large sample size. Data suggest early MRI helpful for early management of scaphoid fractures.
Jorgsholm 2013 Diagnostic No mention of sponsorship or COI	N=300 wrists in 296 patients (179 males, 117 females) with posttraumatic radial wrist tenderness. Mean age: 39 years.	W RI ST	Scaphoid Fracture	0.23-T low- field MRI unit with dedicated small joint coil and coronal short tau inversion recovery (STIR), 3-mm slice thickness; coronal T1 field echo 3- dimensional, 2-mm slice thickness; axial T1 fast	+ -	-	+ -		+	-	Two hundred twenty-four fractures were found in 196 of the 300 wrists. An isolated scaphoid fracture was shown in 107 wrists, and a scaphoid association with other fractures was found in 18 wrists. Other fractures were found in 71 wrists The most commonly found fracture combinations were that of the scaphoid and distal radius, followed by scaphoid and capitate fracture. The sensitivity of	"Low-field MRI showed a high incidence of fractures in patients with posttraumatic radial wrist tenderness and demonstrated more fractures than radiographs and CT. A scaphoid fracture was by far the most common injury. However, it is not clear whether diagnosis of subtle injuries only demonstrated on MRI improves outcomes."	Data suggest MRI detected significant numbness of fractures in patient with posttraumatic radial wrist tenderness better than either CT or radiography.

			spin-echo, 3.5-mm slice thickness; and sagittal T1 field echo 3- dimensional, 2-mm slice thickness.										radiographs for visualization of scaphoid fractures was 70% and the specificity was 98%. Radiographic sensitivity for other fractures was less than 60%. The sensitivity of CT for visualization of scaphoid fractures was 95%, and between 75% and 100% for other fractures. MRI revealed 9 wrists with bone edema in the scaphoid and capitate		
Møoller 2004 Diagnostic5.0No mention of sponsorship or COI.5.0	(109 males, 115 females). Mean age: 31.5 years.	W Scaphoid Fracture RI ST	T1w and STIR coronal 3 mm thickness	-	+	-	+	-	+	-	+	-	The MRI radiographers reported 43 scaphoid fractures, whereas the radiologist ultimately diagnosed only 36 scaphoid fractures (16.1% of patients) (sensitivity, 100%; specificity, 96.3%). Six of the seven false- positive fractures occurred in patients with edema of the scaphoid. The seventh false-positive was a fracture of the capitate. The hospital saved at least €20,000 and the social care system €70.000.	"It is possible to provide an acute MRI service to patients with clinically suspected fracture of the scaphoid and a normal plain radiograph. The MR images can be primarily read by sufficiently trained MR radiographers. This new work-up protocol reduces the cost for society.	Data suggest MRI useful in diagnosing scaphoid fractures when plain radiographs are negative.
Tiel-van Buul 19964.5Diagnostic Articles	N=16 patients (11 males, 5 females)	Wr Clinical suspected scaphoid ist fracture	3-phase radionuclide bone scintigraphy was obtained after 72 hours following trauma using 200 MBq 99mTc-	-	+	+	-	-	+	-	72 hour s after injur y	MRI only available for 16 of 19 patients. X- ray also performed. Bone scintigraphy positive in 7 for scaphoid fractures while	"We conclude that in the diagnostic management of patients with suspected scaphoid fracture and negative initial radiographs, the use of MRI may be promising, but is not superior to three-phase bone scintigraphy."	Small sample size. Data suggest MRI not superior to 3- phase bone scan for scaphoid fracture detection.	

				methylene diphosphonate									MRI only positive in 5.			
Tibrewal 2012 Diagnostic No mention of sponsorship and no COI.	4.5 N=137 patients (7 males, 57 females with suspected scaphoid fractures Mean age: 34.6 years.) ist	Suspected scaphoid fracture	1.5 T scanner	N / A	+	+	+	-	+	-	+	-	37 (27%) MRI exams normal, 59 (43.4%) diagnosed with soft tissue injuries. 17 (12.5%) resulted in scaphoid fractures and 30 (22%) resulted in fractures in carpal bones or distal radius.	"MRI should be regarded as the gold standard investigation for patients in whom a scaphoid fracture is suspected clinically."	Data suggest MRI useful in diagnosis of scaphoid fractures and may detect occult in boney injuries.
Hunter 1997 Diagnostic No mention of sponsorship or COI.	4.5 N=36 patients (28 males, 8 females) with wrist trauma injury suspected o scaphoid fracture. Mean age: 26	RI ST f	Scaphoid Fracture	Signa 1.5-T MR imager with a phased- array coil.	+	+	+	-	-	+	-	+	+	MR imaging revealed 22 occult fractures in 20 patients. Thirteen of these 22 fractures were in the scaphoid bone, and 9 were in the distal radius. On MR images, 16 patients had no evidence of fracture. Follow-up radiographs were available in 17 of the 20 patients who had occult fracture revealed by MR imaging. Eleven of the 13 occult fractures of the scaphoid bone were followed up(2 lost to follow-up), and three of these showed evidence of healing fracture. Three patients without MR evidence of a fracture had follow-up radiographs that showed no fracture. Three patients had findings	"MR imaging can reveal occult wrist fracture when findings on radiographs are normal or equivocal."	Data suggest in patients where ther is a clinically high index of suspicion of scaphoid fracture but the radiographs are either negative or indeterminant, MRI can be useful in detecting occult wrist fracture.

												consistent with bone contusion on MR images; in two patients, the contusion was associated with other fractures, and in one patient, the contusion was isolated.		
Beeres 2008 Diagnostic	4.0 N=79 patients (43 males, 36 females) Mean Age: 41 years	Wr Scaphoid fractures ist	1.5 Tesla MR scanner		÷	+	-	-	+ -	-		The pairwise and overall k statistic was 0.67 (0.44- 0.90) for inter-observer variation for a scaphoid fracture. The intra- observer variation was calculated for 38 patients, and the k statistic was 0.96 (0.69-1.0) for a scaphoid fracture.	"In conclusion, the observer variation in MRI of suspected scaphoid fractures was low. The influence of expertise with MRI in daily practice should be taken into consideration."	Data suggest observer varation of scaphoid fractures low with MRI but over diagnosed suggesting the diagnosis should be made with a trained radiologist.
Ilica 2011 Diagnostic	4.0 N = 54 patients (54 males, 0 females); mean age: 22 years	Wr Clinically suspected ist scaphoid fracture with negative radiograph.	MDCT with a 64-detector multislice system.	+ -	+	+	+	-		-	in 20 of 55 (36%) wrists, MRI identified (22 fractures: 16 (36 caphoid) iractures. MDCT dentified 19 fractures in 17 of 55 (30%) wrists. 3 iractures nissed: 2 (36 caphoid) iractures. MDCT 100% (36 caphoid) iractures. MDCT 100% (36 caphoid) iractures. MDCT 100% (36 caphoid) iractures. MDCT 100% (36 caphoid) iractures. MDCT 100% (36 caphoid) iractures. MDCT 100% (36 caphoid) iractures. MDCT 100% (37 caphoid) irac	"MDCT offers highly accurate results, especially concerning cortical involvement, and is a useful alternative in facilities lacking MRI."	Data suggest MDCT useful in detecting cortical involvement, but not superior to MRI for scaphoid fracture detection.	

Querellou 2014 Diagnostic	4.0	N=57 patients (26 males, 31 females) with unilateral acute carpal trauma, hand pain or wrist pain. Mean age: 34 years	H/ W/ F	Wrist trauma occult fractures	1.5-T Scanner (Magnetom Avento 1.5 T; Siemens)	u	-	+ -	· +	-	+	++	5 months	26 presented wrist and hand fractures through SPECT/CT; 26 presented positive results for wrist and hand fractures or bruising during MRI scans; 17 had discordant results between MRI and SPECT/CT in regards to bruising vs. fracture diagnoses.	"This study highlights that bone scintigraphy associated with SPECT/CT is a very useful and sensitive imaging technique to depict occult wrist fracture in patients with carpal trauma. Its interest is to allow the detection of these specific fractures and reduces the secondary risks such as nonunion. When a carpal occult fracture is strongly suspected clinically, SPECT/CT might be proposed as a sensitive follow-up examination."	Data suggest SPECT/CT more sensitive than MRI for detection of occult wrist fractures.
Bergh 2015 Diagnostic	4.0	N=125 patients (68 males, 56 females) with clinically suspected scaphoid fracture. Mean age: 30 years.	Wr ist	Scaphoid fractures	1.5 Tesla whole-body scanner with a wrist coil.	-	 ?		· +	-	+	-		7 diagnosed scaphoid fractures in MIR group vs. 4 in control group. For patients without fractures, those in MRI group used cast for fewer days (1 day) vs. control group (mean 14 days) (p < 0.001). MRI group also had less days on sick leave than controls; 7 vs. 15 (p = 0.002).	"In a Norwegian setting, an early MRI was of value in patients with clinically suspected scaphoid fracture and normal plain radiographs."	Quasi-randomized cast analysis study in Norway, part of Bergh 2012, 14. Early MRI found cast effective largely due to lost work.

Bhat 2004 Diagnostic No sponsorship or COI.	4.0	N=50 with fractures of waist of scaphoid. Age not given.	Wr ist	Isolated fracture of waist of scaphoid.	1.5 Tesla	N ot gi v e n	-	-	-	-	+	-	-	+	Assessments of both observers showed: sensitivity of 100%, specificity of 74%-87%, negative predictive value of 100%, and accuracy of 76%-88% for predicting nonunion, but less satisfactory positive predictive values (20% and 33%). Assessment of displacement on scaphoid series of radiographs had sensitivity between 33%- 47% and positive predictive value between 27%-86%. Correct identification of displaced fractures from plain radiographs by both observers no more than 33%-47%.Data suggest plain xray less accurate for degree of displacement for scaphoid fractures. No mention of gender.
Breitenseher 1997 Diagnostic No mention of sponsorship or COI.	4.0	N=42 patients (23 males, 19 females) with clinical suspicion of scaphoid fracture after acute wrist injury. Mean age: 30.5±13.8 years	Wr ist	Acute wrist injury	1.0-T unit	N / A	+	+	-	-	+		+	+	33%-47%. "MR imaging has a high fractures of scaphoid bone in 14 or 33%; fractures of the scaphoid bone in 14 or 33%; fractures of the scaphoid bone and wrist not evident 10%; and trapezium in 1 patient (5%). Sensitivity and specificity for detection of radiographically occult fractures of wrist; 100%, and 95% and 100% for second radiologist, (k = 0.953). Sensitivities for detection of cortical fracture tine; 21%, 100%, and 14% (T1 and T2* sequences, respectively). Data suggest MRI sensitive for occult scaphoid fracture detection. Sensitivity and 190%, 100%, and 59%, respectively. or plain radiographically occult fracture tine; 21%, 100%, and 59%, respectively. or plain radiographically occult fracture tine; 21%, 100%, and 59%, respectively.

Kitsis 1998 Diagnostic No mention of sponsorship or COI.	4.0	N=22 patients (9 males, 13 females) Mean age:34	W RI ST	Scaphoid Fracture	The MRI scan was on a picker vista 0.5 tesla knee coil	-	-	- +	-	-	-	-	+	Eight patients had no bone injury in either the MRI or the bone scan. Three scaphoid fractures were found on the MRI and the bone scan and one scaphoid fracture was diagnosed with bone scanner and not on the MRI.	"We feel that MRI gives the most information and is the closest to a gold standard that exists. If MRI is not available, bone scanning remains a sensitive method of detecting scaphoid fractures. Altough it is less specific in diagnosing other injuries and has a higher rate of false positives."	Small sample. Data suggest MRI provides more information for diagnosing scaphoid fractures which are negative on plain radiographs.
Raby 2001 Diagnostic	4.0	N=56 patients	W RI ST	Scaphoid Fracture	0.2T extremity MR system. Spin echo T1 and STIR T1 70	-	-	- +	-	+	-	+	-	The early MR group had seven scaphoid, six radial and four other fractures. Management was altered in 89%. The late MR group had 14 scaphoid, nine radial and three other fractures. Management was altered in 69%. A cost model showed that overall costs are less with early rather than late scanning.	"MRI of the wrist when scaphoid fracture is suspected can be undertaken in all patients with negative radiographs and could be performed in most departments with an MRI machine. There are signi®cant patient bene®ts and overall costs would change little from conventional practice."	No mention of gender or mean age. Data suggest when scaphoid fracture is suspected but radiographs are negative, MRI is useful in diagnosing scaphoid fractures.

Evidence for the Use of High-Spatial Resolution Sonography to diagnose scaphoid fractures

There are 4 moderate-quality studies incorporated into this analysis.(1163, 1170, 1200, 1201) (Fusetti 05; Hauger 02; Herneth 01; Tiel Van-Buul 93)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: high spatial resolution sonography, scaphoid bone, fractures, bone or scaphoid fractures, diagnostic, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 2 articles in PubMed, 2 in Scopus, 1 in CINAHL, 0 from Cochrane Library, and 418 from Google Scholar. We considered for inclusion 2 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 5 from Google Scholar, and 0 from other sources. Of the 7 articles considered for inclusion 3 diagnostic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score	Number	Area of Body	Diagnoses	Type of CT	X-ray used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Fusetti 2005 Diagnostic No mention of sponsorshi p or COI.		N = 24 (11 female and 13 male) with clinically suspected fracture and normal radiographs	Hand	Occult scapho id fractur es	MX-8000 16 Slices; High- spatial- resolution sonograph y (HSR-S)	-	-	+	+	-	-	+	-	10 (42%) presented high index of suspicion, 7 (29%) moderate index, and 7 (29%) a low index. RS effusion observed in 16 or 66% and STT effusion in 8 or 33%. Sensitivity / specificity / PPV/and NPV of HSR-S for early detection of occult SFs 100% (5/5), 79% (15/19), 56% (5/9), and 100% (15/15).	"HSR-S is a reliable, available, and cost- effective method in early diagnosis of occult fractures of the scaphoid."	Small sample size. Data suggest (HSR-S) is reliable as well as cost effective method in early diagnosis of occult fractures of the scaphoid and this method is not without problems and CT is still superior.
Tiel-Van Buul 1993 RTC	5.5	160 82 male 78 female Mean age = 38.6	Wrist	Scapho id fracture	Scaphoid Radiograph y	-	-	+	+	-	-	+	Patients were reviewer after at least one year.	35 patients showed evidence for a scaphoid fracture on the initial radiographs. Overall, 21 patients were positive for a scaphoid fracture, 24 was positive for other bone fractures, and 80 were negative. The bone scan revealed 41 patients with a scaphoid fracture, 49 with other bone fractures, and 41 negative results. No information about sensitivity and specificity were mentioned.	"We advise scaphoid radiography using at least four views"	Data suggest at one year, suspected scaphoid fractures via posture bone scans or radiographs did not affect frequency or severity of late symptoms when compared to patients with normal bone scans.
Hauger 2002 Diagnostic No mention of sponsorshi p or COI.	4.5	N = 54 (35 males and 19 female) with clinically suspected scaphoid fracture and normal findings on initial radiographs , including	HWF	Suspe cted scapho id fractur e	high- spatial- resolution 12-MHz transducer	+	-	-	-	-	+	-		11% showed cortical disruption of the scaphoid on sonography 15% showed hematoma alone, eight (15%) showed hemarthrosis alone, and 32 or 59% did not show any abnormality. The overall prevalence of occult fracture was 9.3% (5/54), ranging from 3.7% (1/27) for low suspicion to	"High-resolution sonography is a reliable and accurate method of evaluating occult fractures of the scaphoid waist."	Data suggest high spatial resolution sonography can be beneficial in diagnosing scaphoid fractures when plain radiographs are negative when there is a high index of suspicion for scaphoid fracture. However, findings support cortical disruption is key in making the diagnosis.

	specific scaphoid images. Age range 10 – 75.								 6.3% (1/16) for moderate suspicion and to 27% (3/11) for high suspicion of fracture. Sensitivity / specificity / positive predictive value / and negative predictive value of sonography for early detection of occult scaphoid fractures to be 100% / 98% / 83% / and 100%, respectively. 		
Herneth 2001 Diagnostic No mention of sponsorshi p or COI.	N = 15 (7 male and 8 female) with acute wrist trauma had scaphoid fractures. Age range 15.8 – 55.2.	HWF	Wrist trauma and scapho id fractur es	High– spatial resolution 10-5-MHz probe	+	-	-	+	 9 or 60% of the 15 patients with acute wrist trauma had scaphoid fractures. At high-spatial-resolution US, 7/9 or 78% had positive results, and 22% false negative. 8/9 or 89% had clinical signs of scaphoid fractures, 3/6 or 50% had false positive results, and 1/9 or 11% had false-negative results. Sensitivity of high-spatial- resolution US in depicting scaphoid fractures was 78%, and the specificity was 100% vs with 56% and 100% obtained for conventional radiographs and 89% and 50% obtained for clinical examination. 	"High-spatial- resolution US is a reliable diagnostic tool for the evaluation of occult scaphoid fractures and should be considered an adequate alternative diagnostic tool prior to computed tomography or MR imaging."	Small sample size. Data suggest high spatial resolution US "may" assist in diagnosing scaphoid fractures when conventional radiography is negative for fractures.

Evidence for the Use of CT Imaging for Diagnosing Scaphoid Fractures

There are 10 moderate-quality studies incorporated into this analysis.(1157-1159, 1200, 1203-1205, 1209-1211) (Mallee 11; Memarsadeghi 06; Ilica 11; Cruickshank 07)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: CT imaging, CT, CAT, scaphoid fracture, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, predictive value, of tests, efficacy, efficiency, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, negative predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 0 articles in PubMed, 20 in Scopus, 20 in CINAHL, 3 Cochrane Library, and 20 from Google Scholar. We considered for inclusion 0 from PubMed, 4 from Scopus, 3 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 4 from other sources. Of the 11 articles considered for inclusion, 10 diagnostic studies met the inclusion criteria

Author/Year Study Type Conflict of Interest (COI)	Score	Number	Area of Body	Diagnoses	Type of CT	X-rav used	MRI Used	E	Blinding of rater	Surgery Performed Myelography	Clinical outcomes	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Adey 2007 Diagnostic Sponsored by unrestricted research grants from AO Foundation, Small Bone Innovations, Smith and Nephew, Wright Medical, Biomet, and Joint Active Systems. No mention of COI.	7.0	N = 13 (gender not specified) with nondisplaced scaphoid fractures and 17 diagnosed with suspected fractures, average age 33 years	Hand	Non- displaced scaphoid waist fractures	GE Lightspeed Qx/i CT Scanner; GE Medical Systems, Pewaukee, WI	-		+		-		-	Average sensitivity/ specificity/ and accuracy of CT for nondisplaced scaphoid fracture, for 1 st round: 89% / 91% / and 90% 2 nd round: 97% / 85% / and 88%. Positive predictive value or PPV for detection of radiographically occult scaphoid fractures with tomography of wrist 0.28 (95% CI, 0.23- 0.32); NPV 0.99 (95% CI, 0.97- 0.99).	"Computed tomography should be used with caution for triage of nondisplaced scaphoid fractures because false-positive results occur, perhaps from misinterpretation of vascular foraminae or other normal lines in the scaphoid."	Data suggest CT as better for ruling out fractures that result in due to relative infrequency of time fractures in patients with suspected scaphoid fractures.
Fusetti 2005 Diagnostic No mention of sponsorship or COI.	6.5	N = 24 (11 female and 13 male) with clinically suspected fracture and	Hand	Occult scaphoid fractures	MX-8000 16 Slices; High- spatial- resolution sonography (HSR-S)	-	-	+	+	-	· +	-	10 (42%) presented high index of suspicion, 7 (29%) moderate index, and 7 (29%) a low index. RS effusion observed in 16 or 66% and STT effusion in 8 or 33%. Sensitivity / specificity / PPV/and NPV of HSR-S for early detection of occult SFs 100% (5/5), 79% (15/19), 56% (5/9), and 100% (15/15).	"HSR-S is a reliable, available, and cost-effective method in early diagnosis of occult fractures of the scaphoid."	Small sample size. Data suggest (HSR-S) is reliable as well as cost effective method in early diagnosis of occult fractures of the scaphoid and this method is not without problems and CT is still superior.

		normal radiographs.													
Hannemann 2013 Diagnostic Sponsored by a research grant from the Netherlands Organisation for Health Research and Development. No COI.	6.5	N = 44 (10 female/34 male) with radiologically proven unilateral scaphoid fracture. Age over 18.	Hand	Proven unilateral scaphoid fracture	Multiplanar reconstructi on CT	-	-	+	_	 -		+	All views combined (transversal, coronal, and sagittal) for: no union, partial union, or union was moderate overall inter-observer agreement ($\kappa =$ 0.576) (95 % CI: 0.399–0.753). Overall inter-observer agreement ($\kappa =$ 0.699, 95 % CI: 0.529–0.870). Average sensitivity of multiplanar reconstruction CT was 73% and average specificity 80%.	"In conclusion, for follow-up after a scaphoid fracture, multiplanar reconstruction computed tomography is a reliable and accurate method for assessing union or nonunion of scaphoid fractures."	Data suggest multiplanar reconstruction CT is accurate and reliable in the diagnosis of union and – non union scaphoid. Wrist fractures with respect to partial union fractures is significant variation between observers.
Hannemann 2014 Diagnostic RCT Double-blind No sponsorship or COI.	6.5	$N = 102 \ge 18$ years	Hand	Randomiz ed to: Group A or active PEMF (n = 51) vs. Group B, or placebo (n = 51) Assessed functional and radiologic al outcomes (multiplan ar reconstruc ted CT scans) at 6, 9, 12, 24 and 52 weeks.	Multiplanar reconstruct ed CT (MRCT)	-	-	+	+	 +		+	Time to clinical union; median of 6 weeks (6-24, IQR 6-9) in group A vs. median of 6 weeks (6-52, IQR 6-9) in group B. The range of movement returned to normal at 12 week in both groups. Weighted mean inter observer agreement for union ($\kappa = 0.683$, 95% CI 0.473 - 0.893) and nonunion ($\kappa = 0.791$, 95% CI 0.599 - 0.984) for all CT scans, (p < 0.002). Median time to radiologically confirmed union in group A was six weeks vs 12 weeks in group B, (p = 0.30). Waist fractures proceeded to union earlier in group A vs B (median 12 weeks (6 to 12) vs 52 weeks (6 -52), chi- squared test = 4.156, (p = 0.04).	"[T]he addition of PEMF bone growth stimulation to the conservative treatment of acute scaphoid fractures does not accelerate bone healing."	Data suggest addition of PEMF bone growth stimulation did not accelerate bone healing when compared to placebo.
Mallee 2011 Diagnostic	6.5	N = 34	Wrist	Suspected scaphoid fracture	Presence of sharp lucent line within trabecular bone pattern, break in	-	+	+	+	 -	-	+	Follow-up for 6 weeks. CT imaging resulted in a diagnosis of 20 fractures in 17 patients. For scaphoid fractures there was a sensitivity of 67% and specificity of 96% with an accuracy of 91% in depicting scaphoid fractures. MRI showed sensitivity of 67% for scaphoid	"CT and MRI had comparable diagnostic characteristics. Both were better at excluding scaphoid fractures than they were at confirming them, and both were subject to false-positive and false- negative interpretations. The best reference standard is debatable, but	Data suggest comparable between CT and MRI for suspected scaphoid fractures.

					continuity of cortex, sharp step in cortex, or dislocation of bone fragments									fracture, specificity 89% and accuracy 85%.	it is now unclear whether or not bone edema on MRI and small unicortical lines on CT represent a true fracture."	
Cruickshank 2007 Prospective observational	6.5	47 patients with suspected scaphoid fractures 26 men 21 women Age not mentioned	Wrist	Scaphoid fracture	Siemens Somatome Volume Zoom (4 slice) for first 13 patients. Rest of patients were scaned with Siemens 64 slices machine.	+	+ if pat ien t con tini ued to hav e snu ff bo x ten der nes s and nor ma 1 x- ray	-	-	-		+	10-14 days post injury. Again at 7 days and 6-8 weeks if x-ray shows evidence of fracture	CT had a positive predictive value of 100% (95% CI = 78%-100%) and the specificity was 100% (95% CI = 87%- 100%). The negative predictive value for fractures are 96.7% (95% CI 82%-100%) with a sensitivity of 94.4% (95% CI = 72%-100%) One fracture was missed on the CT but was visible on a MRI.	"CT has the potential to limit the need for immobilization for the majority of patients with clinical Scaphoid fracture, who do not actually have a fracture."	Data suggest early CT is reliable for diagnosing scaphoid fractures and other fractures of the wrist and carpal.
Clementson 2015 Diagnostic RCT No sponsorship or COI.	5.5	N = 65 with scaphoid waist fractures.	Hand	Scaphoid waist fracture	Operative treatment (n = 26) and Cast immobiliza tion $(n = 39)$, followed with CT scans at 10 and 14 weeks and 6 and 12 months.		-	+	-	-	+ ·	-	+	24 fractures immobilized 5-8 weeks, 11 for 10-12 weeks, 4 for 13-16 weeks. 6- week CT scan demonstrated 27/30 or 90% of non- or minimally displaced fractures had united, linear association, ($p = 0.47$). In operatively treated group, 17 fractures immobilized in plaster for 2 weeks, 2 for 3-4 weeks, 5 for 6 weeks, 2 for 10 weeks; union rate at 6 weeks for non- or minimally displaced fractures 82%, dropping to 40% for severely displaced fractures. CT scan demonstrated 80% united at 6 weeks, increasing to 94% after 10 weeks. Significant difference in union rate between treatment groups at any measure point, ($p = 1.00$).	"The majority of non- or minimally displaced scaphoid waist fractures are sufficiently treated with 6 weeks in a cast."	Data suggests most non or minimally displaced scaphoid wrist fractures adequately treated for 6 weeks in cast. Screw fixation did not appear to shorter time to fracture union. Conservative treated fractures with prolonged time to union comminuted.

Rhemrev 2010 Diagnostic No sponsorship or COI.	5.5	N = 100 with clinically suspected scaphoid fracture.	Hand	Evaluated with CT within 24 hours after injury and bone scintigrap hy between 3 and 5 days after injury.	Lightspeed Qx/I CT Scanner, Pewaukee, WI	-	-	+	+	-	-	+	+	13 had positive bone scintigraphy and negative CT scan. CT galse negative in 5 and false positive in 1 patient. Bone scintigraphy has sensitivity of 93% (13/14) and a specificity of 91% (78/86). CT has sensitivity of 64% (9/14) and specificity of 99% (85/86).	"In conclusion, this study confirms that bone scintigraphy remains the gold standard to date."	Data suggest bone scan 3-5 deep laser superior to CT within 24° of accident. Timing is different not a head to head comparison.
Memarsadeghi 2006 Diagnostic	5.5	N = 29, mean age 34 years	Wrist	Wrist trauma accompan ied by severe pain over scaphoid with negative radiograp h.	Multi- detector with 4- detector row scanner	+	+	+	+	-	-	-	-	At 6-week follow-up with radiographs, 11 of 29 (38%) had scaphoid fracture; 8 had cortical fracture; 3 had trabecular involvement. MR imaging identified all 11 scaphoid fractures: 100% sensitivity and 100% specificity. 2 of 8 cortical fractures could be seen: 38% sensitivity, 100% specificity and 55% accuracy. Multidetector CT identified 8 cortical scaphoid fractures: 100% sensitivity/100% specificity. No trabecular fractures detected. MRI vs. CT p = 0.25 scaphoid fractures; $p = 0.03cortical involvement.$	"Multi-detector CT is highly accurate in depicting occult cortical scaphoid fractures but appears inferior to MR imaging in depicting solely trabecular injury. MR imaging is inferior to multidetector CT in depicting cortical involvement."	Small sample. Data suggest similar performance efficacy between CT and MRI for occult scaphoid fracture detection, but CT superior for cortical involvement detection.
Ilica 2011 Diagnostic	4.0	N = 54; mean age 22 years	Wrist	Clinically suspected scaphoid fracture with negative radiograp h.	MDCT with a 64- detector multislice system.	+	+	+	+	-	-	-	-	In 20 of 55 (36%) wrists, MRI identified 22 fractures: 16 scaphoid fractures. MDCT identified 19 fractures in 17 of 55 (30%) wrists. 3 fractures missed: 2 scaphoid fractures. MDCT 100% specificity, 86% sensitivity, 100% PPV, and 91% NPV.	"MDCT offers highly accurate results, especially concerning cortical involvement, and is a useful alternative in facilities lacking MRI."	Data suggest MDCT useful in detecting cortical involvement, but not superior to MRI for scaphoid fracture detection.

Evidence for the Use of Bone Scans for Scaphoid Fractures

There are 9 moderate-quality studies incorporated into this analysis.(1155, 1187, 1213-1215, 1217-1220) (Tiel van Buul 93; Murphy 95; Hiscox 14; Beeres 05; Beeres 07) There is 1 low-quality study in Appendix 2.(1216)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: bone scan, scaphoid fracture, scaphoid bone fracture, diagnostic, diagnostic, diagnostic, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 42 articles in PubMed, 85 in Scopus, 2 in CINAHL, 1 in Cochrane Library, and 96 from Google Scholar. We considered for inclusion 10 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and from 0 other sources. Of the 11 articles considered for inclusion 10 diagnostic studies met the inclusion criteria.

Author/Year Study Type	Score	Ν	Area of Body	Diagnoses	Type of Bone Scans	CT used		More than on rater	Blinding of rater	Myelography	Surgery Performed	33033	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Rolfe 1981 Diagnosti c	5.0	99	Hand	Recent history of carpal trauma, clinical signs suggestive of scaphoid fracture, no identifiable fracture on initial radiographic.	Isotope bone imaging (IBI)	-	-	-	-	-	-	-		-	Of 99 cases, 47 had abnormal focal increased uptake (AFIU). Of the 47, 26 had evidence of scaphoid injury. Of those 19 had retrospective radiographic evidence of fracture.	"In select cases of carpal trauma, IBI provides a satisfactory alternative means of identifying the presence and site of localized injury within the carpus and may be used to confidently exclude those patients with nonoesseous symtomatology.	Data suggest IBI results are only reliable if imaging is performed at least 48 hours after injury but in cases of fracture, AFIU may persist for years. In certain selective cases of carpal trauma, IBI may be used as an alternative technique of identification of a localized injury within the carpus.
Nielsen 1983 Diagnosti c	4.5	100 (101 wrists)	Wrist	Scaphoid fracture. Mean age 33 years.	99m-Tc_MDP wrist scintigraphy performed with a Nuclear-Chicago Pho/Gamma 3 scanner.	-	-	-	-	-	-	+	-	2 months.	Scintigram result: 54 positive, 13 inconclusive, among which 25 fractures detected (11 were scaphoid).	"99m-TC-MDP wrist scintigraphy appears expedient to exclude scaphoid bone fracture, if performed in case of doubt after secondary clinical and radiographic assessment and guided by negative scintigrams, the number of clinical examinations, radiographies and superfluous casting days are reduced."	Data suggest wrist bone scan highly sensitive but low specificity for scaphoid fractures.

Tiel-van Buul 1996 Diagnosti c Articles	4.5	19 patients	Wrist	Clinical suspected scaphoid fracture	3-phase radionuclide bone scintigraphy was obtained after 72 hours following trauma using 200 MBq 99mTc- methylene diphosphonate	-	+	+ -		+	-	72 hours after injury	MRI only available for 16 of 19 patients. X-ray also performed. Bone scintigraphy positive in 7 for scaphoid fractures while MRI only positive in 5.	"We conclude that in the diagnostic management of patients with suspected scaphoid fracture and negative initial radiographs, the use of MRI may be promising, but is not superior to three-phase bone scintigraphy."	Small sample size. Data suggest MRI not superior to 3-phase bone scan for scaphoid fracture detection.
Tiel-Van Buul 1993 Diagnosti c	6.5	78 35 male 43 female Mean age = 42	Wrist	Recent history of carpal trauma, clinical signs suggestive of scaphoid fracture, no identifiable fracture on initial radiographic.	Three phase radionuclide bone scintigraphy (72 hours after injury)	-	-	+ -	+ -	-	-	1 day, 2 weeks, 6 weeks	A total of 152 scaphoid radiographs were available for interpretation. In 18 patients the initial radiographs were judged positive for scaphoid facture, whereas 60 patients had negative initial radiographs. After 2 weeks, two more scaphoid factures were recognized, and one additional scaphoid facture was identified after 6 weeks. Bone scintigraphy was obtained in the 60 patients with initially negative radiographs and in 15 patients a "hot-spot" in the scaphoid region was seen.	"The best diagnostic strategy in the management of clinically suspected scaphoid fractures consist of initial radiography followed by bone scintigraphy in patients with negative radiographs."	Data suggest bone scan should be used only after failed radiograph. Bone scans should be used instead of multiple radiographs after a failing initial radiograph.
Murphy 1995 Diagnosti c	7.0	99 55 male, 44 female Mean age = 36	Hand and wrist	Clinical scaphoid fracture was defined as presence of "snuffbox tenderness" or pain on direct palpation of the anatomic snuffbox. Patients with normal repeat radiographs were referred for bone scanning	Three-phase technetium methylene diphosphate bone scan	-	-	+ -	+ -	-	+	4 days, 14 days	Day 4 bond scans, when compared to the diagnosis made with a radiograph on day 14, had a sensitivity of 100%, specificity of 92%, positive predictive value of 65%, negative predictive value of 100%, accuracy of 93%.	"Day 4 bone scans are an accurate means of ruling out scaphoid fracture. However, because of a significant number of false-positive scans at day 4, they do not reliably confirm the diagnosis of scaphoid fracture. The bone scans also permitted identification of several other wrist fractures that had not been radiographically apparent.	Data suggest bone scans performed on day 4 detect more wrist fractures of all types not just scaphoid fractures.

Hiscox 2014 Bone Scan Vs. Radiograp h Diagnosti c	6.0	27 16 males, 11 females Mean age = 36	Wrist	Patients with clinical scaphoid fractures based on acute wrist injury and snuffbox tenderness and normal radiographs.	Three-phase bone scan	-	-	-	+	-	-	+	10 to 14 days, then 6 weeks, then 12 months	Mean number of days immobilized was 26 in radiograph/traditional diagnosis group while the mean was 29 for bone scan/early diagnosis group. The Kaplan-Meier survival analysis using the log-rank test revealed that there was no statistically significant difference between days immobilized between the radiograph and bone scan groups (p = 0.38).	"The current study suggests that the use of bone scans to help diagnose occult scaphoid fractures does not reduce the number of days immobilized and that the differential diagnosis of occult scaphoid fractures should remain broad because other injuries are common."	Small sample so study aim cannot be adequately answered. Data suggest comparable efficacy and bone scans do not appear to reduce the number of casted days for occult scaphoid fracture.
Beeres 2005 Diagnosti c	5.5	56 36 male, 26 female Mean age = 38	Wrist	Patients with suspected scaphoid fracture that did not show on plain radiographs. Clinical signs of fracture include swollen and tender anatomical snuffbox.	Three-phase bone scan. Technetium- diphosphonate, Tc99m-HDP	-	-	+	+	-	-	+	Week 1, then week 6, and then month 3	Bone scans showed a fracture in 38/56 patients. 15 fractures were at the scaphoid bone.	"If there is a strong clinical suspicion of a scaphoid fracture, which cannot be confirmed by conventional radiology, BS is a valuable diagnostic tool."	Data support bone scans for detecting scaphoid fractures when there is a high clinical suspicion and radiographs are negative.
Beeres 2007 Diagnosti c	5.5	50 29 male, 21 female Mean age = 42	Wrist	Acute trauma and suspected scaphoid fracture. Tender anatomical snuffbox and pain when applying axial pressure	Palmar and dorsal images after injection of 500 MBq of Technetium- diphosphonate (Tc99m-HDP)	-	-	-	+	-	-	+	Depending on injury and grouping – between two weeks and 24 weeks	Bone scans revealed occult scaphoid factures in 16 out of 50 patients. Bone scans also identified other occult fractures in 20 out of 50 patients. Bone scans resulted in a false positive in five patients and one false negative for scaphoid facture.	"Bone scintigraphy in combination with protocolised physical examination is the gold standard for patients with signs of a scaphoid fracture that cannot be proven on scaphoid radiographs."	Data suggest bone scinctigraphy in combination with physical examination is the gold standard for diagnosing suspected scaphoid fractures when scaphoid radiographs cannot confirm the scaphoid fracture.
Stordahl 1984 Diagnosti c Articles	4.0	30 mean age 31	Wrist	Clinical signs of fractured scaphoid and either negative or non-diagnostic initial x-rays.	Radionuclide imaging. administration of 10-15 mCi 99 mTc Dimethylene Phosphonate. We used a Pho/Gamma 4 Camera with divergent low energy collimator, or	-	-	+	-	-	-	-	Follow up at 2 and 6 weeks	9 had focal increased activity on bone scan located on the scaphoid bone, 4 of these had negative x-rays and 5 had inconclusive x-rays. These fractures did not show up until 2-6 weeks after trauma.	"We found bone scanning using 99 mTc a valuable diagnostic tool in the assessment of wrist trauma, in particular the early assessment of fractures in the presence of non- diagnostic radiographs."	Data suggest isotopic bone scan useful to for early scaphoid fracture detection.

		pinhole					
		collimator.					

Evidence for Casting with Thumb Immobilization for Scaphoid Fractures

There are 7 moderate-quality RCTs incorporated into this analysis.(1224, 1226-1228, 1231, 1238, 1239)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: cast immobilization, scaphoid fracture, Scaphoid Bone, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 29 articles in PubMed, 110 in Scopus, 11 in CINAHL, 15 in Cochrane Library, 6 in Google Scholar, and 0 from other sources. We considered for inclusion 29 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 0 from other sources. Of the 31 articles considered for inclusion, 7 randomized trials and 1 systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0- 11)	Sample Size	Comparison Group	Results	Conclusion	Comments
				Herbert Screws		
Saedén 2001	5.0	N = 61 with 62 (49 males, 13 females) acute	Short arm cast (n = 30) vs. Herbert screws (n =	Patients treated by surgery working at time of injury on sick leave an average of 6+3 weeks vs.	"In our study the fractures united whether they were treated operatively or	Randomization and allocation methods unclear. Surgery may result
RCT		fractures of scaphoid. Mean±SD age 29±13	30). 12-year follow-up.	15+10 weeks in conservatively treated group (p = 0.002, t = -3.77). At 12-year follow-up, 90%	conservatively. Internal fixation of an acute fracture of the scaphoid allows early return	in faster recovery times and less time off work. However, surgery resulted
No sponsorship. No mention of COI.		years.		surgical and 69% conservative groups reported no pain or wrist discomfort. Grip strength and ROM not different between groups. Radiographic evidence of osteoarthritis more common in surgical group ($p = 0.049$), but no difference in symptoms.	to normal function and should be regarded as an alternative to conservative treatment in those patients who cannot accept immobilisation in a cast for three months or more, for sport, social or work-related reasons."	in higher risk of arthritis.
Dias 2008	4.5	N = 71 (62 males, 9 females) with fractured	Herbert screw fixation (n = 35) vs. below elbow	No statistical difference in symptoms and disability as assessed by mean Patient Evaluation	"No medium-term difference in function or radiological outcome was identified	Data suggest comparable efficacy between group outcomes comparing
RCT No COI. No mention of sponsorship.		scaphoid. Mean (SEM) age fixation: 29.3 (16 to 50). Cast: 31.4 (16 to 61).	plaster cast immobilization (n = 36). Mean follow up was 93 months.	Measure ($p = 0.4$), or mean Patient-Rated Wrist Evaluation ($p = 0.9$), mean range of movement of wrist ($p = 0.4$), mean grip strength ($p = 0.8$), or mean pinch strength ($p = 0.4$).	between the two treatment groups."	use of casts vs. surgical treatment of acute scaphoid fractures at 93 months.
or sponsorsnip.	1	01).	monthis.	Standard Cast	1	I
Buijze 2014	7.0	N = 62 (19 female, 43 male) with CT or	Below-elbow cast with inclusion of thumb (n =	Mean \pm SD extent of union (%) no thumb vs. thumb cast: 85 ± 24 vs. 70 ± 30 , p = 0.048.	"Immobilization of the thumb appears unnecessary for CT or magnetic resonance	Data suggest immobilization of thumb via casting for non-displaced
RCT		magnetic resonance image-confirmed nondisplaced or minimally displaced	31) vsbelow-elbow cast without inclusion of thumb ($n = 31$). Follow		image-confirmed nondisplaced or minimally displaced fractures of the waist of the scaphoid."	and minimally displaced scaphoid wrist fracture is not beneficial as more union occurred in those without thumb casting via CT. Functional

No mention of		fracture of scaphoid.	up at 10 weeks and 6			measures between groups
sponsorship. No		Mean±SD age no	months.			comparable.
COI.		thumb: 42±18 years.				
		Thumb cast 33±14				
		years.				
Cohen 2001	4.0	N = 200 with arm and	Standard cast consisting	Focused rigidity casting superior to traditional	"Compared with the standard technique,	Data suggest increased patient
		leg injuries requiring	of synthetic or plaster of	techniques for ability score ($p = 0.0001$),	focused rigidity casting has been shown to	satisfaction with FRC vs.
RCT		cast support. Age and	paris, vs. focused rigidity	satisfaction score ($p = 0.0023$), overall impairment	be superior to traditional methods with	conventional plaster of Paris cast
		gender not reported.	cast of synthetic material.	of function ($p = 0.019$), limitation of movement	regard to satisfaction and functional scores	with comparable efficacy.
No mention of				following cast removal ($p = 0.024$)	without any detriment to clinical results."	
sponsorship or COI.						
				Colles' Cast		
Gellman 1989	4.0	N = 51 (46 males, 5	Long thumb spica cast	Fractures of proximal and middle thirds had	"[W]e recommend an initial period of	Pseudorandomization, allocation not
		females) with fractures	(N=28) vs. short-thumb	shorter time to union when treated initially with	immobilization of six weeks in a long	hidden, no blinding.
RCT		of scaphoid.	spica cast (N=23).	long thumb-spica cast (9.5 weeks vs. 12.7 weeks),	thumb-spica cast, followed by application	
				p <0.05. Fractures of distal third did less well	of a short thumb-spica cast for non-	
No mention of		Mean age: 30 years.		regardless of immobilization method.	displaced fractures of the proximal or	
sponsorship or COI.					middle third of the scaphoid."	
Clay 1991	4.0	N = 392 (222 males, 170	Colles' cast (N=145) vs.	No difference in non-unions (10% in both groups),	"Both types of cast were equally well	Lack of details on randomization,
		females) with scaphoid	scaphoid cast (N=140)	cast tolerance or in functional outcomes.	tolerated and rehabilitation did not appear	allocation, no blinding. High
RCT		injury.	with thumb enclosed to		to be adversely affected by immobilisation	withdrawal rate in one study center
			the interphalangeal joint		of the thumb."	(college students).
No industry		Mean age: 29.7 years.	for 8 weeks			
sponsorship. No						
mention of COI.						
Hambidge 1999	4.5	N = 121 with fractures	Immobilized with	Nonunion was not influenced by the position of	"[A]cute fractures of the scaphoid should	Data suggest position of wrist before
		of scaphoid.	Colles'-type plaster cast	immobilization: flexion 91% vs. extension 87%, p	be treated in a Colles'-type cast with the	casting is not important, rather,
RCT		Gender not reported.	in either 20° flexion (n =	= 0.46.	wrist in slight extension."	immobilization via casting is for
			58) vs. 20° extension (n =			scaphoid fracture union.
No industry		Mean age 30 years	63). Follow-up for 6			
sponsorship. No		(range 16-76).	months.			
mention of COI.						

Evidence for the Use of NSAIDs/Acetaminophen for Scaphoid Fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDs, non-steroidal antiinflammatory, acetaminophen, ibuprofen, scaphoid bone, scaphoid fractures; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 4 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 80 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Physical Methods/Rehabilitation for Scaphoid Fractures

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Cast, Casts, Immobilization, Remove, Removal; scaphoid bone, scaphoid fractures, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 105 articles in PubMed, 15 in Scopus, 23 in CINAHL, 1 in Cochrane Library, 112 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 1 article considered for inclusion, 0 randomized trials and 1 systematic studies met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Physical, Therapy, Rehabilitation, scaphoid bone, scaphoid fractures, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, rand

Evidence for the Use of Surgery vs. Non-operative Treatment for Scaphoid Fractures

There are 13 moderate-quality RCTs incorporated into this analysis. (401, 402, 1209, 1228, 1240-1242, 1245-1250) (Drac 14) There is one low-quality trial included in the Appendix 2.(1251) (Jeon 09)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Surgical Fixation, Surgery, Scaphoid fracture, scaphoid bone, fracture; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 132 articles in PubMed, 343 in Scopus, 2 in CINAHL, 4 in Cochrane Library, 657 in Google Scholar, and 0 from other sources. We considered for inclusion 17 from PubMed, 5 from Scopus, 1 from CINAHL, 0 from Cochrane Library, 2 from Google Scholar, and 0 from other sources. Of the 25 articles considered for inclusion, 14 randomized trials and 2 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: surgical fixation, surgery, scaphoid bone, fractures, bone, and scaphoid fracture; controlled clinical trial, controlled trials, randomized controlled trial, randomized

controlled trials, random allocation, random^{*}, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 161 articles. Of the 161 articles we considered for inclusion 1. Of the 1 considered for inclusion, 0 are randomized controlled trials and 1 systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
					Surgical Fix	ation vs. cast				
McQueen 2008 (score=7.5)	Surgical Fixation/Cas t	RCT	The Scottish Orthopaedic Research Trust into Trauma (SORTIT) assisted in performing the study. No mention of COI.	N=60 patients with a Herbert type B1 or B2 fracture of the scaphoid.	Mean age was 29.4 years; 50 males, 10 females	Percutaneous fixation of the scaphoid within 14 days of injury using a standard Acutrak screw (Group 1, n=30) Vs. Colles cast with the thumb free (Group 2, n=30). Immobilization continued for at least 8 weeks, no patient was treated in a last for longer than 12 weeks.	Follow-up for 1 year.	Mean decrease grip strength (%) (8 weeks/12 weeks/26 weeks/52 weeks): operative (10/3/-1/- 2) v. non-operative ($42/25/11/5$), (p<0.001) at week 8, 12, and 26, NS at 52. Mean decrease pinch strength (5): operative (9/4/0/-5) v. non-operative (29/15/3/1), (p<0.001) at week 8, (p=0.012) at week 12, NS at week 26 and 52. Mean decrease range of movement (%): operative (11/6/3/2) v. non- operative (52/32/11/6), (p<0.001) at weeks 8 and 12, (p=0.018) at week 26, NS at week 52. Mean Green/O'Brian score: week 8, operative (79) v. non-operative (39), p<0.001; week 12, operative (88) v. non-operative (56),	"[O]ur study confirms earlier time to union and quicker return to work and sport with percutaneous screw fixation of nondisplaced fractures of the waist of the scaphoid."	Effects of surgical intervention allowed earlier return to work or sport with faster mean time to union. There were no differences in function at 1 year.

								(p<0.001); week 26 (92 v. 78), (p=0.006); week 52 NS. Percentage good and excellent results: week 8 (52 v. 0), (p<0.001); week 12 (68 v. 15), (p<0.001); week 26 (81 v. 56), (p=0.055); week 52 (100 v. 88),		
								Radiological outcome resportion: operative 0 v. non- operative 8, (p=0.02). Mean time to union (weeks): operative (9.2) v. non-operative (13.9), (p<0.001). Mean time to normal ADLs (weeks): full sports (6.4 v. 15.5), (p<0.001); full employment (3.8 v. 11.4) ($p < 0.001$)		
Vinnars 2008 (score=7.0)	Surgical Fixation/Cas t	RCT	Sponsored by Folksam research fund (Sweden) and the AFA research fund (Sweden). COI: One ore more of the authors have received or will receive benefits for personal or professional use.	N = 75 with an acute nondisplaced or minimally displaced scaphoid fracture.	Mean age was 30.5 years; 58 males, 17 females	Nonoperative treatment with a cast (n=35) vs. Internal fixation with a Herbert screw (n=40).	Follow up over 10 years.	11.4), (p<0.001). All fractures united. A significant increase in prevalence of osteoarthritis in scaphotrapezial joint found in operatively treated group. No differences in subjective symptoms, as measured with limb- specific outcome scores found	"This study showed that the primary benefit of operative treatment-(i.e., a short immobilization time and an early return to work) was transient. Our observation of an increased risk of osteo-arthritis in the operatively treated group	10-yr follow-up of non displaced scaphoid fracture suggests conservative management has equal long term functional outcomes and lower risk for scaphotrapezial arthritis.

								between two groups. No significant differences in range of motion, grip strength, changed hand dominance after injury, or return to same work after injury. Scaphotrapezial arthritis occurred in 1 patient in nonoperatively treated group and in 11 in operatively treated group (p = 0.005).	points to the importance of careful selection of patients who may benefit from operative treatment."	
Dias 2005 (score=6.5)	Surgical Fixation/Cas t	RCT	No industry sponsorship or COI.	N = 88 patients with a bicortical fracture of the scaphoid.	Mean age: 29.5 years; 79 males, 9 females	Internal fixation with Herbert screw (no cast) (n=44) vs. Below elbow cast with thumb free (Colles')(n=44)	Follow up for 52 weeks.	Grip strength and range of motion better in operative group at 8 weeks, but differences disappeared by 12 weeks. No other significant differences in pain, patient evaluation, or return to work.	"Each fracture should be treated non-operatively in a functional cast. Surgical intervention should be offered only to the every few patients who cannot return to work in a cast, and such patients should be made fully aware of the risks and limited gains provided by acute fixation."	Allocation, randomization details unclear.
Saedén 2001 (score=5.0)	l Surgical Fixation/Cas t	RCT	No industry sponsorship or COI.	N = 62 acute fractures of the scaphoid.	Mean age: 32.9 years; 49 males, 13 females	Short arm cast (n=30) vs. Herbert screws group (n=32)	12-year follow-up.	Patients treated by surgery who were working at time of injury were on sick leave an average of 6 + 3 weeks compared with 15 + 10 weeks in conservatively	"In our study the fractures united whether they were treated operatively or conservatively. Internal fixation of an acute fracture of the scaphoid allows early return	Randomization and allocation methods are unclear. Surgery may result in faster recovery times and less time off work, although it may

								treated group (p = 0.002, t =-3.77). At 12 year follow-up, 90% surgical and 69% conservative groups reported no pain or wrist discomfort. Grip strength and ROM not different between groups. Radiographic evidence of osteoarthritis more common in surgical group (p = 0.049), although no difference in symptoms.	to normal function and should be regarded as an alternative to conservative treatment in those patients who cannot accept immobilisation in a cast for three months or more, for sport, social or work-related reasons."	come at the expense of higher radiographic arthritic changes.
Bond 2001 (score=5.0)	Surgical Fixation/Cas t	RCT	Sponsored by the Chief, Bureau of Medicine and Surgery, Navy Department, Washington, DC, Clinical Investigation program. No mention of COI.	N=25 full- time military personnel with acute nondisplaced fracture of the scaphoid waist.	Mean age: 24 years; 22 males, 3 females	Cast immobilization (n=14) vs. fixation with a percutaneous cannulated Acutrak screw (Acumed, Beaverton, Oregon) (n=11).	Follow up for 2 years.	Average time to fracture union: seven weeks in screw fixation vs. 12 weeks in cast immobilization, p=0.0003. Return to work: 8 weeks fixation group vs. 15 weeks cast immobilization group, p=0.0001.	"Percutaneous cannulated screw fixation of nondisplaced scaphoid fractures resulted in faster radiographic union and return to military duty compared with cast immobilization. The specific indications for and the risks and benefits of percutaneous screw fixation of such fractures must be determined in larger randomized, prospective studies."	Small sample size (n=25). Data suggest average time to fracture union in percutaneous screw fixation group was seven weeks compared to twelve weeks in cast group. Additionally, the time to return to work in surgical group was eight weeks compared to fifteen week in cast group. Both groups showed comparable results for grip strength, ROM and patients

										satisfaction at 2 years.
Adolfsson 2001 (score=4.0)	Surgical Fixation/Cas t	RCT	No mention of COI or sponsorship.	N=53 with undisplaced fracture of the waist of the Scaphoid.	Mean age of 31 years; 39 males, 14 females	Immobilization in a below elbow plaster cast for 10 weeks. If no union cast immobilization was continued for another 6 weeks (n=28) vs. Percutaneous Acutrak screw fixation (n=25).	Follow up for up to 16 weeks if nonunion.	No statistically significant differences between the two treatment groups with regard to either the rate of union or the time to union.	"Acute percutaneous internal fixation of undisplaced scaphoid waist fractures using the Acutrak screw allows early mobilisation without adverse effects on fracture healing."	Data suggest comparable results between casting versus Acutrak screw insertion in terms of rate of or time to union. Patients with screw insertion had significantly better ROM at 16 weeks but no better grip strength.
Clementson 2015 (score=4.0)	Surgical Fixation/Cas t	RCT	Supported by grants from the Swedish Research Council (Medicine) and Funds from Region Skåne. No COI.	N=38 with acute non- or minimally displaced scaphoid waist fracture.	Mean age and gender were not provided.	Conservative treatment: below-elbow thumb spica cast, incorporating the thumb up to the interphalangeal joint (n=24) vs. arthroscopic screw fixation (n=14).	Follow-up for 3 years.	ROM at 26 weeks: 88% fixation group vs. 97% conservative group; p=0.004.	"Non- and minimally displaced scaphoid waist fractures are best treated conservatively. Operative treatment may provide an improved functional outcome in the short term but at the price of a possible increased risk of arthritis in the long term."	Data suggest conservative treatment group (cast) had significantly better ROM at 26 weeks. No significant differences between grip and for pinch strength. Surgery group "may" provide improved short term functional outcomes but at 6 years radiography showed more signs of arthritis in surgically treated group.
Vinnars 2008 (score=7.0)	Surgical Fixation/Cas t	RCT	In support of their research for or preparation of the	N=75 patients with a scaphoid	Mean age was 30.5 years; 58	Non-operative treatment: immobilization	Follow-up for a	There were no significant differences between	"This study did not demonstrate a true long-term benefit	10-yr follow-up of non displaced scaphoid

article, one or more authors	fracture that occurred less	males, 17 females	in a below-the- elbow scaphoid	median of 10 years.	groups for primary outcomes.	of internal fixation, compared with	fracture suggests conservative
received, in any	than 28 days		cast with the	-		nonoperative	management has
one year, outside	before being		thumb in palmar			treatment, for	equal long term
funding or grants	seen.		abduction, the			acute nondisplaced	functional
in excess of			interphalangeal			or minimally	outcomes and
\$10,000 from the			joint free, and			displaced scaphoid	lower risk for
Folksam research			the wrist in			fractures."	scaphotrapezial
fund (Sweden)			neutral or slight				arthritis.
and the AFA			extension; cast				
research fund			worn for 6				
(Sweden)			weeks with				
			option of an				
			additional cast				
			worn for another				
			2-4 weeks				
			(n=42) vs.				
			operative				
			treatment: used				
			volar approach				
			centered over				
			the tubercle of				
			the scaphoid,				
			with minimal				
			incision				
			exposing only				
			the				
			scaphotrapexial				
			joint, dorsal				
			approach, or				
			combined volar				
			and dorsal				
			approach; after				
			surgery,				
			application of				
			well-padded				
			short arm				
			noncircumferent				
			ial dorsal plaster				
			splint with the				
			thumb left free				
			for 2 weeks				
	1	1	(n=43).	1	1	1	1

					Bone	grafting				
Caporrino 2014 (score=5.0)	Bone Grafting	RCT	No COI. No mention of sponsorship.	N=75 with scaphoid nonunion.	Mean age: 27.7 years; 71 males, 4 females	Vascularized bone grafting (VBG) using the 1, 2 intercompartme ntal suprareticular artery vs. distal radius non- vascularized bone graft (NVBG).	Follow-up every 2 weeks until bone healing for up to 29 months.	Mean±SD time to union: NVBG 69.7±15.1 days vs. VBG 58.0±10.3 days; (p=0.002). Ulnar deviation degrees: NVBG 29.4±5.8 vs. VBG 25.4±8.5; (p=0.033).	"Although the VBG group attained earlier union, this may not be clinically meaningful, nor justify the greater technical difficulty and use of resources associated with this intervention."	Patient blinding unclear. Data suggest VBG group achieved an earlier union compared to distal radius nonvascularized bone graft group by 12 days, union rates for both groups were comparable. Also, there was significantly less ulnar deviation in VBG group.
					Fixation vs	. Bone graft				
Braga-Silva 2008 (score=6.5)	Surgical Fixation/Bon e Graft	RCT	No mention of COI or sponsorship.	N = 80 with symptomatic scaphoid non- union pseudoarthros is of single wrist submitted for surgery. Dominant hand involved in 88% of cases.	Mean age was 26 years; 56 males, 24 females	Distal radius vascularised bone graft (n = 35) vs. Iliac crest non- vascularised bone graft (n=45).	Mean follow up radial grafts: 3.1±1.2 years. Iliac grafts: 2.6±1.6 years.	No statistically significant difference between two groups with regards to ranges of extension, flexion and ulnar deviation movements.	"The use of bone graft in the treatment of scaphoid nonunion has improved the prognosis, allowing an increase in the likelihood of painless bone consolidation and restoration of wrist function"	Data suggest comparable results between techniques for grip strength and ROM post-op mean time 2.8 years. Union consolidation of fracture quickest in non- vascularized group.
Garg 2013 (score=6.0)	Surgical Fixation/Bon e Graft	RCT	No mention of sponsorship. No COI	N=100 with scaphoid nonunion.	Mean age: 34.7 years; 30 males, 16 females	Internal fixation plus distal radius bone graft (Group 1: n=50) vs. Iliac crest bone graft was	Follow up for 3 years.	Bone fusion was achieved in 87.1 % of group 1 and 86.5 % of group 2 patients. No p-value given. Mean time	"There is no advantage of the iliac crest over the distal radius graft to justify its greater morbidity."	Data suggest comparable results between distal radius bone grafts vs. iliac crest bone

						used instead (Group 2: n=50).		for union was 4.2 months in group 1 and 4.5 months in group 2. No p-value given.		graft for scaphoid nonunion.
Ribak 2010 (score=5.0)	Surgical Fixation/Bon e Graft	RCT	No mention of COI or sponsorship	N = 86 with scaphoid nonunion.	No mention of mean age or sex.	Vascularised bone graft from dorsal and distal aspect of radius (n = 46) vs. Conventional non-vascularised bone graft from distal radius (n = 40).	Mean follow up in group 1 25.3 months. Group 2 22.5 months.	Vascularized bone graft achieved 89.1% bone fusion compared to 72.5% bone fusion rate in non-vascularised bone graft. (p = 0.024)	"[V]ascularised bone grafting yields superior results and is more efficient when there is a sclerotic, poorly- vascularised proximal pole in patients in scaphoid nonunion. On the other hand, in patients with well vascularised fragments, either the vascularised or conventional technique can be used, depending upon the surgeon's experience and preference."	Data suggests vascularized bone grafting is superior to non- vascularized bone grafting. More patients receiving vascularized grafts achieved bone fusion (89.1%) vs. non- vascularized (72.5%). Functional results better in vascularized vs. non- vascularized.
Raju 2011 (score=4.0)	Surgical Fixation/Bon e Graft	RCT	No mention of COI or sponsorship.	N=33 with non-union of the scaphoid.	Mean age: 28 years; 27 males, 6 females	Herbert screw fixation (n=11) vs. Matti Russe bone grafting (n=9) vs. Kohlman modification of vascularized muscle pedicle graft procedure (n=13).	Mean follow-up duration was 28 months.	Herbert vs. Matti vs. Kohlman: 8, 6 and 11 patients achieved scaphoid union after mean intervals of 17, 16, and 15 weeks. No p-values given.	"The time to union was earliest in the Kohlman modification of vascularised muscle pedicle graft procedure, which is recommended for patients with old non-union (>1 year) or proximal pole fractures."	Small sample. Data suggest all 3 fixation techniques were of comparable efficacy with time to union of fracture occurring earlier in the Kohlman procedure which is recommended for patients with non-union fractures older

										than one year or proximal pole fractures.
Drac 2014 (score=4.0)	Surgical Fixation	RCT	Supported by grant project IGA MZCR NS 9623- 4/2008. No COI.	N=76 Patients with acute nondisplaced or minimally displaced type B2 scaphoid fractures.	Mean age: 30 years; 68 males, 8 females	Group A- Palmar Percutaneous approach (n=36) Vs. Group B- Dorsal Limited Approach (n=36)	Follow-up for 1 year after surgery.	There were no significant differences between Group A and Group B for flexion, extension, radial and ulnar deviation, grip strength, presence of persisting complaints, patient satisfaction or DASH score at any of the follow-up points (p>0.05).	"We found no advantage to the palmar percutaneous approach in the treatment of nondisplaced and minimally displaced scaphoid fractures type B2 compared to dorsal limited approach."	Data suggest comparable efficacy at one year.

Evidence for the Use of Ultrasound with Bone Graft for Scaphoid Fractures There is 1 moderate-quality RCT incorporated into this analysis.(1258)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ultrasound, Osteogenic Protein Adjuvant, Scaphoid Fractures, Ultrasonography, Ultrasonic, Scaphoid Bone, bone fractures, controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 18 articles in PubMed, 80 in Scopus, 0 in CINAHL, 4 in Cochrane Library, and 2,268 in Google Scholar. We considered for inclusion 1 from PubMed, 4 from Scopus, 0 from CINAHL, 1 from Cochrane Library, 5 from Google Scholar, and 0 from other sources. Of the 11 articles considered for inclusion, 1 randomized trials and 10 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: ultrasound, ultrasonography, bone transplantation, bone graft, osteogenic protein adjuvant, scaphoid bone, fractures, bone, scaphoid fracture; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomiz, systematic, retrospective, and prospective studies, BMP-7 to find 70 articles. Of the 70 articles we considered for inclusion 2. Of the 2 considered for inclusion, 0 are randomized controlled trials and 2 systematic reviews

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
Ricardo	Ultrasound	RCT	No mention of	N = 21 with	Mean age:	Ultrasound	Follow up	Daily 20 minute	"All patients	Study suggests
2006	with Bone		sponsorship or	vascularized	26.7	treatment vs.	from 1-4	low intensity	achieved fracture	low intensity
(score=4.5)	Graft		COI.	bone graft	years; All	sham	years.	ultrasound	union (active and	ultrasound
				and internal	pts were	ultrasound	Average	treatment over	placebo groups),	treatment
				fixation with	males.		of 2.3	scaphoid led to	but compared	beneficial in
				k-wire			years.	reduced time to	with the placebo	improving
								overall (clinical	device (11	healing time in
								and radiographic)	patients), the	this subset of
								healing by 38	active device	patients
								days (average	(ten patients)	undergoing
								56±3.2 days	accelerated	bone graft with
								compared with	healing by 38	internal
								94±4.8 days; p	days (56±3.2)	fixation.
								<0.0001).	days compared	
									with 94±4.8	
									days, p<0.0001,	
									analysis of	
									variance."	

Evidence for the Use of Osteogenic Protein Adjuvant with Bone Graft for Scaphoid Fractures There is 1 moderate-quality RCT incorporated into this analysis.(1259)

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
Bilic 2006 (score=6.0)	Osteogenic Protein Adjuvant	RCT	No mention of sponsorship or COI.	N = 17 patients with symptomatic proximal pole	Mean age: 21.3 years; no mention of sex.	Autologous iliac graft vs. Autologous iliac graft +	Follow up at 2, 4, 5, 9, 12, and 24 months.	OP-1 improved performance of autologous graft healing (4 vs. 9	"Recombinant human OP-1 supports proximal pole scaphoid non-	Small sample size; study suggests significant
				scaphoid non- union of 9 months or more with no	of sex.	osteogenic protein-1 (OP-1) vs. Allogenic iliac graft + OP-	monuis.	weeks in control). OP-1 improved functional performance of both	union healing via increased bone vascularization and replacement of	potential benefit from using OP-1 in healing time, functional
				evidence of progressive healing over		1		groups vs. autologous graft alone. Sclerotic	preexisting proximal pole sclerotic bone as a	improvement, and avoiding

the previous 3		bone replaced by	consequence of	autologous
months.		vascularized bone as	avascular necrosis.	grafting.
		assessed by CT 3	The addition of	
		months after	OP-1 to allogenic	
		operation vs. 24	bone implant	
		months after	equalised the	
		operation (sclerotic	clinical outcome	
		area mm2):	with the	
		Autograft only:	autologous graft	
		138.3±15.1* vs.	procedure.	
		111.5±8.6;	Consequently the	
		Autograft + OP-1:	harvesting of	
		74.0*±14.1 vs.	autologous graft	
		31.7±6.8***;	can be avoided."	
		Allograft + OP-1:		
		103.6 ±13.2* vs.		
		55.6±11.7***		
		*p <0.05 vs. before		
		operation		
		***p <0.05 vs.		
		autograft only		

Evidence for the Use of X-rays for Diagnosing Tuft Fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: X-Ray, radiography, radiograph, roentgenogram, Distal Phalanx Fractures, Tuft Fractures subungual hematoma, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 51 articles in PubMed, 46 in Scopus, 0 in CINAHL, 2 in Cochrane Library, and 382 from Google Scholar. We considered for inclusion Zero from PubMed, Zero from Scopus, Zero from CINAHL, Zero from Cochrane Library, Zero from Google Scholar, and Zero from other sources. Zero articles met the inclusion criteria. *Evidence for the Use of MRI/CT/Ultrasound/Bone Scan Imaging for Diagnosing Tuft Fractures*

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: MRI, CT, CAT, Ultrasound, Bone scan imaging, Distal Phalanx Fractures, Subungual Hematoma, Tuft Fractures, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 20 articles in PubMed, 10 in Scopus, 0 in CINAHL, 6 Cochrane Library, and 60 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Trephination and Nail Removal or Laceration Repair There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Trephination; nail removal; laceration repair (subungual hematoma) / Distal Phalanx Fractures and Subungual Hematoma, Tuft Fractures ;controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 6 articles in PubMed, 1 in Scopus, 0 in CINAHL, 1 in Cochrane Library, 180 in Google Scholar, and 1 from other sources. We considered for inclusion 3 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 1 from other sources of the 6 articles considered for inclusion, 0 randomized trials and 2 systematic studies met the inclusion criteria.

Evidence for the Use of NSAIDs or Acetaminophen for Tuft Fractures

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDS, Anti-Inflammatory Agents, Non-Steroidal anti-inflammatory Agents, Non-Steroidal agents; controlled trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, and 0 in Cochrane Library, 719 in Google Scholar. Zero articles met the inclusion criteria.

Evidence for the Use of Antibiotic Prophylaxis for Open Fractures

There is 1 high-quality RCT incorporated into this analysis.(1275) (Stevenson 03) There is 1 low-quality RCT in Appendix 2.(1276) (Sloan 87)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Antibiotic prophylaxis, Distal Phalanx Fractures and Subungual Hematoma, Tuft Fractures; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 12 in Scopus, zero in CINAHL, and 2 in Cochrane Library. We considered for inclusion 2 from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library and zero from other sources. Of the 2 articles considered for inclusion, 2 randomized trials and zero systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Stevenson	8.5	N = 193 (159	Antibiotic four times	Infection rate (antibiotic	"[T]he addition of	Data suggest no
2003		males; 34	a day for five days	vs. placebo): 3% vs 4%	prophylactic	benefit of
		females) with an	(N = 98)	(p>0.05).	flucloxacillin to	addition of
RCT		open fracture of	vs	_	thorough would	prophylactic
		the distal	Placebo four times a		toilet and careful	flucloxacillin for
Sponsored by		phalanx; Age	day for five days		soft-tissue repair of	treating distal
the Research		range 16 – 88.	(N = 95).		open fracture of	phalanx
Network,		-			the distal phalanx	fractures

Ayrshire and	Follow-up 4 or 5	confers no	compared to
Arran Health	days, 14 days and 8	benefit."	placebo.
Board. No COI	weeks following		
	injury unless wound		
	was healed and		
	patient is		
	asymptomatic.		

Evidence for the Use of Tetanus Immunization There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Tetanus immunization, Distal Phalanx Fractures and Subungual Hematoma, Tuft Fractures; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 0 articles in PubMed, 10 in Scopus, 0 in CINAHL, 0 in Cochrane Library and 0 in other sources. Zero articles met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: tetanus immunization, distal phalanx or tuft, fractures or fracture or subungual hematoma; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

Evidence for the Use of Immobilization for Tuft Fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Immobilization, Splinting, Tight, circumferential, taping, Distal, Phalanx, Tuft, Fractures, fracture, Subungual, Hematoma; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 0 in Scopus 0 in CINAHL, 1 in Google Scholar, and 1 in Cochrane Library. We considered for inclusion 15 from PubMed, 5 from Scopus, 11856 from CINAHL, 24 in Google Scholar, 91 from Cochrane Library, and 0 from other sources. Of the 11986 articles considered for inclusion, 0 randomized trials and 4 systematic studies met the inclusion criteria.

Evidence for the Use of Physical or Occupational Therpay for tuft fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Exercise, Physical Therapy, Occupational Therapy, Distal Phalanx Fractures and Subungual Hematoma, Tuft Fractures; controlled clinical trial, controlled trials, randomized co

allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 12 articles in PubMed, 3 in Scopus, 0 in CINAHL, 2 in Cochrane Library, 167 in Google Scholar, and 0 in other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Surgery for Distal phalangeal diaphyseal fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Retrograde percutaneous Kirschner-wire fixation, Bone Wires, Distal Phalanx Fractures and Subungual Hematoma, Tuft Fractures; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 6 in Scopus, 0 in CINAHL, and 12 in Cochrane Library, 136 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Of the 1 articles considered for inclusion, 0 randomized trials and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: retrograde percutaneous Kirschner-wire fixation, distal phalanx or tuft, fractures or fracture or subungual hematoma; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 20 articles. Zero articles met the inclusion criteria.

Evidence for the Use of X-rays for Diagnosing Phalangeal or Metacarpal Fractures

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: X-Ray, Metacarpal, Middle, Proximal, Phalangeal, boxer's, Fracture, Bone, Diagnostic, Diagnosis, Sensitivity, Specificity, positive, predictive, value, negative, predictive, Value, of, Tests, efficacy, efficiency. We found, reviewed and considered for inclusion 251 articles in PubMed, 2 in Scopus, 7 in CINAHL, 0 in Cochrane Library, 1080 in Google Scholar and 0 in other sources. Zero articles met the inclusion criteria.

Metacarpal Fractures

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: MRI, CT, Ultrasound, bone, scan, imaging; Metacarpal, Middle, Proximal, Phalangeal, boxer's, Fracture, Bone, Diagnostic, Diagnosis, Sensitivity, Specificity, positive, predictive, value, negative, predictive, Value, of, Tests, efficacy, efficiency. We found and reviewed 90 articles in PubMed, 1 in Scopus, 5 in CINAHL, 647 in Google Scholar, and 1 in Cochrane Library. We considered for inclusion 2 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 744 articles considered for inclusion, 0 randomized trials and 0 systematic studies met the inclusion criteria

Evidence for the Use of Digital Block for Middle and Proximal Phalangeal or Metacarpal Fractures

There are 2 high-(99, 1285) and 7 moderate-quality(1283, 1284, 1286-1290) RCTs or crossover trials incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Digital block, digital anesthesia, ring block technique, palmar subcutaneous block, middle, proximal, phalangeal, metacarpal, fractures, boxers; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 41 in Scopus, 1 in CINAHL, 0 in Cochrane Library, 60 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Nine articles met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
				Digital Block	•	
Yin 2006	8.5	N = 91 (23 female/68	Traditional digital block (n = 50) vssingle	No differences between 2 groups per time to onset of anesthesia and	"The palmar techniques, including single subcutaneous	Study included RCT as well as meta-analysis of other
RCT		male) with injuries to 1-2	subcutaneous palmar block ($n = 41$).	injection pain score with per protocol or ITT analyses.	palmar block and transthecal block carry a risk of not	digital anesthesia RCTs.
No mention of sponsorship or COI.		figners distal to basal crease of finder. Age 14- 60.	Follow-up for 1 month.		anesthetizing the dorsum of the digit adequately, particularly the dorsum of the thumb and the proximal phalanx of the fingers."	
Hung 2005	8.0	N = 50 (gender not specified)	Digital (metacarpal) block vs. single	Overall significant difference (p <0.001) between methods evaluated	"Subcutaneous block is effective and preferred by healthy	Study conducted in non- injured hands. Volume of
RCT Crossover Trial Sponsored by funds from American Foundation of Surgery of Hand,		healthy volunteers. Age not given.	subcutaneous palmar block vs. transthecal block	with digital metacarpal block taking significantly longer to abolish sensation (265 seconds vs. 187 seconds vs. 176 seconds) as compared with other 2 methods. No significant difference between average pain scores by patients; 43% chose subcutaneous block as their first choice vs. metacarpal	volunteers for digital anesthesia."	anesthetic was limited to 2ml. All subject received all blocks in different fingers. Results are opposite those found by Knoop.
Raymond M. Curtis Research Foundation and MedStar Research Institute. No				block vs. transthecal block.		

mention of						
COI.						
001.						
Hill 1995	7.0	N = 81 (gender	TT or transthecal	Blocks completed with 2ml 1 %	Transthecal digital block is	Study included 162 blocks on
11111 1775	7.0	not specified)	block vsTD or	lidocaine at each site. All blocks	clinically equal to the traditional	81 subjects. Patients were
RCT		healthy adutls.	traditional digital	successful without complications.	method in terms of time to	healthy without injury and
Crossover Trial		Age 18-45	block or ring block.	Mean VAS pain scores favored	anesthesia and associated pain.	served as their own control.
Crossover Imai		e e	block of fling block.		anestnesia and associated pain.	served as their own control.
Na mantian af		years.		traditional block $(1.4 \pm .13 \text{ vs. } 1.7 \pm .17 \text{ sc.} - 0.02)$ Time to loss of		
No mention of				.17, $p = 0.02$). Time to loss of		
sponsorship or				pinprick sensation was faster for		
COI.				ring block (188 vs. 152 seconds).		
Williams 2006	7.0	N = 27 (16	Digital block vs. single	No difference in median pain scores	"Our results demonstrated that	Lack of blinding; study
		female/11	subcutaneous palmar	with respect to volar and dorsal	there was more pain experienced	conducted on healthy volunteer
Crossover Trial		male)	block.	injection techniques (VAS 4.06 vs.	with the use of the two-injection	population. Both techniques had
		volunteers.		4.52). Volunteers preferred palmar	dorsal technique, but the	incomplete anesthesia in some
No mention of		Mean age 31		block (22 of 27) if required to have	difference in pain scores was not	subjects (palmar – dorsum of
sponsorship or		years.		another in the future.	statistically significant."	phalanges, digit – hemidigit
COI.						anesthesia).
Cummings	6.5	N = 25 Paid	Transthecal (modified)	No difference in pain rating from the	"The effect of modified	Subjects served as both
2004		volunteers	(N=25)	block procedures ($p = 0.579$).	transthecal block is equal to that	comparison groups. Author
				Average time to complete block was	of traditional block in terms of	states study was double-blind,
Crossover Trial		Mean age of 31	vs.	faster in all measured dermal zones	pain perception. For the dorsal	but appears questionable as
		years old.		(average of 1.38 to 5.46 minutes	and radial proximal zones, the	number and location of
Sponsored by			Traditional digital	faster) for traditional block vs.	traditional block appears to have	puncture was different for each
University of		13 Females, 12	block	transthecal block (p <0.05).	better distribution of anesthesia."	method.
Illinois College		Males	(N = 25)			
of Medicine						
and			(All 25 volunteers			
Department of			received both			
Emergency			treatments.)			
Medicine at			/			
OSF St.			No mention of follow			
Francis			up.			
Medical			~F.			
Center. No						
mention of						
COI.						
001.						

Low & Wong 1997 Crossover Trial No mention of Sponsorship or COI.	6.5	N = 142 Mean age of 33.5 years old. 14 Females, 128 Males	Transthecal (N = 71) vs. Single injection subcutaneous (superficial to A-1 pulley) digital block (N=71)	Blocks performed with 3cc 1% lignocaine/ bupivacaine mixture. No differences between 2 techniques with regards to effectiveness, distribution, onset, and duration of anesthesia.	"The subcutaneous block would appear to be a better choice as it is easier to administer and has no risk of intraarticular injection."	Study compared single injection techniques in subjects with actual injuries. Randomization and allocation is unclear.
			No mention of follow			
Knoop 1994 Crossover Trial No mention of sponsorship or COI.	5.5	N = 30 patients that required digital anesthesia. No mention of mean age. Range 19-64 years old. 9 Females, 21 Males	up. Digital block (N = 30) vs. Single subcutaneous palmar block (N = 30) (All patients had both treatments.) No mention of follow up.	Digital block not statistically less painful than metacarpal block (VAS 2.53 ± 1.98 cm vs. 3.35 ± 2.77 cm, p = 0.18). Digital block more efficacious as metacarpal block failed anesthesia to pinprick in 23% vs. 3% (p = 0.023). Time to anesthesia shorter for digital block 2.82 minutes \pm 1.01 vs. 6.35 minutes \pm 2.94 (p <0.001).	"Digital block and metacarpal block, as described in this study, are equally painful procedures. Digital block, however, is more efficacious and requires significantly less time to onset of anesthesia for the injured finger."	Subjects served as both comparison groups with both procedures being completed on half of same finger, which is major weakness. Lack of methodology details.
Keramidas 2004 Crossover Trial No mention of sponsorship or COI.	5.5	N = 50 patients with a finger(s) injury. Mean age of 35 years old. 15 Females, 35 Males	up. Transthecal Digital Block (N = 50) vs. Traditional digital block (N = 50) No mention of follow up.	Subjects had 2 or more injured fingers. Blocks performed with 2cc 1% lidocaine transthecally. All blocks successful without complications. Mean time to pinprick sensation faster for traditional block (100± 6.2 s vs. 165±9.3 s, p <0.05). At 24 hours post block, 18 of 52 transthecal blocks had residual pain; none of subcutaneous blocks had pain. Patients preferred subcutaneous block 46 vs. 4.	"The transthecal digital block is comparable to the traditional subcutaneous infiltration technique with respect to the time and effectiveness of anesthesia but not with respect to the associated pain following anesthesia. Patients seem to prefer the subcutaneous infiltration technique because it is less painful."	Randomization and allocation unclear, although patients served as both intervention arms. States study double blinded but only described blinding of assessor.

Low &	5.5	N = 20 healthy	Transthecal	Blocks performed with 2ml 1%	"Transthecal and subcutaneous	Lack of study details, including
Vartany 1997		volunteers.	(N = 20)	lidocaine; 40% of transthecal group	techniques showed no differences	randomization and allocation
				and 45% of subcutaneous group	in terms of distribution, onset, and	methods. Subjects were own
Crossover Trial		No mention of	vs.	achieved entire finger anesthesia. No	duration of anesthesia. Although	control, and had no injuries.
		age/sex.		differences based on injection	both techniques give similar	
No mention of			Single injection	method. No differences in	levels of anesthesia, subcutaneous	
sponsorship.			subcutaneous	magnitude of sensory nerve action	block is believed to be superior	
No COI.			(superficial to A-1	potentials. Injector subjectively	because the transthecal technique	
			pulley) digital block	rated subcutaneous injections as	has more dis-advantages."	
			(N = 20)	easier to perform than transthecal.		
			Follow up 24 hrs after			
			experiment.			

Evidence for the Use of NSAIDs or Acetaminophen for Phalangeal or Metacarpal Fractures

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAID, aspirin, acetaminophen, Middle, Proximal, Phalangeal, Metacarpal, Fractures, boxer's; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 56 in Scopus, 0 in CINAHL, 4 in Cochrane Library, 60 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Antibiotic Prophylaxis for open phalangeal fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, and Cochrane Library without date limits using the following terms: Anti-bacterial agents, antibiotics, antibiotic prophylaxis, and antibiotic; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, randomized, randomized, randomized for systematic review, retrospective, and prospective studies. We found and reviewed zero articles in PubMed, 1 in Scopus, zero in CINAHL, and 1 in Cochrane Library. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Tetanus Immunication for Open Fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL and Cochrane Library without date limits using the following terms: Tetanus, Tetanus immunization, Tetanus Toxin, Tetanus antitoxin, Tetanus Toxoid and tetanus; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized,

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: tetanus immunization status, tetanus toxoid, middle phalangeal factures, proximal phalangeal fractures, metacarpal fractures, boxer's fractures; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, randomized, randomized, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

Evidence for the Use of Functional Therapies vs. Casting or Splinting for Metacarpal Fractures

There are 13 moderate-quality RCTs incorporated into this analysis. (1294-1304, 1314, 1315) (Horton 03; Sletten 15) There are 3 low-quality RCTs in Appendix 2.(1316-1318)

Taping:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Taping, functional bracing, strapping vs. casting or splinting (fifth metacarpal neck fractures only), Middle and Proximal Phalangeal and Metacarpal Fractures (fifth metacarpal neck fractures, boxer's fracture, shaft metacarpal

fractures - transverse, oblique, spiral, comminuted); controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 17 articles in PubMed, 4 in Scopus, zero in CINAHL, zero in Cochrane Library, 27 in Google Scholar, and zero from other sources. We considered for inclusion 11 from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library, zero from Google Scholar, and zero from other sources. Of the 11 articles considered for inclusion, 11 randomized trials and zero systematic studies met the inclusion criteria.

Fixation:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: percutaneous fixation, bone screws, plates, internal fixation, external fixation, closed reduction, middle, proximal, phalangeal, metacarpal, fractures, bone fractures, boxer's, condylar fractures; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 244 articles in PubMed, 301 in Scopus, 11 in CINAHL, 1 in Cochrane Library, 282 in Google Scholar, and 0 from other sources. We considered for inclusion 3 from PubMed, 2 from Scopus, 0 from CINAHL, Cochrane Library, and Google Scholar, and 1 from other sources. Of the 6 articles considered for inclusion, 5 randomized trials and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: percutaneous fixation, bone screws, plates, internal fixation, external fixation, closed reduction, metacarpal, metacarpal fractures, middle or proximal, phalangeal or boxer's, and bone fractures; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized; systematic, retrospective, and prospective studies to find 144 articles. Of the 144 articles we considered for inclusion 6. Of the 6 considered for inclusion, 1 are randomized controlled trials and 5 systematic reviews.

Immobilzation:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms Immobilization: padded aluminum splints, buddy tape, functional splinting, gutter casting, splinting (closed reduction), Middle, Proximal, Phalangeal, Metacarpal, Fractures, boxer's; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomized, randomizet, systematic, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 2 in Scopus, 4 in CINAHL, 19 in Cochrane Library, 100 in Google Scholar, and 1 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 1 from Cochrane Library, 0 from Google Scholar, and 1 from other sources. Of the 2 articles considered for inclusion, 0 randomized trials and 2 systematic studies met the inclusion criteria

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
					Fixa	ation				
Kim 2015 (score=7.0)	Percutaneou s Fixation	RCT	No mention of sponsorship. NO COI.	N = 46 with displaced fifth metacarpal neck fractures with apex dorsal angulation >30°.	Mean age: 29 years; 46 males, 0 females	Antegrade intramedullary K-wire pinning (n=23) vs percutaneous retrograde intramedullary K-wire pinning (n=23). All patients received an ulnar gutter	Follow-up at 3 and 6 months postoperati vely.	Postoperative outcomes at 3 months: ROM antegrade 80 vs. retrograde 69 (p<0.001); VAS points antegrade 2 vs. retrograde 4 (p<0.001); grip strength % antegrade 81 vs.	"[T]reatment of a displaced fifth metacarpal neck fracture by antegrade intramedullary pinning produces better clinical outcomes at 3 months postoperatively in	Data suggest antegrade intramedullary pinning had some clinical benefit to retrograde intramedullary pinning during recovery phase but these

						short-arm splint post-surgery to be worn for 5 weeks.		retrograde 71 (p <0.001); DASH score, points, antegrade 4.3 vs. retrograde 10.3 (p <0.001). Postoperative outcomes at 6 months: ROM (p =0.35); VAS (p =0.67); grip strength (p =0.41); DASH score (p =0.48).	terms of ROM, VAS, grip strength, and DASH score of the fifth metacarpophalange al joint than percutaneous retrograde intramedullary pinning, but that the differences in clinical parameters are not sustained at 6 months postoperatively."	benefits are not present at 6 months.
Winter 2007 (score=5.5)	Percutaneou s Fixation	RCT	No mention of sponsorship or COI.	N = 36 males with fracture of neck of 5th metacarpal, recent and closed fracture.	Mean age 31.4 years; 36 males, 0 females	Transverse pinning with 2 K-wires 1.5mm diameter (n=18) vs intramedullary pinning with 3 K-wires 1mm diameter (n=18). Both groups wore palmar splint for 1 week after procedure then physiotherapy 3x a week for 30 days. K-wires removed 6 weeks after surgery.	Follow-up at days 8, 15, 30, 45, 60, and 90 after surgery.	Total active motion (TAM) at final follow-up: intramedullary $279\pm11.9^{\circ}$ vs. transverse $261\pm36.5^{\circ}$ (p=0.02). Active ROM MCPj at final follow-up: intramedullary $94\pm5.9^{\circ}$ vs. transverse $81.5\pm19.4^{\circ}$ (p=0.0037). Percentage of contralateral grip strength: intramedullary 92% vs. transverse 83% (p=0.06).	"This study suggests that intramedullary pinning is a particularly efficient procedure for treatment of the boxer's fracture."	Small sample. Data suggest better functional outcomes with intramedullary pinning group unclear if patients were informed of surgical treatment.
Krukhaug 2009 (score=5.0)	Closed Reduction Fixation	RCT	No mention of sponsorship. No COI.	N = 75 with unstable distal radius fractures (AO-type A3) suitable for non-bridging	Mean age 62 years; 6 males, 64 females	H group: Hoffman compact II fixator (n=37) vs D group: Dynawrist fixator (n=38).	Follow-up post-op, 6, 12, 24, and 52 weeks.	Median radial tilt (degrees): post-op Hoffman 8 volar vs. Dynawrist 2 volar (p = 0.002); at removal of fixators Hoffman 9 volar vs.	"The Dynawrist bridging but dynamic fixator gives radiographic and functional outcome similar to that of the Hoffman	Data suggest comparable efficacy in both groups for radial tilt, inclination and radial length.

				external fixation; >10° of dorsal angulation and/or radial shortening of >2mm vs. uninjured wrist.		All patients treated with closed reduction.		Dynawrist 4 (p = 0.04). Mean loss of flexion (degrees): 6 weeks Hoffman 34 vs. Dynawrist 24 (p = 0.001).	II compact non- bridging fixator."	
Horton 2003 (score=5.0)	Percutaneou s Fixation	RCT	Sponsored by a grant from the AO foundation. No mention of COI.	N = 32 with an isolated and displaced spiral or long oblique fracture of the shaft of the proximal phalanx.	Mean age 26 years; 14 males, 14 females	Treated by closed reduction and Kirschner wire fixation (n=17) vs Treated by open reduction and lag screw fixation (n=15).	Follow-up for a median of 40 (range 15-76) months.	18/28 achieved a full recovery and 9/10 complained only of niggling or minor problems. No significant difference between the functional recoveries of the two groups, (p = 0.3). The median pain VAS for the whole study group was 0	"There was no significant difference in the functional recovery rates or in the pain scores for the two groups."	Small sample size. Data suggest comparable results.
Sletten 2015 (score=5.5)	Percutaneou s Fixation	RCT	Sponsored by a grant from Sofies Mindes Ortopedi AS, Oslo, Norway. No COI.	N = 85 with little finger metacarpal neck fractures with ≥30° palmar angulation in the lateral view.	Mean age: 27.0 years; 61 males, 24 females	Conservative treatment without reduction of the fracture (n=43) vs Closed reduction and bouquet pinning (n=42).	Follow-up at 1 week, 6 weeks, 3 months, and 1 year.	(range 0–7). Median operative time 30 minute. The palmar angulation was a median of 41° (range 30–58) in the conservative group at inclusion. In the operative group, palmar angulation was reduced from a median of 40° (range 30–59) – 17° (range –9–31). At 1 year, The QuickDASH score was median 0 in both groups. No statistically significant or	"There was a trend versus better satisfaction with hand appearance ($p = 0.06$), but longer sick leave ($p < 0.001$) and more complications ($p = 0.02$) in the operative group."	Data suggest comparable efficacy between conservative treatment vs. bouquet pinning of little finger metacarpal neck fractures for pain, finger ROM, grip strength, and quality of life. However, there was better patient satisfaction with hand appearance

			clinical relevant	but longer sick
			differences in	leave in the
			QuickDASH scores	surgical group.
			at any time, but a	
			worse QuickDASH	
			Work score in the	
			operative group at 6	
			weeks before pin	
			removal, (25 versus	
			6 points, $p = 0.07$).	
			,	

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
			Immobilization		•	•
Hofmeister 2008	6.0	N=81 with an acute (<7 days old) isolated fracture of the 5th metacarpal neck. Mean age 25	Casting with the MCP joint in flexion in a short-arm cast with volar outriggers with ring and small finger interphalangeal joints in extension, SAC-VOR (N=40)	Postreduction AP plane: SAC-VOR 5° vs. MCP-ext 14°	"[W]e found that both methods of immobilization	Data suggest comparable efficacy
No mention of		years.	vs. casting with MCP joint in neutral extension and a cast with a 3-point mold	(p<0.05).	were equally effective in	between (SAC VOR) and
sponsorship. NO COI.		No mention of gender.	about the fracture site, MCP-ext (N=41). All patients underwent a fracture reduction prior to cast placement. Cast was removed after 4 weeks. Assessments at 1 week, 4 weeks, and 3 months after the start of treatment.		maintaining fracture reduction."	(MPC-ext) with a slight advantage to MCP-ext in terms of grip strength, patient tolerability and ROM.
Harding 2001 No mention of sponsorship or COI	5.5	N = 73 (3 females, 62 males) Patients with minimally angulated ($<40^\circ$), closed fractures of the little finger metacarpal neck with no rotational deformity or associated injury. Mean age was 26.5 years	Molded metacarpal brace (N=37) vs. neighbor strapping for 5th metacarpal neck fracture (N=28) Follow up at 3 weeks.	Patients treated with brace complained of less pain ($p = 0.001$) and had slightly better range of finger movement ($p = 0.03$). More returned to work by 3 weeks ($p = 0.007$).	"The results of our study showed a clear benefit over neighbor strapping for mean range of active range of motion of MCP joint, mean pain score, and return to	There was no mention of control for co- interventions. For working populations this study suggests earlier return to work.
				None developed rotational or significant angular deformity.	work by 3 weeks."	

Kuokkanen	5.5	N = 29	Compression bandage for 1 week vs. splint immobilization (MCP 60° of	Angulation of	"We suggest that	Small sample
1999		(26 males, 3 females)	flexion)	fracture remained	at least subcapital	size. Patients in
		Patients treated for subcapital		practically at same	fractures of the	functional group
No mention of		fractures of the fifth metacarpal		level compared with	fifth MC that are	had higher
sponsorship or		bone.		primary angulation	modestly and	degree of pre-
COI.		conc.		in both groups.	slightly angulated	treatment
001.				ROM of MCP (p =	should be treated	angulation but
		Mean age: 29 years.		0.02) and PIP (p =	functionally,	still had equal or
		Weah age. 29 years.		0.02) and $1 In (p = 0.01)$ joints higher	without reduction	better functional
				in functional group	and splinting.	outcomes in this
				at 4 weeks, but no	Based on the	population.
				difference at 3	present findings	population.
				months. Grip force	the correction	
				was better in	achieved by closed	
				functional group at	reduction does not	
					persist"	
Braakman 1998	5.0	N = 50 (43 males, 5		4 weeks ($p = 0.002$).		Lack of
Braakman 1998	5.0		Ulnar gutter plaster cast vs. functional tape of 5th metacarpal fracture.	In both groups,	The patients in the	
N		females)patients with a fracture		fracture reduction	tape group showed	randomization
No mention of		of the 5 th metacarpal		partially lost at 1	a quicker and	and allocation
sponsorship or			Follow up period was 6 month.	week follow-up for	superior functional	details. No
COI.				all patients who had	recovery than	blinding of
		Mean age was 26 years.		reduction. No	those in the cast	assessor.
				relation between	group. After 6	
				functional recovery	months, there were	
				and existence of	no significant	
				residual symptoms	differences	
				based on initial	between the groups	
				fracture angulation.	with regard to	
				Normal mobility	functional and	
				restored in all	anatomical results	
				patients in table	or the number of	
				group, whereas	patients with	
				mobility limited in	residual symptoms.	
				44% of cast group at		
				4 weeks and 8% at 3		
				months.		
Statius Muller	5.0	N=40 (38 males, 2 females)	Ulnar gutter plaster cast for 3 weeks followed by mobilization within pain	There were no	"[A] pressure	Small sample
2003		with a fracture of the subcapital	limits (N=20)	significant	bandage for 1	size. Data
		MC-V \leq 3 days old and	VS.	differences between	week and	suggest
RCT		angulated ≤70°. Mean age 29	1 week of pressure bandage (N=20).	groups at 6 and 12	immediate	comparable
		years.	Follow-up 6 and 12 weeks after fracture.	weeks follow-up.	mobilization is a	efficacy
No mention of					sufficient	between groups.
sponsorship or					alternative	2 1
COI.				1	treatment	1

McMahon 1994 RCT No mention of sponsorship or COI.	4.5	N=42 with unilateral fresh closed stable fractures (displaced <50% of width of shaft, angulated less than 40° and showed an angle of over 60° between plane of fracture and axis of shaft) of the shaft of single finger metacarpal Mean age plaster 27 years, compression glove 35 years. No mention of gender.	Compression glove worn on injured hand and early mobilization (N=21) vs. immobilization in plaster splint (N=21). Treatment lasted between 6-14 days after entry. All patients received hand exercises between 6-13 days after injury. Follow-up began at week 2, weekly intervals for 3 weeks.	Mean loss of total active motion (degrees): week 2 glove 56 ± 26 vs. splint 84 ± 33 (p=0.0036); week 3 glove 23 ± 17 vs. splint 46 ± 23 (p=0.0010); week 4 NS (p=0.15). Mean increase in circumference of PIP joint (mm): week 2 glove 2.2 ± 2.8 vs. splint 4.5 ± 3.2 (p=0.019); week 3 glove 0.5 ± 2.5 vs. splint 2.1 ± 2.8 (p=0.059); week 4 NS (p=0.27). Mean increase in hand volume (cm3): week 2 glove 19\pm 31 vs. splint 42 ± 36 (p=0.029); week 3 NS (p=0.13); week 4 NS (p=0.69).	of a boxer's fracture, if this is not angulated greater than 70° and not rotated." "Use of a compression glove avoided the loss of function imposed by splintage and was associated with a greater range of movement during the second and third weeks."	Small sample size (N=42). Data suggest glove group experienced less pain and prevented loss of function and better range of motion during second and third weeks.
Randall 1992 RCT No mention of sponsorship or COI.	4.5	N=18 (13 males, 5 females) undergoing treatment of metacarpal fracture and hand has been immobilized for ≥2 weeks. Mean age 28.7 years.	vs. control, no mobilization (N=9). Both groups received home exercises. Three appointments on alternate days over a 1 week period.	Mean torque range of motion (TROM): treatment 73.6 vs. control 58.7 (no p- value reported).	joint mobilization treatment given to the subjects in this study resulted in a significant gain in AROM and decrease in joint stiffness within a treatment	Small sample (18). Data suggest significant increase in metacarpal phalangeal joint motion after joint mobilization

					session when	when compared
					compared to the	to controls.
					control group."	
Konradsen 1990	4.0	N=100 with shaft or neck	Immobilization by plaster cast as ulnar gutter cast for 5th metacarpal or as	Fracture angulation	"Functionally	Data suggest
		fracture of the 2nd-5th	dorsal cast for 2nd-4th metacarpals (N=)	after cast removal	treated patients	functional cast
RCT		metacarpal bone. Median age	VS.	(median degrees):	returned to work	group returned
		plaster cast 22 years, functional	immobilization by functional cast, Delta-Lite® allowing free ROM of wrist	subcapital – plaster	faster than did	to work in 1/3
No mention of		cast 22.5 years.	and digit joints (N=).	cast 25 vs.	patients in studies	the time
sponsorship or			Reduction was performed in all patients. Casts removed after 3 weeks.	functional cast 16	of	compared to
COI.		No mention of gender.	Assessments at 1 week, 3 weeks, and 3 months after injury.	(p<0.05); diaphyseal	nonimmobilization	plantar cast
				 plaster cast 14 vs. 	(Hunter and	group.
				functional cast 5	Cowen 1970,	Functional
				(p<0.01). Return to	Arafa et al. 1986,	casting reduced
				work in occupations	Ford et al. 1989),	volar angulation
				where use of hands	perhaps because	by 2/3 in
				could be avoided	the short, but solid,	metacarpal shat
				(time in days):	bandage gave a	fractures and 1/
				plaster cast 7 vs.	feeling of security	in metacarpal
				functional cast 1	and provided	neck fractures a
				(p<0.05).	pain relief."	compared to
						plantar cast
						group.

Evidence for the Use of Surgery for Malrotated Phalangeal Fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: operative fixation, middle, proximal phalangeal, metacarpal fractures, metacarpal, neck fractures, boxer's fracture, shaft metacarpal fractures, transverse, oblique, spiral, comminuted; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 69 articles in PubMed, 90 in Scopus, 0 in CINAHL, 18 in Cochrane Library, 175 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, Cochrane Library, Google Scholar, and from other sources. Zero articles were included.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: operative fixation, metacarpal fractures, middle or proximal, phalangeal or boxer's, and bone fractures; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, retrospective, and prospective studies, closed reduction and bouquet pinning to find 91 articles. Of the 91 articles we considered for inclusion 2. Of the 2 considered for inclusion, 0 are randomized controlled trials and 2 systematic reviews.

Evidence for the Use of Joint Mobilization for Acute Metacarpal Fractures

There are 3 moderate-quality RCTs incorporated into this analysis.(1296, 1297, 1315) (Kuokkanen 99; Statius Muller 03; Sletten 15)

Ice:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Ice, Compression, Elevation, Metacarpal, Middle, Proximal, Phalangeal, boxer's, Fractures, Bone; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomiz

Joint mobilization:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Joint mobilization, early ambulation, Middle and Proximal Phalangeal and Metacarpal Fractures (fifth metacarpal neck fractures, boxer's fracture, shaft metacarpal fractures - transverse, oblique, spiral, comminuted) ;controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, systematic, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 4 articles in PubMed, 56 in Scopus, 380 in CINAHL, 3 in Cochrane Library, and 3 in Google Scholar. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 1 from Cochrane Library and 1 from Google Scholar. Of the 4 articles considered for inclusion, 3 randomized trials and 1 systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type Kuokkanen 1999 No mention of sponsorship or COI. Statius Muller 2003 RCT No mention of sponsorship or	5.5	N = 29 (26 males, 3 females) Patients treated for subcapital fractures of the fifth metacarpal bone. Mean age: 29 years. N= 40 (38 males, 2 females)with a fracture of the subcapital MC-V \leq 3 days old and angulated \leq 70°. Mean age 29	Compression bandage for 1 week vs. splint immobilization (MCP 60° of flexion) Ulnar gutter plaster cast for 3 weeks followed by mobilization within pain limits (N=20) vs. 1 week of pressure	Angulation of fracture remained practically at same level compared with primary angulation in both groups. ROM of MCP ($p = 0.02$) and PIP ($p = 0.01$) joints higher in functional group at 4 weeks, but no difference at 3 months. Grip force was better in functional group at 4 weeks ($p =$ 0.002). There were no significant differences between groups at 6 and 12 weeks follow-up.	"We suggest that at least subcapital fractures of the fifth MC that are modestly and slightly angulated should be treated functionally, without reduction and splinting. Based on the present findings the correction achieved by closed reduction does not persist" "[A] pressure bandage for 1 week and immediate mobilization is a sufficient alternative treatment	Small sample size. Patients in functional group had higher degree of pre- treatment angulation but still had equal or better functional outcomes in this population. Small sample size. Data suggest comparable efficacy between groups.
sponsorship or COI.		Mean age 29 years.	I week of pressure bandage (N=20). Follow-up 6 and 12 weeks after fracture.		treatment of a boxer's fracture, if this is not angulated greater than 70° and not rotated."	
Sletten 2015 RCT This work was supported by a grant from Sofies Mindes Ortopedi AS, Oslo, Norway. NO COI.	5.5	N = 85 patients with little finger metacarpal neck fractures with \geq 30 ° palmar angulation in the lateral view. Mean age Conservative Group 29 (18– 67) and Operative group 25 (18–68)	Conservative group, received an initial plaster-of-Paris applied for pain for one week, then buddy strapping was applied over the proximal phalanges of the little and ring fingers, and the patients started active exercises. N = 43	For conservative vs. operative; QuickDASH (0 vs. 0 (p=0.54)), VAS overall Satisfaction (97 vs 100 (p=0.17)), TAM (°) (261 vs 260 (p=0.68)), Grip strength (kg) (49 vs 49 (p=0.78)),	"After 1 year, there were no statistical differences between the groups in QuickDASH score, pain, satisfaction, finger range of motion, grip strength, or quality of life. There was a trend versus better satisfaction with hand appearance (p = 0.06), but longer	Data suggest comparable efficacy between conservative treatment vs. bouquet pinning of little finger metacarpal neck fractures for pain, finger ROM, grip strength, and quality of life. However, there was better patient

Gender (M:F)	Operative Group	sick leave (p <	satisfaction with
Conservative	underwent closed	0.001) and more	hand appearance
group (39:4)	reduction and internal	complications	but longer sick
Operative (39:3)	fixation by antegrade,	(p = 0.02) in the	leave in the
	intramedullary	operative group."	surgical group.
	bouquet pinning then		
	The postoperative		
	regime.		
	was identical to the		
	conservative regime		
	N = 42		
	Follow up at at 1		
	week,		
	6 weeks, 3 months,		
	and 1 year		

Evidence for the Use of X-rays for Suspected Distal Forearm Fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Distal Forearm Fracture, xray, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 22 articles in PubMed, 3 in Scopus, 24 in CINAHL, 0 Cochrane Library, and 11,100 from Google Scholar. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles were included.

Evidence for the Use of MRI for Diagnosing Distal Forearm Fractures There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: magnetic resonance imaging, MRI, distal forearm fracture, distal forearm fractures, colles' fracture, colles fracture, colles fractures, dinner fork deformity, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 19 articles in PubMed, 117 in Scopus, 1 in CINAHL, 4 in Cochrane Library, and 640 from Google Scholar. Zero articles met the inclusion criteria.

Evidence for the Use of CT for Diagnosis and Classification of Occult and Complex Distal Forearm Fractures There are 3 quality studies incorporated into this analysis.(1327, 1330) (Johnstons 92; Harness 06; Avery 14)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: CT, CAT, computed tomography, distal, Forearm, radial, Radius fractures, bone Fractures, Colles' Fracture, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 302 articles in PubMed, 20 in Scopus, 3 in CINAHL, 16 Cochrane Library, and 20 from Google Scholar. We considered for inclusion 1 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 1 from other sources. Of the 3 articles considered for inclusion 3 diagnostic studies met the inclusion criteria.

Author/Year Study Type	Score	Number	Area of Body	Diagnoses	Type of CT	X-ray used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Avery III 2014 Retrospe ctive Study	5.5	17 sets of images No mention of how many patients, mean age, or gender.	Wrist	Distal Radial Fracture	GE LightSpeed VCT	+	-	+	+	-		-	-	CT and traction radiographs had the about the same ability to identify fracture fragments, except for the volar rim fragment. The volar rim was correctly identified 72% of the time on traction radiography compared to CT's 60% (p<0.01). CT correctly identified the radial column more often than traction radiographs (71.8% vs 65.8%, p=0.04)	"The information obtained from the traction radiographs compared with CT imaging showed little significant difference with regard to fracture fragment characterization and led surgeons to consistent treatment recommendations with both imaging modalities"	Small sample. Data suggest use of traction radiographs may be an alternative to CT imaging for diagnosing and assessing distal radial fractures.

Harness 2006 Retrospe ctive	7.5	30 No mention of mean age, or gender	Wrist	Wrist Fracture	GE Advantage 3.1 Workstation	+	-	+	+	-	-	+	-	Pertaining to a coronal fracture line, 3D CT imaging resulted in a sensitivity of 0.82, a specificity of 0.50, and accuracy of 0.77. 2D CT imaging resulted in values of 0.81, 0.56, and 0.77, respectively. When combined, the two images had slightly better results: a sensitivity of 0.87, a specificity of 0.56, and an accuracy of 0.82.	"Three-dimensional computed tomography improves both the reliability and the accuracy of radiographic characterization of articular fractures of the distal part of the radius and influences treatment decisions"	Dats suggest use of 3-D CT for analyzing complex intra- articular distal radius fractures.
Johnston s 1992	5.5	22 Mean age = 31.5 13 men 9 women	Wrist/ Hand	Acute distal radial and/or carpal injury	GE 9800 scanner	+	-	+	- (No men tion)	-	-	-	-	Only 19 of the 22 patients had a radial distal fracture. 3 sets of plain film were interpreted as normal. However, a CT scan revealed that all three were fractures. CT scan enhanced the details of the fractures. In one case, a "innocent lip fracture" on plain film turned into an intra-articular compress of the scaphoid fossa on the CT.	"CT has an advantage over conventional tomography in lending itself to potential three-dimensional reconstruction."	Data suggest CT visualizes more detail in evaluating acute distal radial fractures compared to plain radiographs.

Evidence for the Use of NSAIDs for Distal Forearm Fractures

There are 4 moderate-quality RCTs or prospective studies incorporated into this analysis.(1331-1334) (Thomas 86)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: anti-inflammatory agents, nonsteroidal, NSAIDS, non-steroidal anti-inflammatory, ibuprofen, acetaminophen, distal, forearm, radial, radius, fractures, bone fractures, Colles' fracture; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 13 articles in PubMed, 25 in Scopus, 0 in CINAHL, 18 in Cochrane Library, 5,993 in Google Scholar, and 3 from other sources. We considered for inclusion 4 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 4 articles considered for inclusion, 4 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year Study Type	Scor	Sample Size	Comparison Group	Results	Conclusion	Comments
Conflict of Interest (COI)	e (0- 11)	Size				
Davis 1988	7.0	N = 100 (gender not specified)	Group 1, 50mg flurbiprofen (f) (n = 53) vs. Group 2 or	Mean grip strength (mmHg) Group1 f/p: Week 2: 59/53, Week 6: 92/93, 1 year: 192/189. Mean grip strength (mmHg) Group 2 f/p: Week 2: 88/82, Week 6: 112/149, 1 year: 195/207. One-year assessment results	"[F]lurbiprofen provides significant pain relief and does not significantly delay union of Colles' fractures."	Data suggest efficacy without delaying union.
Prospective study		with Colles' fractures. Average age for groups I and II; 55.7 and 64.1.	placebo (p) randomized after dividing into group 1 (displaced fracture requiring Bier's block and manipulative reduction) or group 2, no reduction (n = 45).	(percentages) Group 1 f/p: patients who needed physiotherapy 11(45)/7(35), patients with residual pain 10(40/9(45), patients with restricted activities 10(40)/7(35). 1-year assessment results (percentages) Group 2 f/p: who needed physiotherapy 5(27)/2(12), patients with residual pain 9(50)/3(19), patients with restricted activities 6(33)/2(12). Garland and Werley's functional assessment, 1 year, Group 1 excellent or good/total: f 19/24, p 18/20. Group 2 f 17/18, p 16/16.		
Adolphson 1993	6.0	N = 42 (42 female). Mean age	20mg a day per os piroxicam (Feldene®) for 8 weeks after	7% mean decrease in bone mineral content in radius after 8 weeks for piroxicam; 10% decrease in control ($p = NS$). Pain piroxicam/ placebo 10 days: 2.1/3.1, 4 weeks 1.0/2.5, 8 weeks 1.0/0.9 ($p < 0.05$). Grip	"The patients who received piroxicam had significantly less pain during plaster treatment, but there was no difference in the	Study population limited to post- menopausal women affecting generalizability of results.
RCT		and range 63 (52-79).	initial 48 hours vs. 500mg paracetamol as	Strength piroxicam/ placebo 10 days/4 weeks 10/6, 8 weeks 32/26 (p = NS).	rate of functional recovery between the groups."	
Sponsored by a grant from Pfizer AB. No mention of COI.			rescue drug.			
Barrington 1980	4.5	N = 52 (47) female, 5 male) with	5 days of either 500mg diflunisal (Dolobid®) BID or 500mg	"Both treatments were effective in relieving pain, night pain, and limitation of movement by pain, and there was no significant difference between the response in the two groups."	"No statistical significant differences in the effectiveness or tolerability between the two drugs." Authors suggest twice daily dosage	Blinding mode unclear. Data suggest comparable efficacy.
RCT		pain due to Colles'	mefenamic acid (Ponstel®) TID.		may be regarded as an advantage for diflunisal treatment helping to ensure patient	
Trials drugs were provided		fracture			compliance.	
by the Pharmacy at the Royal		Mean age of 62.7 years.				
Infirmary. No mention of COI.						
Thomas 1986 RCT	5.0	N = 55 (21) males, 34 females) with	Normal treatment of fracture plus receiving three 50 mg tablets of diclofenac, a	Comparison of loss of total range of movement between diclofenac vs. placebo groups – Student's t test $(0.05 < P < 0.1)$,	"Both subjective and objective tests of recovery at 2 weeks after removal of splintage following fractures of the distal end of the radius showed that those patients	Data suggest prostaglandin groups had improved ROM, a more rapid recovery stronger grip and less pain.

	fracture of	prostaglandin	Patients' perception of pain between diclofenac vs. placebo groups -	treated with a prostaglandin inhibitor	
No montion of		inhibitor, a day for		recovered better than those who received	
No mention of	distal end		ratings from none (11 vs 6), improved (15 vs 17), no change (2 vs 2), (1 $(1 - 1)$) (12 $(1 - 1)$) (12 $(1 - 1)$) (12 $(1 - 1)$)		
sponsorship or	of radius,	seven days	worse $(1 \text{ vs } 1)$ – Chi squared $(X2 = 1.44, 0.05 < P < 0.1)$,	placebo. This form of treatment may prove	
COI.	parallel to	(N = 29, Men = 10,		most valuable in patients who might	
	the wrist	Women = 19)	Patients' perception of stiffness between diclofenac vs. placebo groups	otherwise be slow to recover or in whom a	
	join and		- none (12 vs 3), improved (13 vs 20), no change (4 vs 3), worse (0 vs	rapid recovery is especially desirable."	
	with a	VS	0) – Chi squared (X2 = $6.88, 0.05 < P < 0.1$)		
	tendency to				
	dorsal	Normal treatment of	Comparison between diclofenac vs placebo groups on percentage loss		
	displaceme	fracture plus receiving	of grip strength (Mann – Whitney U test, 0.02 < P < 0.05)		
	nt, treated	three 50 mg placebo			
	in the	tablets a day for seven			
	normal way	days			
	with no	(N = 26, Men = 11,			
	external	Women = 15).			
	skeletal				
	fixation,	Follow-up at two			
	fracture	weeks after removel of			
	splinted in	cast			
	below-				
	elbow				
	plaster cast				
	for between				
	4 to 6				
	weeks;				
	mean age				
	of both				
	groups = 55				
	[no mean				
	average				
	listed for				
	entire study				
	population]				
	population				
		I			

Evidence for Immobilization/Fixation for Non-displaced Colles' Fracture There are 26 moderate-quality RCTs and 1 prospective study incorporated into this analysis.(106, 1231, 1335-1339, 1344-1348, 1350-1364) (Tumia 03; Bunger 84; Arora 11; Wik 09; Bong 06; Sarmiemto 80; Gupta 91; Rosetzsky 82; Wahlstrom 82; Uzzaman 08; Ismatullah 12) There are 2 low-quality RCT in Appendix .(1362, 1365) (Gupta 11)

Early Immobilzation:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Early Immobilization & Mobilization & Colles' Fracture Or Distal Radial Fracture ;controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 76 articles in PubMed, 30 in Scopus, 8 in CINAHL, 12,970 in Google Scholar, 18 in Cochrane Library, and 0 from other sources. We considered for inclusion 5 from PubMed, 5 from Scopus, 3 from CINAHL, 1 from Cochrane Library, 3 from Google Scholar, and 0 from other sources. Of the 17 articles considered for inclusion, 9 randomized trials and 8 systematic studies met the inclusion criteria.

Functional Bracing: A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Functional Bracing & Casting, Distal Radial Fractures or Colles' Fracture; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed ? articles in PubMed, 4 in Scopus, 1 in CINAHL, 5 in Cochrane Library, 11,230 in Google Scholar, and 0 from other sources. We considered for inclusion 4 from PubMed, 1 from Scopus, 1 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 0 from other sources. Of the 7 articles considered for inclusion, 6 randomized trials and 1 systematic studies met the inclusion criteria.

Casting:A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Casting and Bracing and Colles' Fractures Or distal Radial Fractures; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed ? articles in PubMed, 35 in Scopus, 7 in CINAHL, 14 in Cochrane Library, 8830 in Google Scholar, and 0 from other sources. We considered for inclusion ? from PubMed, 17 from Scopus, 1 from CINAHL, 0 from Cochrane Library, 4 from Google Scholar, and 0 from other sources. Of the 22 articles considered for inclusion, 18 randomized trials and 4 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	(0-11)			Ever at an al Due	-i	
				Functional Bra		
Moir 1995 RCT	6.5	N = 85 (70 females/9 males) individuals with	Functional brace vs. control (dorsal plaster splint for 2 weeks followed by casting).	Functional score results; brace vs. control (lower score is better): 8 weeks 10 vs. 14 (p =	"The brace gave better functional results than conventional plaster treatment. The improved function was apparent up to 6 months after injury. Finger function and pinch strength	The brace-treated fractures were initially less severely displaced than control fractures. "The improved functional
_		distal Colles'		0.02); 13 weeks 4 vs. 11 (p =	were also better in the brace-treated patients. Anatomical	results, particularly in terms of pinch and
No mention of sponsorship or		fracture;	Follow up at 10-14 days, 5-6 weeks, and 8, 13, and 26	0.003); 26 weeks 2 vs. 5 (p = 0.02). Grip strength as % of	results were similar in the two groups."	grip strength, are particularly important in the group of elderly patients who live
COI.		Median age.	weeks, and 6, 15, and 26 weeks.	uninjured side: 8 weeks 50 vs.		alone."
		Group 1: 55 (22- 86)		35 (p = 0.0006); 26 weeks, 73		
		86) Group 2: 60 (21-		vs. 71 ($p = 0.6$). Analogue pain score (0-10); median: Splint		
		84)		removal 1 vs. 2 ($p = 0.02$); 8		
				weeks 1 vs. 2 (p = 0.048)		
Stewart 1984	5.0	N = 243 (No mention of	Conventional Colles' plaster vs.	Anatomical assessment excellent or good/total: plaster 45/93;	"Early hand function and the supinated position advocated by Sarmiento were found to confer no anatomical or functional	Author suggests 4 indications for use of below-elbow cast brace: request by patient
RCT		Gender) patients	(Sarmiento) supinated cast-	supinated brace 43/70; short	advantage; we could see no reason to change from the use of	for complete freedom of movement of
		with fractures of	brace vs.	brace 43/72. Functional results	conventional plaster casts in the treatment of uncomplicated	fingers and thumb; pre-existing finger
No mention of sponsorship		the distal radius;	below elbow cast-brace.	mean score at 3 months/6 months: plaster 10.0/6.3;	Colles' fractures."	stiffness or painful arthritis of carpometacarpal joint of thumb; the
and COI.		No mention of	Follow-Up at 6 weeks, and 3, 6	supinated brace 9.5/6.7; short		possibility that patient may develop
		Mean age.	months.	brace 10.7/6.9. Incidence of		Sudeck's osteodystrophy; and to all direct
				carpal tunnel compression symptoms was 17% at 3 months		access to the hand for dressings in patients with soft-tissue injuries.
				and 12% at 6 months. No		Jan 19
				statistical significance between		
				groups for incidence of symptoms.		
Tumia	5.0	N = 339 (31 male	Conventional Colles' plaster	Functional scores cast/brace	"There was no significant difference in the functional	Author comment on younger patients
2003		and 139 female) categorized into	cast (N = 163)	non-manipulated group Week 8: 6.7/5.5; Week 24: 2.6/2.7	outcome between the two treatment groups."	having better functional results not presented in body of study results. There
RCT		minimally	(IV = 105) VS	manipulated group Week 8:		appears to be no advantage to flexible
		displaced and	Prefabricated functional brace	11.4/10.6; Week 24: 5.4/5.8.		brace over cast.
No mention of		displaced	or the Aberdeen Colles'	Mean pain score cast/brace non-		
sponsorship. One or more of		requiring manipulation	fracture brace $(N = 166)$.	manipulated group 10 d: 2.2/2.4 p = 0.27; Week 24: 1.0/1.0 p =		
the authors will		groups. Mean age	(1, 100).	0.96; manipulated group 10 d:		
received or		of 58.4 years.	Follow-up for 14 weeks.	1.8/2.1 p = 0.19; Week 24:		
have received				0.5/0.5 p = 0.043.		
benefits for personal or						

profession use						
from						
commercial						
party related						
directly or						
indirectly to						
the subject of						
this article.						
Bünger	4.5	N = 145 (20 male	Functional bracing in	Primary treatment; DPI vs.	"Functional bracing in supination provided superior results in	Suggests the functional benefit from
1984		and 125 female) with Colles'	supination or FUSU $(N = 68)$	FUSU: Anatomic end results	the treatment of particularly displaced intra-articular Colles' fracture."	FUSU is primarily secondary to decreased fracture redislocation.
D.CT				(excellent/good)/total 65/72 vs.	fracture."	fracture redislocation.
RCT		fracture. Age not given.	vs Dorsal Plaster Immobilization	59/64 (p <0.05). Functional results at 6 months		
Sponsored by		0	orDPI	(excellent/good)/total 62/72 vs.		
the Danish			(N = 77).	59/62 (p <0.5)		
Medical						
Research			Follow-up after 7 weeks and 3			
Council grant,			months.			
and the			monuis.			
Medical						
Research						
Council for the						
countries of						
Sonderjylland,						
Ribe and						
Ringkbing						
grant. No						
mention of						
COI.						
Abbaszadegan	4.0	N = 80 (No	4 weeks in dorsal plaster cast	Follow up time: pain plaster	"Elastic bandage treatment resulted in less pain, improved	Applicable to non or minimally displaced
1989		mention of	vs. an elastic bandage.	cast/elastic bandage 11 d 4.7/4.0	grip strength and better subjective satisfaction at one year. It	fractures in mostly female population with
		gender)"un-		(p = 0.09), 8 wk 3.2/1.8 (p	did not result in increased fracture displacement when	mean age of 62 (19-81)
RCT		displaced or min-	Follow up at 10-12 days. 1, 2,	≤ 0.001), 1 year 1.9/1.3 (p =	compared to conventional plaster splints. Functional	
		imally displaced	3, and 6 months.	0.06). Strength plaster/elastic 1	treatment of the minimally displaced Colles' fracture is	
No mention of		Colles'	e, and o montais.	year $78/94$ (p = 0.045). Lidstrom	recommended."	
sponsorship or		fractures";		grading 1 year: plaster/total,		
COI.		114014105 ,		elastic/total, Excellent 23/34,		
		No mention of		31/34; Good 9/34, 3/34; Fair		
		mean age.		2/34, 0/34. P <0.05		
			l	Early Immobiliz	zation	
Christensen	5.5	N = 33 patients	Immobilizing plaster splints at	Differences in modified median	No difference in "radiological healing at 3 months or in the	Early mobilization at 3 weeks appears to
1995		with undisplaced	either 3 or 5 weeks for	Gartland and Werley scores at 3,	functional scores after 3 and 9 months."	have no negative or positive impact on
			undisplaced fractures.	9 months insignificant (3		nondisplaced fractures.

RCT		fractures of the		weeks/5 weeks): Score-3 months		
-		distal radius;	Follow Up for 3 months and 9	2.0/3-0; Score: 9 months 1.0/1.0.		
No mention of		,	months.	,		
sponsorship or		Mean Age 3 wk				
COI.		group : 61 (29-				
		78).				
		5 wk group: 64				
		(40-84).				
Davis 1987	5.0	N = 55 (11	After 2-week period of	No significant difference of pain	"Unnecessary to splint slightly displaced fracture of the distal	No blinding in this study.
		males/44	posterior splinting, patients	between groups. Gartland and	radial metaphysis for 4 weeks a faster functional recovery	
RCT		females) patients	randomized to tubigrip vs.	Werley's functional assessment	will be obtained [if fractures are in an unrestrained tubigrip	
-		with slightly	below elbow cast for 3	(excellent or good) total: Week 5	support] in a manner that had been shown to be acceptable to	
No mention of		displaced	additional weeks.	cast 11/25; Week 5 tubigrip (tg)	most patients."	
sponsorship or		fractures of the		23/27 p <0.05; Wk 7 cast 22/25	*	
COI.		distal radius;	Follow-up at 2, 5, and 7 weeks.	p <0.01, p <0.05; Week 7 tg		
				25/27 p <0.01. Complications of		
		Mean age,		treatment cast/tg: Fracture		
		Group 1: 56.6		displaced 3/2; Physiotherapy		
		Group 2: 55.6		needed 3/1.		
Dias 1987	5.0	N = 187 (no	Undisplaced fractures treated	Early mobilization more	"Early wrist movement hastened functional recovery and led	This study includes weaknesses in
		mention of	either with conventional 5	resolution of wrist swelling first	to earlier resolution of wrist swelling. Discomfort was no	randomization and baseline comparability.
RCT		gender) patients	weeks cast (Group 1) or crêpe	5 weeks. At 9 and 13 weeks,	greater than in patients who were treated conventionally. The	
		with unilateral	bandage (Group 2) and early	wrist girth was similar.	bony deformity, which recurred irrespective of the method of	
No mention of		Colles' fractures	mobilization. Displaced	Deterioration rate of radiological	treatment, was not adversely affected by early mobilization."	
sponsorship or		that were older	fractures were treated either	deformity was similar in		
COI.		than 55;	with conventional 5 week cast	conventionally treated groups as		
			(Group 3) or modified 5 week	with mobilization groups. Grip		
		No mean age.	cast (Group 4).	strength recovery expressed as a		
				percentage of strength of		
				contralateral hand much better in		
			Follow-Up at weeks 1, 5, 9,	early mobilization groups.		
			and 13.	Undisplaced fractures Group		
				1/Group 2: Week 5 36.1/45.7 p		
				<0.001; Week 9 51.7/63.5 p		
				<0.005; Week 13 58.3/76.2 p		
				<0.001. Displaced fractures		
				Group 3/Group 4: Week 5		
				25.0/33.4 p = 0.016; Week 9		
				44.0/48.8 p = 0.215; Week 13		
	4.7	N 72 (10 1		60.1/62.7 p = 0.540.		
Arora	4.5	N = 73 (18 male)	Group 1, operative group that	Disabilities of the Arm,	"[H]owever, at twelve months after surgery, the active range	Data suggest at 12 months, ROM, pain
2011		and 55 female)	underwent Open reduction and	Shoulder and Hand Score	of motion, the pain level, and the PRWE and the DASH	level and PRWE and DASH scores
RCT		with distal radial	internal fixation (ORIF) 12	(DASH) at 6 weeks group 1 vs 2x + 18 + 17 0 x + 24 + 22 5 (n - 1)	scores were not different between the operative and nonoperative treatment groups."	equivalent. Patients in surgical group
NUL		1	weeks after injury	2; 18.8 ± 17.9 vs 34.4 ± 22.5 (p =	nonoperative treatment groups.	

		fracture; mean	(N = 36)	0.00). At 12 weeks; 13.3±14.8		reported better grip strength throughout
No sponsorship		age 76.7 (65-89).	(1(= 50) VS	vs 23.2 ± 19.3 (p = 0.02). Patient-		trial.
or COI.		uge / 0.7 (05 07).	Group 2, immobilized in short	Rated Wrist Evaluation (PRWE)		unu.
01 COI.			arm cast for 5 weeks	group 1 vs 2, at 6 weeks;		
			(N = 37).	$36.4\pm28.7 \text{ vs } 64.9\pm29.0 \text{ (p} =$		
			(11 - 57).	0.00 , at 12 weeks; 33.7 ± 32.0 vs		
			Follow-up at baseline, 6, 12	$54.4\pm31.8 \text{ (p} = 0.01). \text{ Grip}$		
			weeks, 6 and 12 months.	Strength (kg) group 1 vs 2, 6		
			weeks, 6 and 12 months.	weeks; $14.1 \pm 10.7 \pm 5.6$ (p =		
				0.01). At 12 weeks; 15.7 ± 6.2 vs		
				2.5 ± 4.4 (p = 0.02). At 6 months;		
				19.8 ± 7.4 vs. 16.1 ± 5.6 (p=0.02).		
				At 12 months; 22.2 ± 6.3 vs		
				$18.8\pm5.8 \text{ (p} = 0.02).$		
				Significantly more		
				complications in operative		
				group, 13 vs 5 (p<0.05).		
McAuliffe	4.5	N = 108 (All	Plaster immobilization for 3	72% of Group A reported good	"Early mobilization produced less pain and a stronger grip. It	In this elderly population, mobilization
1987		Women) who had	(Group A) or 5 (Group B)	or excellent results relating to	did not lead to any greater loss of reduction of the fracture.	after 3 weeks may lead to less short-term
1907		a Colles'	weeks.	pain, disability, and range of	However, there was no significant improvement in the final	disability.
Prospective		fractures.		movement at 3 months while	range of movement of the wrist."	disubility.
RCT		in actual cost	Follow Up baseline, 3 months,	66% of Group B did; after 1 year		
			and 1 year.	85% of Group A had a good or		
No mention of			j	excellent result and 77 % did in		
sponsorship or				Group B. Group A showed		
COI.				statistical significance for		
				pronation after 1 year, less pain		
				at time of plaster removal, 3		
				months and 1-year follow up as		
				well as stronger grip strength		
				after 1 year.		
Millet	4.0	N = 90 female	5 week below elbow plaster	All patients in early mobilization	"Early mobilization is a satisfactory treatment option for	No significant clinical differences found
1995		with unilateral	cast	reported greater comfort after	Colles' fracture and may, in fact, hasten functional recovery."	between the treatment groups.
		Colles' fracture;	(N = 45)	switching from plaster to		
Prospective			vs	flexible casting. Mean grip		
Study			3 week plaster cast with 2	scores and joint mobilities		
		Mean age of 61	week flexible cast. Displaced	higher at all time points with		
No mention of		years.	fractures in both groups were	early mobilization, reaching		
sponsorship or			manipulated.	levels of statistical significance		
COI.			(N = 45).	at 6, $(p < 0.01)$ months for grip		
				score and 3 months for joint		
			Patients followed for 3 years.	mobility, $(p = 0.04)$.		

Stoffelen 1998 RCT No mention of sponsorship or COI.	4.0	N = 52	Plaster immobilization for 1 week vs. plaster immobilization for 3 weeks in minimally displaced fractures.	Functional Cooney score; 1 week (SD) vs. 3 weeks (SD): 6 weeks 61.6 (12.1) vs. 56.8 (19.7) 3 months 77.4 (13.8) vs. 71.5 (19.2); 1 year 86.8 (10.9) vs. 82.2 (18.6). One-week group Cooney score generally higher at every re-evaluation period than 3-week plaster group. Differences, however, not statistically significant.	"No dislocations occurred. All patients experienced eventful healing with good or excellent results in 92% of cases. We believe, therefore, that only minimal immobilization is required in these fractures and that they should be mobilized as soon as comfort allows."	Higher number of complex regional pain syndrome (CRPS) cases in 3-week group than 1-week group (5 vs.1).
				Casting/Brack		
Wong 2010 Prospective RCT No mention of sponsorship or COI.	6.5	N=60 (Predominately female) elderly Chinese people with dorsal angulated fracture of the distal radius; Mean Age Group 1 71 (65-76) Group 2 70 (66-76)	Group 1 (N=30) Patients given plaster of Paris cast preceded by closed reduction. Vs Group 2 (N=30) Patients were treated with K- Wire Follow up at 2 weeks prior to injury and then 1, 2, 4, 6 weeks, 3, 6 months and 1 year after assessment of radiographs.	No statistically significant differences between the K-Wire treatment and the plaster of Paris group.	"Although our study showed that the 'tripod technique' [K-Wire] is safe without significant complications, there is an Cochrane review of wiring for distal radial fractures We do not provide a biomechanical rationale to explain our 'tripod technique' but we feel that it is a better construct to prevent collapse of the fracture/"	Data suggest casting alone not better than pinning for extra-articular fractures of the distal radius in elderly Chinese (predominantly female) patients.
O'Connor 2003 RCT No mention of sponsorship or COI.	6.5	N = 66 (22 males/44 females) adult patients with minimally displaced radial fractures; Mean Age, Group 1: 56.6 (16-81). Group 2: 57 (18- 79)	(N=32) Below-the-elbow plaster of Paris cast vs. (N=34) lightweight removable "Futuro" splint for minimally displaced Colles' fractures; Follow-up at 1, 2, 6, and 12 weeks.	No significant differences in pain scores. Cast satisfaction higher in splint group at weeks 1, 2, and 6. No difference in anatomical outcome. Functional scores and wrist range of motion were better at 6 weeks, but the differences disappeared at 12 weeks.	"A lightweight splint provides an acceptable, comfortable and economic alternative to plaster of Paris and allows faster restoration of function without an increased risk of malunion."	Patients in splint group were educated on rationale for splint use as authors found cultural bias toward the traditional cast.
Ledingham 1991	5.5	N = 60 (50 females/10 males);	(N=30) Plaster-of-Paris functional brace (brace)	Final radiological result; Brace vs. Control: Overall, brace group had better radiological results	"With the Plaster-of-Paris brace described in this paper, we have shown improved final radiological and early functional results compared to the standard below-elbow cast."	Authors demonstrated in radiographic and functional grading that patients over 60

RCT No Mention of sponsorship or COI.		Mean Age- Group 1: 60.2. Group 2: 61.3.	vs. (N=30) Standard below-elbow cast (control). Follow-Up at baseline, 24 hrs, 7-14 days, and 35-42 days.	than control (lower score better) mean score 2.5 vs. 4.3 (p <0.05). No significant differences between <60-years-old brace and control or between brace under and over 60 years old. Significant difference in controls		years old may benefit the most, although sample sizes were small.
				vs. under 60 years (12.7 vs. 4.4, p <0.005). Functional grading results (Excellent + Good) using modified Gartland and Werley significant difference of brace vs. control at 12 weeks, but not at 26 weeks.		
Grafstein 2010 RCT Sponsored through an unrestricted grant in aid from Smith & Nephew, manufacturers of both the splint and cast material used in this study. No COIs.	4.5	N = 101 (78 females/23 Males) with a displaced fracture of the distal radius requiring closed reduction.	Circumferential casting or CC (N = 40) vs Volar–dorsal splinting or VDS (N = 31) vs Modified sugar-tong splinting or MST (N = 30). Follow-up at 8 weeks and 6 months.	Median pain scores were not statistically different between the groups. 22 patients (22%, 95% CI: 13.9%–30.1%) had radiographic loss of reduction: VDS= 5 patients (16%, 95% CI 3.1%-28.9%), CC= 8 patients (20%, 95% CI: 7.6%–32.4%), and MST= 9 patients (30%, 95% CI: 13.6%–46.4%) (p = 0.17).	"Rates of loss in anatomic position were not statistically significant among the 3 types of dressings used. However, there was a clinically important trend of increased loss of reduction with the use of MST splinting."	Sparse methods. Data suggest all three immobilization methods comparable as there was no statistically significant difference between groups.
Moroni 2004 RCT No mention of sponsorship or COI.	4.0	N=40 (All female) Osteoporotic patients who are 65 years of age or older; Mean Age >65 years old	Group 1 (N=??) Patients who received plaster cast eith closed reduction. Vs Group 2 (N=??) Received external fixation Follow up at 2 weeks, 6 weeks, and 3 months.	Redisplacements Group 1 vs Group 2; 4 vs 0. Volar Angle at post opgroup 1 vs group 2; 8.6 ± 5.8 vs 3.4 ± 1.8 . At 6 weeks; -1.9 ± 9.4 vs 1.9 ± 3.4 (p<0.0005). Radials Angle at post op, group 1 vs 2; 20.6\pm4.9 vs 23.5\pm3.5. At 6 weeks, 17.1\pm6.3 vs 23.3\pm3.5 (p=0.008). Horesh Demerit Point Score at 3 months, Group 1 vs	"In conclusion, our study supports the use of external fixation in the treatment of osteoporotic wrist fractures. Both radiographic and clinical results were better in the external fixation group than in the plaster cast group."	Study of elderly females with osteoporotic wrist fractures. Data suggest that external fixation is superior to casting as both the volar angle deformities and radial angle deformities were lowered.

				Group 1; 7.7±3.3 vs 6.6±3.4 (p<0.006).		
Cohen 1997 Prospective	4.0	N=30 (22 females/8 female) who had varying degrees of Radial distal fractures;	Group 1 (N=10) Non displaced fractures, 5 fiberglass tape, 5 QuickCast tape.	Number of cast Applications, Group 1, 2, and 3, Fiberglass vs QuickCast: Group 1; 2.2 vs 1.2, Group 2; 2.2 vs 1.0, Group 3; 3.0 vs 2.0. (p<0.001). Problems	"In sum, a short-arm cast constructed of the Quick-Cast does save approximately on cast change in the treatment of distal radius fractures with no apparent effect on fracture healing. The QuickCast does, however, cost more in materials alone. This financial differential must be weighed against the labor	Small sample size, sparse methods. Data suggest Quick Cast eliminates approximately one cast change without compromise of fracture healing but Quick Cast is more costly.
RCT		Mean Age Group 1 56 (33-89)	Vs Group 2 (N=10) (Displaced but stable after	with cast answer (1-10) Fiberglass vs Quickcast: 1.0 ± 0.8 vs 0.5 ± 0.4 (p<0.001). Some cast complications within both	saved of a single cast application with additional savings of time for he applier and patient."	Cast is more costly.
No mention of sponsorship or COI.		Group 2 58 (19-86)	reduction fractures) 5 in QuickCast, 5 with fiberglass tape. Vs Group 3 (N=10) (Displaced fractures requiring Pin fixation) 5 with quick cast, 5 with fiberglass.	groups, not significant.		
			Follow up at cast removal 5.5 weeks to 6.5 weeks			
Cohen	4.0	N=200 (No	Group 1	Increase in Ability FRC vs	"The technique of focused rigidity casting can be	Data suggest increased patient satisfaction
2001		mention of	(N=14) patients with Forced	Standard: favored group 1	recommended in the treatment of fractures of the fifth	with FRC vs. conventional plaster of Paris
DOT		gender) patients	Rigidity Casting (FRC)	(p=0.0002). Satisfaction better in	metatarsal and distal radius in preference to standard casts.	cast with comparable efficacy.
RCT		who sustained arm or leg	Vs	FRC group (p=0.00009).	Focused rigidity casting provides greater ability in the cast and patient satisfaction during treatment without loss of	
		injuries required	v S		clinical effectiveness."	
No mention of		cast support	Group 2			
sponsorship or		(N=29	(N=15) patients treated with			
COI.		individuals with	Complete Plaster of Paris			
		Radial Distal fracture);	synthetic cast (Standard)			
			Follow-Up while in the cast			
		Mean Age (no	and after cast removal. No			
		Mention?)	specific time frame stated.			
Wik 2009	4.0	(N=72) (all	Reduction and a complete	Mean dorsal angulation 10 days	"[S]urgeons caring for such cases may choose the	Data suggest dorsal splinting 10 days after
RCT		women) over the age of 50 who	plaster cast (N=34) v. reduction and a dorsal plaster	after reduction: slightly better in the dorsal plaster splint group,	immobilization method for the first 10 days following reduction according to their individual preferences and those	Colles' fracture reductions resulted in a mean difference of n3.4 degrees of dorsal
KU1		sustained low-	splint (N=38). Immobilization	p=0.04. Radial length at 5 weeks	of the injured person."	angulation but at 5 weeks, casting was
No mention of		energy trauma	for 5 weeks with follow-up at 1	was better in the complete	of the injured person.	better for a difference of 1.6 mm of radial
industry		and a displaced	and 10 days and 5 weeks after	plaster group, p=0.02.		length. Pain ratings between the two
sponsorship.		Colles' fractures	reduction.			methods were comparable.

The authors		initially				
declare no		considered				
COI.		suitable for				
		closed reduction				
		and				
		immobilization in				
		a plaster cast.				
Bong	4.0	N = 85 (85)	Group 1 immobilized using	No significant difference	"Based on our study we recommend that surgeons consider	Sparse baseline comparability details. Data
2006		fractures, 26 male	short-arm radial gutter splint	between loss of fracture	using a short-arm radial gutter splint for the initial	suggest both long and short arm splints are
		and 59 female)	(N = 38)	reduction, volar tilt, radial	immobilization of displaced distal radius fractures."	effective in maintaining the reduction of
Prospective		who were used	VS	height, radial inclination.	1	distal radius fractures but the short arm
RCT		had acquired a	Group 2 immobilized with	Disabilities of the ARM,		splint was preferred by patients.
		displaced distal	sugar tong splint. Follow-up 7-	Shoulder, and Hand (DASH)		
No sponsorship		radial fracture;	10 days after initial injury	scores, Group 1 vs group 1 at 1		
or COI.		mean age 64 (27-	(N = 47).	week; 62 ± 19 vs 70 ± 15		
		91).		(p=0.044).		
		,	Radiographs taken in			
			respective splint.			
Sarmiemto	4.0	N = 156 (50 male	Bracing in either pronation,	In the Type II category, in the	"Treatment with functional bracing in supination position	This paper is quoted in most subsequent
1980		and 106 female)	fractures were immobilized in	supinated fractures, there were 9	yielded 90% excellent or good functional results."	research pertaining to bracing.
		with Colles'	a long-arm cast with the wrist	excellent, 4 good and no fair or		
RCT		fractures. A	at 20" of volar flexion and	poor results; in		
		median age of 49	ulnar deviation; the elbow at	the pronated group, 9 excellent,		
No mention of		years.	90" of flexion and the	8 good and		
sponsorship or			forearm in either pronation	1 fair result. In combining the		
COI.			(N = 78)	results for all types of braced		
			vs	Colles' fractures, (I-IV) 93% of		
			Supination the elbow at 90" of	the supination group and 87% of		
			flexion and the forearm in	the pronation group achieved		
			supination	excellent or good functional		
			(N = 78).	results.		
			Follow-up for 15 weeks.			
Gupta	4.0	N = 204 (82 male	Plaster immobilization with	Functional results excellent or	"After manipulation of a Colles' fracture, immobilization of	Immobilization of wrist in palmar flexion
1991		and 122 female)	either:	good/total: Type III PF 20/28;	the wrist in dorsiflexion would appear to provide better	had detrimental effect on hand function.
		with displaced	Palmar flexion or PF	NP 26/34; DF 28/32	maintenance of reduction."	
RCT		Colles' fractures.	(N = 60)	Type IV PF 10/17; NP 8/19; DF		
		Mean age 46	VS	15/17; Type V PF 9/15; NP		
No		years.	Neutral or NP	13/22; DF 16/20		
sponsorship.			(N = 75)			
No mention of			VS			
COI.			Dorsiflexion or DF wrist			
			position			
			(N = 69).			

Rosetzsky 1982 RCT No mention of	4.0	N = 46 (15 male) and 35 female) with Colles'	Follow-up for 15 months. Polyurethane casts (N = unknown)	No significant difference for	"Polyurethane braces are a good supplement to plaster-of-	
		fractures of the forearm. Mean age was 45 years.	(N = unknown) vs Traditional plaster-of-Paris braces (N = unknown).	secondary adjustment of casts between groups, ($p > 0.90$). No significant differences for failure of retaining fracture reduction, ($p > 0.50$).	Paris bandage in such fractures and recommended in selected cases."	Alternative to plaster of Paris in 1980s.
sponsorship or COI.			Follow-up at 6 weeks.			
Wahlström 1982 RCT	4.0	N = 42 (all women) with extra articular fractures. Mean	Immobilization in pronation (N = 14) vs Supination	Five fractures had to be re- reduced, one from pronation, one from midway and three from supination group. Patients with	"The position of the forearm during immobilization is of importance for the degree of redislocation."	Applicable to cast application rather than long-term functional results.
No mention of sponsorship or COI.		age 65 years.	(N = 12) vs Midway position (N = 16). Follow-up at 10 days and 1-4	redislocation $\ge 10^{\circ}$ number pronation 2/14, midway 6/12, and supination 8/16.		
Uzzaman 2008	4.0	(N=40) (19 females/11	months after reduction. Closed reduction and two crossed percutaneous	Anatomic end result of Arm A was better than Arm B, p<0.05.	"Closed reduction and Percutaneous kirschner wire fixation combined with plaster cast immobilization is better method	Data suggest percutaneous fixation group superior to cast alone group for
RCT No mention of industry		males) patients with displaced Colles fracture at the emergency of	Kirschner wire fixation combined with plaster cast support (Arm A, N=20) v. conventional method-reduction	There was a significant Satisfactory result in Arm A compared Arm B, p<0.05.	than the conventional plaster cast immobilization – in restoration of preinjury anatomical alignment and there by the functional outcome – in the management of colles' fracture."	maintaining radial length and angulation resulting in better function and also had less reported complications.
sponsorship or COI.		department within 7 days of injury.	by closed manipulation and maintained by plaster cast immobilization (Arm B, N=20). Plaster was removed at week 6. K-wires were removed at 6-8 weeks. Rehabilitation was recommended until near or full functional recovery. Follow period was 6-14 months.			
Ismatullah	4.0	(N=30, 13	Group 1	Green & O'Brien Criteria	"We recommend external fixation in comminuted fractures of	Data suggest external fixation in
2012		males/17	(N=15)	rankings, Group 1 v 2, 12 weeks;	the distal radius, which are potentially unstable fractures.	comminuted dstal radius fractures better
Prospective RCT		females) adult patients with a comminuted distal radius	Treated with plaster casting. Vs. Group 2	Group 1: 4 were excellent, 3 were good, 4 were fair, 4 were poor. Group 2: 5 were excellent, 6 good, 2 fair, and 2 poor.	It decreases the complications of re-displacement and shortening which may occur when these fractures are managed with closed reduction and casting."	than casting.

No mention of			(N=15)			
sponsorship or	Mean A	Age 49.8	Treated with external fixation.			
COI.	±16.05	5				
			Follow-Up at baseline and 12			
			weeks.			

Evidence for the Use of Closed Reduction Technique for Distal Radial Fractures There are 4 moderate-quality RCTs incorporated into this analysis.(1341, 1366-1368)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: closed reduction technique, distal, forearm, radial, radius fractures, bone fractures, colles' fracture, displaced; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized,

Author/Year Study Type Conflict of Interest (COI)	Score (0- 11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Earnshaw 2002 RCT No sponsorship or COI.	7.5	N = 225 (53 male and 172 female) displaced Colles- type fractures. Median age 65	Closed reduction with either finger- trap (N = 112) vs Manual manipulation	87% of fractures were successfully reduced. "By five weeks, fifty-six (25%) of the 225 fractures had been treated with surgical intervention because of failed closed treatment and only sixty-five (29%)	"The two methods of fracture reduction did not differ with regard to the eventual position of the fracture or the rate of failure."	All reductions performed post Bier's block. Loss of reduction during the period of cast immobilization is common in this study.
		years.	(N = 111). Follow-up for 5 weeks.	remained in a satisfactory position."		
Kongsholm J Orthop Trauma 1987	5.5	N = 116 (6 male and 56 female) with acute displaced Colles'	Group A dynamic reduction device with no anesthesia (N = 62) vs	2/62 patients in Group A displayed symptoms and signs of neurological impairment at 5 weeks compared to 11/54 patients in Group B, p <0.01. 1 year follow	"The dynamic reduction technique without local anesthesia results in a significantly lower frequency of neurological	The neurologic complications included subjective paresthesia, positive Tinel's sign or 2 point discrimination >4mm. Authors note "nerve damage" was mild and in no case in either group
RCT No mention of sponsorship or COI.		fracture. Mean age 61.6 years (range 35-86).	Group B 8-10ml of 1% lidocaine with plaster cast (N = 54).	up resulted in figures of 4/62 and 8/54 with, $(p < 0.05)$.	complication than manual reduction after injection of local anesthetic into the fracture hematoma."	did it lead to surgical neurolysis.
			Follow-up for 12.8 months.			
Kelly 1997	5.0	N = 30 (3 male and 27 female) with moderately	Group 1, reduction of the fracture under Bier's block (N = 15)	11/15 in Bier's block group and 9/15 in immobilization only group considered that their wrist was of normal appearance or had	"There was no detectable difference between the groups in any of the outcome measures."	Study suggests reduction does not provide any benefit over risk of Bier's block to the elderly population within the parameters of 30° of dorsal
RCT		displaced distal radial fractures.	vs Group 2, immobilized in dorsoradial	only slight deformity visible. Functional outcome Bier's block/ immobilization:		angulation and 5mm of radial shortening.
No mention of sponsorship or COI.		Mean age for Group 1 and 2: 75.4 ± 7.3 and 74.3 ± 7.3 .	plaster of Paris slab compared to plaster immobilization only in elderly population (N = 15).	Gartland and Werley score 5.8/6.6. Grip strength % predicted 48.8±17% / 55.8±19%.		
			Follow-up at 3 and 5 weeks.			

Kongsholm	4.0	N = 116 (5 male	Group A, dynamic bone alignment	No differences between the groups in "no	"Dynamic reduction without	Study did not follow longitudinal results of
Injury		and 49 female)	device compared without anesthesia	pain" or "slight pain." However, for severe	anesthesia seems to be a less	reduction.
1987		with Colles'	to	pain Group B had 19 vs. 5 patients, (p	painful method for the patients	
		fractures. Mean	(N = 62)	<0.001).	than traditional manual reduction	
RCT		age of 61.7 years.	vs		under local anesthesia."	
			Group B, traditional manual			
No mention of sponsorship or			reduction using local infiltration			
COI.			anesthesia			
			(N = 54).			
			Follow-up not clear.			

Evidence for the Use of Casting/Functional Bracing for Displaced Forearm Fractures

There are 10 moderate-quality RCTs or prospective studies incorporated into this analysis.(1339, 1354-1362) There is 1 low-quality RCT in Appendix 2.(1369)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: casting or functional bracing, displaced distal radial fracture, distal, forearm, radial, radius fractures, bone fractures, colles' fracture; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 30 articles in PubMed, 13 in Scopus, 1 in CINAHL, 41 in Cochrane Library, 3174 in Google Scholar, and 7 from other sources. We considered for inclusion 4 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 7 from other sources. In randomized trials and 1 systematic studies met the inclusion criteria.

Author/	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Year Study Type (COI)						
		J	Casting or Function	onal Bracing		
Tumia 2003 RCT No mention of sponsorship. One or more of the authors will received or have received benefits for personal or profession use from commercial	5.0	N = 339 (31 male and 139 female) categorized into minimally displaced and displaced requiring manipulation groups. Mean age of 58.4 years.	Conventional Colles' plaster cast (N = 163) vs Prefabricated functional brace or the Aberdeen Colles' fracture brace (N = 166). Follow-up for 14 weeks.	Functional scores cast/brace non- manipulated group Week 8: 6.7/5.5; Week 24: 2.6/2.7 manipulated group Week 8: 11.4/10.6; Week 24: 5.4/5.8. Mean pain score cast/brace non- manipulated group 10 d: $2.2/2.4 \text{ p} =$ 0.27; Week 24: 1.0/1.0 p = 0.96; manipulated group 10 d: $1.8/2.1 \text{ p} =$ 0.19; Week 24: 0.5/0.5 p = 0.043.	"There was no significant difference in the functional outcome between the two treatment groups."	Author comment on younger patients having better functional results not presented in body of study results. There appears to be no advantage to flexible brace over cast.
party related directly or indirectly to the subject of this article.	4.5	N 72 (10 1 155				
Arora 2011 RCT No sponsorship or COI.	4.5	N = 73 (18 male and 55 female) with distal radial fracture; mean age 76.7 (65-89).	Group 1, operative group that underwent Open reduction and internal fixation (ORIF) 12 weeks after injury (N = 36) vs Group 2, immobilized in short arm cast for 5 weeks (N = 37). Follow-up at baseline, 6, 12 weeks, 6 and 12 months.	Disabilities of the Arm, Shoulder and Hand Score (DASH) at 6 weeks group 1 vs 2; 18.8 \pm 17.9 vs 34.4 \pm 22.5 (p = 0.00). At 12 weeks; 13.3 \pm 14.8 vs 23.2 \pm 19.3 (p = 0.02). Patient-Rated Wrist Evaluation (PRWE) group 1 vs 2, at 6 weeks; 36.4 \pm 28.7 vs 64.9 \pm 29.0 (p = 0.00), at 12 weeks; 33.7 \pm 32.0 vs 54.4 \pm 31.8 (p = 0.01). Grip Strength (kg) group 1 vs 2, 6 weeks; 14.1 \pm 10.7 \pm 5.6 (p = 0.01). At 12 weeks; 15.7 \pm 6.2 vs 2.5 \pm 4.4 (p = 0.02). At 6 months; 19.8 \pm 7.4 vs. 16.1 \pm 5.6 (p=0.02). At 12 months; 22.2 \pm 6.3 vs 18.8 \pm 5.8 (p = 0.02). Significantly more complications in operative group, 13 vs 5 (p<0.05).	"[H]owever, at twelve months after surgery, the active range of motion, the pain level, and the PRWE and the DASH scores were not different between the operative and nonoperative treatment groups."	Data suggest at 12 months, ROM, pain level and PRWE and DASH scores equivalent. Patients in surgical group reported better grip strength throughout trial.
Bünger 1984 RCT Sponsored by the Danish Medical Research Council grant, and the Medical Research Council for the countries of Sonderjylland, Ribe and	4.5	N = 145 (20 male and 125 female) with Colles' fracture. Age not given.	Functional bracing in supination or FUSU (N = 68) vs Dorsal Plaster Immobilization orDPI (N = 77).	Primary treatment; DPI vs. FUSU: Anatomic end results (excellent/good)/total 65/72 vs. 59/64 (p <0.05). Functional results at 6 months (excellent/good)/total 62/72 vs. 59/62 (p <0.5)	"Functional bracing in supination provided superior results in the treatment of particularly displaced intra-articular Colles' fracture."	Suggests the functional benefit from FUSU is primarily secondary to decreased fracture redislocation.

Disabling and Managetics of		ſ	E-lless and offer 7 and 1 and 2			
Ringkbing grant. No mention of			Follow-up after 7 weeks and 3			
COI.	1.0	N 72 C 1 1	months.		"[O] · · ·	
Wik	4.0	N = 72 females who	Reduction and a complete	Mean dorsal angulation 10 days after	"[S]urgeons caring for	Data suggest dorsal splinting 10 days
2009		sustained low-energy	plaster cast	reduction: slightly better in the dorsal	such cases may choose	after Colles' fracture reductions resulted
DOT		trauma and displaced	(N = 34)	plaster splint group, $(p = 0.04)$.	the immobilization	in a mean difference of n3.4 degrees of
RCT		Colles' fractures	VS	Radial length at 5 weeks was better in	method for the first 10	dorsal angulation but at 5 weeks, casting
		initially suitable for	Reduction and dorsal plaster	the complete plaster group, $(p = 0.02)$	days following reduction	was better for a difference of 1.6 mm of
No mention of sponsorship. No		closed reduction and	splint	0.02).	according to their	radial length. Pain ratings between the
COI.		immobilization in	(N = 38).		individual preferences	two methods were comparable.
		plaster cast. Age >50.			and those of the injured	
			Immobilization for 5 weeks with		person."	
			follow-up at 1 and 10 days and 5			
	1.0		weeks after reduction.			
Bong	4.0	N = 85 (85 fractures, 26	Group 1 immobilized using	No significant difference between	"Based on our study we	Sparse baseline comparability details.
2006		male and 59 female)	short-arm radial gutter splint	loss of fracture reduction, volar tilt,	recommend that surgeons	Data suggest both long and short arm
D D CT		who were used had	(N = 38)	radial height, radial inclination.	consider using a short-	splints are effective in maintaining the
Prospective RCT		acquired a displaced	vs	Disabilities of the ARM, Shoulder,	arm radial gutter splint	reduction of distal radius fractures but the
		distal radial fracture;	Group 2 immobilized with sugar	and Hand (DASH) scores, Group 1 vs	for the initial	short arm splint was preferred by
No sponsorship or COI.		mean age 64 (27-91).	tong splint. Follow-up 7-10 days	group 1 at 1 week; 62 ± 19 vs 70 ± 15	immobilization of	patients.
			after initial injury	(p=0.044).	displaced distal radius	
			(N = 47).		fractures."	
			Radiographs taken in respective			
			splint.			
Millet	4.0	N = 90 female with	5 week below elbow plaster cast	All patients in early mobilization	"Early mobilization is a	No significant clinical differences found
1995		unilateral Colles'	(N = 45)	reported greater comfort after	satisfactory treatment	between the treatment groups.
		fracture. Mean age of	VS	switching from plaster to flexible	option for Colles'	
Prospective Study		61 years.	3 week plaster cast with 2 week	casting. Mean grip scores and joint	fracture and may, in fact,	
			flexible cast. Displaced fractures	mobilities higher at all time points	hasten functional	
No mention of sponsorship or COI.			in both groups were	with early mobilization, reaching	recovery."	
			manipulated.	levels of statistical significance at 6,		
			(N = 45).	(p < 0.01) months for grip score and 3		
				months for joint mobility, $(p = 0.04)$.		
2			Patients followed for 3 years.			
Rosetzsky 1982	4.0	N = 46 (15 male and 35)	Polyurethane casts	No significant difference for	"Polyurethane braces are	Alternative to plaster of Paris in 1980s.
		female) with Colles'	(N = unknown)	secondary adjustment of casts	a good supplement to	
RCT		fractures of the forearm.	vs	between groups, $(p > 0.90)$. No	plaster-of-Paris bandage	
		Mean age was 45 years.	Traditional plaster-of-Paris	significant differences for failure of	in such fractures and	
No mention of sponsorship or COI.			braces	retaining fracture reduction, (p >	recommended in selected	
			(N = unknown).	0.50).	cases."	
			Follow-up at 6 weeks.			

Sarmiemto 1980	4.0	N = 156 (50 male and	Bracing in either pronation,	In the Type II category, in the	"Treatment with	This paper is quoted in most subsequent
Samiento 1980	4.0	106 female) with	fractures were immobilized in a	supinated fractures, there were 9	functional bracing in	research pertaining to bracing.
DCT		Colles' fractures. A				research pertaining to bracing.
RCT			long-arm cast with the wrist at	excellent, 4 good and no fair or poor	supination position	
		median age of 49 years.	20" of volar flexion and ulnar	results; in	yielded 90% excellent or	
No mention of sponsorship or COI.			deviation; the elbow at 90" of	the pronated group, 9 excellent, 8	good functional results."	
			flexion and the	good and		
			forearm in either pronation	1 fair result. In combining the results		
			(N = 78)	for all types of braced Colles'		
			vs	fractures, (I-IV) 93% of the		
			Supination the elbow at 90" of	supination group and 87% of the		
			flexion and the forearm in	pronation group achieved excellent or		
			supination	good functional results.		
			(N = 78).			
			Follow-up for 15 weeks.			
Gupta	4.0	N = 204 (82 male and	Plaster immobilization with	Functional results excellent or	"After manipulation of a	Immobilization of wrist in palmar flexion
1991		122 female) with	either:	good/total: Type III PF 20/28; NP	Colles' fracture,	had detrimental effect on hand function.
		displaced Colles'	Palmar flexion or PF	26/34; DF 28/32	immobilization of the	
RCT		fractures. Mean age 46	(N = 60)	Type IV PF 10/17; NP 8/19; DF	wrist in dorsiflexion	
		years.	VS	15/17; Type V PF 9/15; NP 13/22;	would appear to provide	
No sponsorship. No mention of		5	Neutral or NP	DF 16/20	better maintenance of	
COI.			(N = 75)		reduction."	
			vs			
			Dorsiflexion or DF wrist			
			position			
			(N = 69).			
			(11 = 0)).			
			Follow-up for 15 months.			
Wahlström 1982	4.0	N = 42 with extra	Immobilization in pronation	Five fractures had to be re-reduced,	"The position of the	Applicable to cast application rather than
Wallstoll 1902	1.0	articular fractures.	(N = 14)	one from pronation, one from	forearm during	long-term functional results.
RCT		Mean age 65 years.	(1 - 1 +) VS	midway and three from supination	immobilization is of	long-term functional results.
		mean age 05 years.	Supination	group. Patients with redislocation	importance for the	
No mention of sponsorship or COI.			(N = 12)	$\geq 10^{\circ}$ number pronation 2/14, midway	degree of redislocation."	
The mention of sponsorship of COL				\geq 10 number pronation 2/14, midway 6/12, and supination 8/16.	degree of redisiocation.	
			VS Midway position	0/12, and supmation 8/10.		
			Midway position $(N - 16)$			
			(N = 16).			
			Follow-up at 10 days and 1-4			
			months after reduction.			

Evidence for Reduction Analgesia for Displaced Distal Forearm Fractures

There is 1 high-(1373) and 7 moderate-quality(1366, 1367, 1370-1372, 1374, 1375) (Fathi 15) RCTs incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: reduction analgesia, bier block, analgesia, hematoma block analgesia, dynamic reduction, distal, forearm, radial, radius fractures, bone fractures, Colles' fracture; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 5 articles in PubMed, 11 in Scopus, 0 in CINAHL, 1 in Cochrane Library, 100 in Google Scholar, and 3 from other sources. We considered for inclusion 3 from PubMed, 1 from Scopus, 0 from CINAHL, Cochrane Library, and from Google Scholar, and 4 from other sources. Of the 8 articles considered for inclusion, 8 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year Study Type (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Singh 1992 RCT No mention of	9.0	N = 66 (46 male and 20 female) with Colles' fracture. Mean age groups A and B; 36±16 and 39±15.	Group A, received 30mg pentazocine with 5mg diazepam (N = 33) vs 20cc or 20cc of 1.5% Xylocaine (N = 33).	"The pain scores during reduction in the local anesthetic group were markedly lower (mean 2.7, median 1.8) than the scores in the sedation group (mean 8.2,	"Hematoma block by local anesthetic is a safe and effective alternative to sedation in reduction of Colles fracture."	Patients receiving local anesthesia had lower pain and quicker reductions than those receiving sedation.
sponsorship or COI.			Follow-up for 15 hours.	median 8.7), p < 0.001."		
Kendall 1997	5.5	N = 142 (17 male and 125 female) with Colles' fracture. Mean age for Bier's block and Haematoma groups:	Bier's block (N = 72) vs	Mean pain scores Bier's block/hematoma: administration of anesthetic	"Bier's block is superior to hematoma block in terms of efficacy, radiological result,	Trend to decreased pain with alkalinized v non-alkalinized group but did not reach significance.
RCT No mention of		65 and 6 years.	Haematoma block with either alkalinized non- alkalinized local anesthetic (N = 70).	2.8/5.3 p <0.001; manipulation of fracture 1.5/3.0 p <0.01 Alkalinizad	and remanipulation rate."	
sponsorship or COI.			(IN = 70). Follow-up not specified.	1.5/3.0 p <0.01. Alkalinized vs. non-alkalinized hematoma block alkalinized/non- alkalinized: median pain score on administration 4.4/5.9 p = 0.08; median pain score on manipulation 3.5/3.0 p = NS. More remanipulations in hematoma block (17/ 70) than Bier's block (4/72) (p =		
Kongsholm J Orthop Trauma 1987	5.5	N = 116 (6 male and 56 female) with acute displaced Colles' fracture. Mean age 61.6 years.	Group A, dynamic reduction device with no anesthesia (N = 62) vs	0.003). 2/62 in Group A displayed symptoms and signs of neurological impairment at 5 weeks vs. 11/54 in Group B, p	"The dynamic reduction technique without local anesthesia results in a significantly lower	Neurologic complications included subjective paresthesia, positive Tinel's sign or 2 point discrimination > 4mm. Authors

RCT			Group B, 8 to 10ml of 1% lidocaine with plaster cast	0.01. 1 year follow up</th <th>frequency of neurological</th> <th>note that "nerve damage was mild</th>	frequency of neurological	note that "nerve damage was mild
Rei			(N = 54).	resulted in figures of 4/62 and	complication than manual	and in no case in either group did it
No mention of			(1) = 0 ().	8/54 with p <0.05.	reduction after injection of	lead to surgical neurolysis."
sponsorship or			Follow-up for 1 year.	0,01 will p <0.05.	local anesthetic into the	four to surgrout neurorysis.
COI.			ronow up for r year.		fracture hematoma." authors	
001.					speculate "that the	
					mechanism for such nerve	
					damage is scarring and	
					fibrosis in the vicinity of the	
					nerves, which is secondary	
					to elevated pressure in the	
					tissues probably caused by	
					the increased volume load	
					due to the injection."	
Haraia	15	N = 25 (regular not energift 1) (d. 0, 1, 0, 11, 2)		440(-(7/1)) = 0 + 1 + 1	5	Leele af blinding D'1 '
	4.5	N = 35 (gender not specified) with fresh Colles'	Group 1, or conduction block cubital nerve, 15 ml of	44% (7/16) in Conduction	"Neither of the block	Lack of blinding. Prilocaine used
1990		fractures. Mean age 62 ± 3 years.	10 mg/ml prilocaine used	group and 68% (13/19) in	techniques for the	in both interventions.
DOT			(N = 16)	hematoma block were	manipulation of Colles'	
RCT			vs	painless. Difference between	fracture can be regarded as	
			Group 2, hematoma block, 15 ml of 10 mg/ml	study groups with respect to	ideal because of the	
No mention of			prilocaine	pain not statistically	considerable number of	
sponsorship or			(N = 19).	significant.	patients feeling pain during	
COI.					the maneuver."	
			Follow-up at 5, 10, and 20 minutes after the injection.			
0	4.0	N = 99 (11 male and 88 female) with displaced	Fractures reduced with local anesthesia (L) of 15 to	Pain and strength as	"Patients treated with	Authors noted study did not
Acta Orthop Scand		Colles' fractures. Mean age of 64 years.	20ml prilocaine	percentage of the uninjured	regional intravenous block	support findings of neurologic
1990;61:348-9			(N = 49)	wrist R/L: Pain initially 1/2.5	had less pain during the	complications from local
			vs	p = 0.002; 8 weeks 3/3/ $p =$	manipulation of the fracture	anesthesia as reported by
RCT			Compared to 3mg prilocaine/kg regional intravenous	0.7; 24 weeks $0/2 p = 0.005$.	and better grip strength at	Kongsholm.
			block	Strength initially not	the 6-month follow-up. The	
No mention of			(N = 50).	measured; 8 weeks 25/18 p =	anatomic end result (dorsal	
sponsorship or				0.2; 24 weeks 65/53 p = 0.01.	angulation) was better after	
COI.			Follow-up after 6 months.		regional anesthesia."	
Kongsholm	4.0	N = 116 (11 male and 110 female) with an acute	Group A dynamic bone alignment device compared	No differences between the	"Dynamic reduction	Study did not follow longitudinal
Injury		displaced Colles' fracture. Mean age 61.6 years.	without anesthesia	groups in "no pain" or "slight	without anesthesia seems to	results of reduction.
1987			(N = 62)	pain." However, for severe	be a less painful method for	
			vs	pain, Group B had 19 vs. 5	the patients than traditional	
RCT			Group B traditional manual reduction using local	patients, $(p < 0.001)$.	manual reduction under	
			infiltration anesthesia	_	local anesthesia. The	
No mention of			(N = 54).		reduction with the dynamic	
sponsorship or					and manual methods is	
					similar."	
COI.					Siiiiiai.	

Cobb	4.0	N = 100 with Colles' fractures. Aged over 15 years.	Bier's block, fracture was manipulated 10 minutes	"Pain scores during	Despite findings, author	Paper highlights difference in staff
1985			after injection	manipulation were higher for	states "For patients with	perception (thought local was
			(N = 44)	patients receiving local	fresh Colles' fracture local	better) vs. patients own perception
RCT			VS	infiltration vs. bier block	anesthetic infiltration was	(preferred Bier's).
			Local infiltration, facture was manipulated 10 minutes	(mean 5.53/10 vs. 3.67/10, P,	more popular among	
No mention of			after injection	0.003). No difference was	accident service staff	
sponsorship or			(N = 56).	noticed in the period of	(table), giving satisfactory	
COI.				postoperative painlessness	anesthesia, being simpler	
			Follow-up for 20 minutes.	between the groups: Bier's	and quicker to perform, and	
				block 3-7 (3-0) hours; local	avoiding risks of a large	
				infiltration 4-0 (3-0) hours."	intravenous does of local	
					anesthetic agent reaching	
					the general circulation."	
NEW Fathi	5.0	N = 143 (76 male and 67 female) with distal radial	Procedural sedation and analgesia or PSA group,	Pain numeric rating scale	"Ultrasound guided	Data suggest comparable
2015		fracture. Mean age for PSA and US-HB groups:	received 0.05 mg/kg midazolam, plus 2 mcg/kg	before / 5 / 10 / and 15	haematoma block may be a	efficacy in both groups but time
		41.1(15.3) /	fentanyl	minutes after treatment:	safe and effective method	to discharge was lower in US
RCT		38.9 (14.7).	(N = 72)	p = 0.98 / 0.84 / 0.19 / 0.01 /	in distal radial fracture	group.
			VS	and 0.07.	reduction pain control,	8. oup.
No mention of			Ultrasound-guided haematoma	Overall mean time of	especially during	
sponsorship. No			block or US-HB group, sterile injection of 10-15 cc	reduction-to-discharge 131.85	overcrowded shifts when	
COI.			1% lidocaine	(± 46.45) minutes with a	close patient monitoring	
			(N = 7).	minimum of 60 and a	during intravenous PSA is	
				maximum of 300 minutes.	not optimally possible."	
			Follow-up for 1 week after manipulation.	Time-to-discharge in the PSA		
				and US-HB groups: 142.15		
				(±34.05) and 121.39 (±54.60)		
				minutes, respectively. Time-		
				to-discharge was significantly		
				lower in the US-HB group, (p		
				= 0.007).		

Evidence for the Use of Electromagnetic Fields for Distal Radial Fractures

There are 3 moderate-quality RCTs incorporated with this analysis.(1376-1378) (Cheing 05; Lazovic 12)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Electromagnetic field therapy, electromagnetic therapy, PEMFT, Pulsed electromagnetic field therapy, magnet therapy, distal, Forearm, radial, Radius Fractures, bone Fractures, Colles' Fracture; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, systematic, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 60 in Scopus, 0 in CINAHL, 14 in Cochrane Library, 100 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 2

from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 1 from other sources. Of the 3 articles considered for inclusion, 3 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison	Results	Conclusion	Comments
Study Type	(0-11)		Group			
Wahlström	5.5	N = 30	Electromagnetic	Scintimetric exam	"The clinical relevance of the results is not known, but one interpretation of the data is	Magnitude of differences disappeared at 4
1984			fields of extremely	treated group/ control	that the stimulation with EMF of ELF improves (accelerates) the early phase of fracture	weeks, thus importance of results unclear.
		Mean age of 60.9	low frequency	group: Week 1:	healing. The data warrant further investigation of fresh fracture treatment with this	-
RCT		years old.	(N = 15) - Received	23.9±6.4/ 18.5±6.5 p	method."	
			treatment	<0.05; Week 4:		
No mention of		30 Females, 0		44.6±13.6/ 41.6±15.0.		
sponsorship or		Males	vs.			
COI.						
			Control			
			(N = 15) - Did not			
			receive treatment			

Cheing 2005	5.0	N = 83 patients	Group A (N=23)	VAS:	"The addition of pulsed electromagnetic field to	Data suggest pain was significantly
		diagnosed with	Ice plus PEMF	The VAS score on day	ice therapy produces better overall treatment outcomes than	reduced via VAS as well as ulnar ROM
RTC		stable distal	30 min of ice plus	1 was ranging from low	ice alone, or pulsed electromagnetic field alone in pain	deviation with the additition of PEMF to
		radius fracture(s).	PEMF	to medium. On day 3,	reduction and range of joint motion in ulnar deviation and	ice or PEMF alone compared to sham
No mention of				there was no significant	flexion for a distal radius fracture after an immobilization	1
sponsorship of		Mean age $= 63.1$	VS	drops between the	period of 6 weeks"	groups.
COI.				groups. But the sham		
		55 Women	Group B (N=22)	PEMF with no ice had		
		28 Men	Ice plus sham PEMF	the least amount of		
			30 min of ice plus	reduction. On day 5, the		
			sham PEMF	score for Ice plus PEMF		
				was significantly higher		
			Vs	than the other three		
				groups.		
			Group C (N=22)			
			PEMF. No ice.	Volumetric		
			PEMF alone	Measurement:		
				Day one, baseline,		
			Vs	measurements were		
				comparable between the		
			Group D, Control	groups. On day 3, the		
			(N=16)	sham PEMF and no ice		
			Sham PEMF. No Ice.	group decreased less		
			Sham PEMF alone.	than the others. Day 5		
				revealed that Ice plus		
			All treatment were	PEMF was better than		
			done for 5	the PEMF/no ice and		
			consecutive days	sham PEMF/ no ice		
				group. Also the		
			Visual analogue scale	ice/sham PEMF group		
			pain scores,	was better than the		
			volumetric	shame PEFM/no ice		
			measurements and	group.		
			ROM were			
			measured on days 1,	ROM:		
			3, and 5.	Flexion improved		
				significantly in the two		
				PEMF (ice/no ice)		
				group compared to the		
				sham PEMF on day 3.		
				Day 5 yielded similar		
				results, but the		
				differences was not		
L				significant. Pronation		

				was the exact opposite. The difference between day 1 and 3 were not significant. But the difference between day 3 and 5 were.		
Lazovic 2012 RTC	4.0	N = 60 women who sustained unilateral extra- articular	PEMF Group (N=30) PEMF therapy 5 days a week for 2 weeks	PEMF yielded better mean results for edema, pain, and function scores compared to the	"During immobilization PEMF therapy in DRF patients gave better results immediately after cast removal in terms of edema and wrist range of motion (ROM)."	Some baseline differences between groups which could cause PEMF group to show worse outcomes. PEMF group was older. Data suggest PEMF for distal radius
No mention of sponsorship or COI		displaced stable DRF	Vs Control Group (N=30)	control. However, only the edema score was significant (p=0.000). PEMF resulted in		fracture beneficial for increased ROM and decreased edema post cast removal.

Mean age PEMF	No therapy	significant values, when
$= 67.90 \pm 5.56$		comparing ROM to the
	Follow up at 2-3 days	control, for flexion
Mean age Control	after removal of cast.	(p=0.003), extension (p-
$= 64.50 \pm 6.02$		009) and supination
		(0.004). Other ROM
60 women		values were high in the
0 men		PEMF group except for
		radial deviation.

Evidence for the Use of Physical or Occupational Therapy for Colles' Fracture

There are 8 moderate-quality RCTs incorporated into this analysis.(1379, 1380, 1383-1388) (Wakefield 00; Kay 00; Filipova 15; Valdes 05; Magnus 13; Kay 08) There are 2 low-quality RCTs and one other study (1342, 1381, 1382) in Appendix 2.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Education, Cast removal, Colles' Fracture; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 64 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: physical therapy, occupational therapy distal, Forearm, radial, Radius Fractures, bone Fractures, Colles' Fracture; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 4 articles in PubMed, 5 in Scopus, 2 in CINAHL, 1 in Cochrane Library, 79 in Google Scholar, and 1 from other sources. We considered for inclusion 4 from PubMed, 2 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 6 articles considered for inclusion, 4 randomized trials and 2 systematic studies met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Exercise; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 3 articles in PubMed, 21 in Scopus, 0 in CINAHL, 1 in Cochrane Library, 146 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 2 articles considered for inclusion, 2 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Conflict of Interest (COI)						
Watt 2000 RCT No mention of COI or sponsorship	4.0	N = 18 patients with Colles' Fractures; mean age physiotherapy group 74.4, Non physiotherapy group 77.3; Gender (M:F) 1:17	Physiotherapy vs. non-physiotherapy following cast removal. Follow up at six weeks after cast removal	Clinical significant increase in wrist extension and grip strength after 6 weeks physiotherapy (passive joint mobilization).	"Routine referral of Colles' fracture patients to physiotherapy following cast removal is beneficial."	Small sample size, no blinding, no long term outcomes measures.
Christensen 2001 RCT No mention of COI or Sponsorship	5.0	N = 30 with distal radius colles' type fracture; mean age 66 years; Gender (M:F) 3:27	Home exercise instructions for shoulder, elbow, wrist and fingers with and without occupational therapy.	No statistical significance between groups in dorsal angulation, radial angulation, axial radial length, or functional scores.	"For non-surgically treated patients with a distal radius fracture only instructions are necessary."	No blinding or control of compliance.
Wakefield 2000 RCT No COI or Sponsorship	6.5	N = 96 patients over the age of 55 with a distal radius fracture treated with immobilization in plaster; mean age 72 (55-90). Gender (M:F); 9:87	Group 1 which was taught and given home exercises by a physiotherapist in a fracture clinic and referred to a course of physiotherapy (N = 49) vs Group 2 which was instructed in home exercises only (N=47). Follow-up at plaster cast removal, three months, and six months.	Mean difference (95% CI) for group 1 vs. group 2 at 6 months. Flexion/Extension: 12.2 (5.4 to 19.2), (p =0.001). All data (collected at 3months and 6months) comparing JAMAR grip strength, Pronation/Supination, Radial/Ulnar Deviation, and Functional Scores were not statistically significant.	"Home exercises are adequate rehabilation after uncomplicated fracture of the distal radius, and routine referral for a course of physiotherapy should be discouraged."	Data suggest home exercises for uncomplicated fractures are beneficial.
Kay 2000 RCT No mention of sponsorship or COI	4.5	N = 39 patients with fractures involving the distal radius, and after removal of pins and/or cast. ; mean age for non- mobilisation group 51.6, mobilization group 54.7. Gender (M:F); 12:27	Non-mobilisation group received advice and home exercises from a physiotherapist. (N = 20) vs Mobilisation group received advice, home exercises, and a six week course of passive mobilisation. (N = 19)	Mean difference (95% CI) for non-mobilisation group vs mobilisation group at initial, three weeks, six weeks: Flexion : (-0.6 , -5.0 , -1.3), (p = 0.02). All data collected comparing extension, flexion, radial deviation, ulnar deviation,	"This study found that passive mobilisation did not add to the effectiveness of a regimen of advice and exercise for patients following fractures involving the distal radius managed with pins and/or plaster casts. "	Data suggest comparable efficacy

			Follow-up at initial appointment, three weeks, and six weeks.	pronation, supination, web space, thumb motion scale, and grip strength were not statistically significant.		
Filipova 2015 RCT No COI or sponsorship	4.0	N = 61 patients who were treated conservatively for distal radius fracture; mean age 60 ; Gender (M:F) 14:47	Group A received 9 PT sessions consisting of 20min galvanic baths, and 30 min individual kinesiotherapy. (N = 31) vs Group B received 9 combined therapy sessions. 30 minutes FOT combined with the same PT program as group A. (N = 30) Follow-up at first week of cast removal (T1), immediately after the end of rehabilitation (T2, 8-12 weeks after fracture) and 1 month after completion of rehabilitation (T3, 12-16 weeks after fracture)	Rehabilitation outcomes p values for a two-way (Time and Therapy) mixed ANOVA Time was statistically significant ($p < 0.001$) for all outcomes; wrist flexion, forearm rotation, hand grip strength, DASH. Therapy was statically significant for grip strength ($p = 0.038$) Interaction effect was significant for rotation ($p = 0.034$), grip strength ($p = 0.021$) Grip strength was statistically different among group B vs Group A comparing time periods T3:T1 (67% vs 53% (CI 95%)), ($p = 0.024$)	"The combined therapy resulted in a statistically significant increase of grip strength in comparison with isolated physical therapy in the period of 12–16 weeks after the fracture. This effectiveness was not confirmed with DASH score results."	Data suggest significant increased grip strength with combination therapy in conservatively treated distal radial fracture patients.
Valdes 2015 RCT No sponsorship or COI	4.5	N = 50 patients with DRF and underwent volar plate fixation; Mean age Therapy group (28-81) Non therapy (23-92); Gender (M:F) 8:42	Therapy group received instruction from a standard pictorial home exercise program (HEP) and therapy with certified hand therapists. 2visits/wk for 16 visits N = 26 Non therapy group received standard pictorial HEP N = 24 Follow-up at 2,4,6,8, 12 for secondary outcomes and 6 months for primary outcomes	No statistically significant differences between scores of PRWHE, wrist/forearm motion, pain or grip strength between groups.	"Supervised clinic-based therapy is equally beneficial for patients without complications. Clinic- based therapy may be preferable for patients with noteworthy complications after a distal radius fracture with volar plate fixation."	Data suggest no difference between groups.
			Exercis	e		
Magnus 2013 RCT	4.0	N = 51 women with unilateral DRF; Mean Age Training group 63.3 ± 10	Training group received strength training in non- fractured arm during casting and through follow up and standard clinical rehabiliation (N = 27)	Fracture hand strength Training vs control at 12wks (17.3 ± 7.4 kg vs 11.8 ± 5.8 kg ($p < 0.017$))	"Strength training for the nonfractured limb after a distal radius fracture was associated with improved strength and DOM in the forst and limb at 12	All subjects were female. Data suggest at 12 weeks, strength training for non- fractured extremity after distal radius fracture was associated with improved
Sponsored by Royal		Control group 62.7 ± 10.2	vs	No significant differences in strength at 9, 12 or 26 wks.	ROM in the fractured limb at 12 weeks postfracture. These results	strength and ROM.

University Hospital Grant NO COI		Gender (M:F) 0:51	Control group, received standard clinical rehabilitation (N = 24).	Fractured hand ROM training vs control group at 12 weeks (100.5° $\pm 19.2^{\circ}$ vs $80.2^{\circ} \pm 18.7^{\circ}$ (p < 0.017°	have important implications for rehabilitation strategies after unilateral injuries."	
NOCOI			Follow-up at week 1, 3, 6, 9, 12, 26	\pm 19.2 vs 80.2 \pm 18.7 (p < 0.017))		
				Not significant differences in ROM at 9, 12, 26 weeks		
				No significant differences in patient rated wrist questionnaires at week 9 or 26.		
Kay 2008	6.5	N = 56 patients with DRF managed with pins and/or a cast;	Experimental group received a physiotherapist directed program of advice and exercise. (N = 28)	No significant difference found between groups comparing wrist	"An advice and exercise program provided some benefits	Data suggests that passive mobilization does not seem to add any benefit for distal
RCT		Mean age Experimental group 55	(N = 28) vs.	extension, ROM or strength.	over no intervention for adults following distal radius fracture."	radial fractures as both groups showed comparable efficacy.
Sponsored by RAH Allied		control group 55.8	Control group who did not receive any physiotherapy intervention.			
Health Research Grant		Gender (M:F) 17:39	Follow-up at three and six weeks			
No mention of COI						

Evidence for Surgery for Displaced Distal Forearm Fractures

There are 39 moderate-quality RCTs or prospective studies incorporated into this analysis.(1343, 1354, 1389-1424) (Rozental 09; Foldhazy 10; Grewal 05; Grewal 11; Karantana 13; Kreder 05; Cassidy 03; Jeyam 02; Krishnan 03; Leung 08; Wei 09; Atroshi 06; Arora 11; Abramo 09; Egol 08)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: **Bone Cement** / Distal Forearm Fractures & Colles' Fractures ;controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 5 articles in PubMed, 12 in Scopus, 2 in CINAHL, 0 in Cochrane Library, and 6037 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 3 from Google Scholar, and 0 from other sources. Of the 3 articles considered for inclusion, 2 randomized trials and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: bone cement, distal, fractures, bone, forearm, radius, radial, "colles" fracture; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomiy; systematic, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: **Cast Immobilization / Distal Forearm Fractures & Colles' Fractures** ;controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 5 in Scopus, 1 in CINAHL, and 2 in Cochrane Library, 6558 from Google Scholar, and 2 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 2 from Google Scholar, and 2 from other sources. Of the 5 articles considered for inclusion, 5 randomized trials and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: cast immobilization, distal, fractures, bone, forearm, radius, radial, "colles" fracture.; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 190 articles. Of the 190 articles we considered for inclusion 27. Of the 27 considered for inclusion, 13 are randomized controlled trials and 14 systematic reviews.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: **Closed Reduction / Distal Forearm Fractures & Colles' Fractures** ;controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 10 in Scopus, 2 in CINAHL, and 4 in Cochrane Library, 15380 from Google Scholar. We considered for inclusion 0 from PubMed, 3 from Scopus, 0 from CINAHL, 2 from Cochrane Library, 8 from Google Scholar, and 0 from other sources. Of the 13 articles considered for inclusion, 6 randomized trials and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: closed reduction, distal, fractures, bone, forearm, radius, radial, "colles" fracture.; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 162 articles. Of the 162 articles we considered for inclusion 4. Of the 4 considered for inclusion, 4 are randomized controlled trials and 0 systematic reviews.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: **Medullary Pinning / Distal Forearm Fractures & Colles' Fractures**; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, and 0 in Cochrane Library, 2175 from Google Scholar, and 5 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 2 from other sources. Of the 2 articles considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: medullary pinning, distal, fractures, bone, forearm, radius, radial, "colles" fracture.; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 5 articles. Zero articles met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: **Open Reduction / Distal Forearm Fractures, Colles' Fracture** ;controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 5 articles in PubMed, 6 in Scopus, 2 in CINAHL, and 2 in Cochrane Library, 5425 from Google Scholar, and 10 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 1 from CINAHL, 1 from Cochrane Library, 3 from Google Scholar, and 3 from other sources. Of the 9 articles considered for inclusion, 7 randomized trials and 2 systematic studies met the inclusion criteria. We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: open reduction, internal fixation, distal, fractures, bone, forearm, radius, radial, "colles" fracture.; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 325 articles. Of the 325 articles we considered for inclusion 10. Of the 10 considered for inclusion, 7 are randomized controlled trials and 3 systematic reviews.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: **Triangular Fibrocartilage Complex Repair (TFCC)** / **Distal Forearm Fractures & Colles' Fractures**; controlled clinical trial, controlled trials, randomized controlled tria

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: triangular fibrocartilage complex, distal, fractures, bone, forearm, radius, radial, "colles" fracture; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 5 articles. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
					External Fixa	tion vs. Casting				
Kreder 2006 (score=7.5)	External Fixation/Ca sting	RCT	Sponsored by a grant from the Orthopeadic Research and Education Fundation. No mention of COI.	N = 113 skeletally mature with distal radius fractures.	Mean age: 52.9 years; 39 males, 74 females	Closed reduction casting (n = 59) vs. Closed reduction and external fixation (n = 54).	Follow-up for 2 years.	No statistically significant differences in functional, clinical, or radiographic outcomes found; 19 patients in external fixator group had additional percutaneous pin fixation; 5 patients initially randomized to cast group actually received external fixations within 3 weeks of surgery (within 2 weeks of initiating cast treatment) because their fractures displaced or acceptable closed reduction could not be achieved (n = 5; 8.5%).	"For distal radius fractures with metaphysical displacement but with a congruous joint, there exists a trend for better functional, clinical, and radiographic outcomes when treated by immediate external fixation and optional K- wire fixation."	Author notes to achieve statistically significant results, a sample of n = 600 would be necessary. "simply not enough patients or resources to definitively answer this functional question."
McQueen 1996 (score=6.0)	External Fixation/Ca sting	RCT	No sponsorship or COI.	N = 120 patients with unstable fractures of distal radius	Mean age: 63 years; 13 males, 107 females	Closed re- reduction with forearm cast (Group 1) vs. Open reduction and bone grafting (Group 2) vs. Closed re- reduction and application of Pennig external fixator (Group 3) vs. Closed re- reduction and	Follow up at 6 weeks and one year.	Mean dorsal angulation correction better in open reduction and grafting group (Group 2) vs. control and external fixation groups at 6 weeks and 1 year. Groups 3 and 4 better than control, but no statistical difference between fixation and fixation	"Functional results at 6 weeks, 3 and 6 months, and at one year showed no difference between any of the four groups despite anatomical disparity. The main influence on final outcome was carpal	Despite differences in the final anatomical appearance of the distal radius, the incidence of carpal malalignment was similar in all groups. Authors state correction of palmar tilt is most important to reduce carpal

Abramo 2009	Internal	RCT	Sponsored by	N=50 patients	Mean Age	application of Pennig external fixator, but at three weeks the ball joint was released to allow wrist movement (Group 4).	Follow up	with early mobilization. Mean mass grip strength as a percentage of normal side showed sequential improvement, but no statistical analyses done. Carpal malalignment had a significant association with diminished recovery of strength of mass grip ($p = 0.02$), chuck grip ($p =$ 0.02) and key grip ($p = 0.05$) after 1 year. Similar association with recovery of range of rotation at 3 months ($p = 0.005$), 6 months ($p = 0.002$) and 1 year ($p =$ 0.01). After 1 year radial shortening had a significant negative association with recovery of chuck ($p 0.005$), key ($p = 0.01$) and pinch ($p = 0.001$) grip strengths. Grip strength (% vs	malalignment which had statistically significant negative effect on function."	malalignment. The four techniques in the study are equivocal in this study for improving palmar tilt.
Abramo 2009 (score=5.5)	Fixation/Ex ternal Fixation/Ca st	KU I	Sponsored by Region Skane, Lund University Hosptial, the Swedish Medical Research Council, Alfred Osterlund	N=50 patients with unstable of comminute distal radius fractures	Mean Age 48 years; 14 males, 36 females	who were treated with Open reduction and internal fixation Vs Group 2 (n=25) who were treated with closed reduction	rollow up at 2, 5, and 7 weeks, and 3, 6, and 12 months.	crip strength (% vs uninjured arm), group 1 vs 2, 7 weeks; 47% vs 34% (p=0.01). Forearm rotation (deg), group 1 vs 2, 7 weeks; 129 vs 104 (p=0.006). Grip	methods we compared will both give a good result with good DASH values, good grip strength, and good range of motion	At 1 year, data suggest internal fixation group had better ROM, grip strength and fewer malunions than external fixation group.

Jenkins 1987 (score=6.0)	External Fixation/Ca sting	RCT	foundation, the Great and Johan Kock Foundation, Maggie Stephens Foundation, Thure Carlsson Foundation, faculty of Medicine at Lund University. No mention of COI.	N = 58 patients with a displaced Colles' fracture	No mention of mean age (17-59 years); no mention of sex.	and external fixation.	Follow-up at 4, 8, and 16 weeks.	strength (% vs uninjured arm), group 1 vs 2, 1 year; 90 vs 78 (p=0.03). Forearm rotation (deg), group 1 vs 2, 7 weeks; 149 vs 136 (p=0.03). No significant differences found between groups in regards to DASH scores. Patients with moderate-heavy manual work had more days at home in group 2 vs group 1, (p=0.04). Mean loss of position significantly worse for plaster vs. fixator in dorsal angle 10.5° v 0.1° (p <0.01), radial angle 6.5° vs. 0.7° (p <0.01), radial length 3.7 vs. 0.3° (p <0.01). Using a positional grading scale to rate changes between post- manipulation and	after a year. Overall, considering the subjective and objective results as well as the rate of major complications and the sick-leave, we believe that internal fixation gives a superior result and in our opinion it would be the method of choice;" " "The external fixator proved more effective at holding the manipulated position, and the radiological loss of position during fracture union was minimal compared with that seen in patients treated in plaster."	External fixation is more effective than plaster in radiological scoring. There were no measurements of function in this study.
								scale to rate changes between post-	patients treated in	

								patients remained at 30 of 32.		
Abbasza- degan 1990 (score=5.0)	External Fixation/Ca sting	RCT	No mention of sponsorship or COI.	N = 47 with severely displaced Colles' fractures types 3 and 4	Mean age: 63 years; 11 males, 36 females	Prospective 1- year study of plaster cast or primary external fixation.	Follow up at 4, 8, 12, and 24 weeks, and 1 year.	Follow-up according to pain and subjective function: Pain cast/fixation (VAS 0-10); 8 weeks $3/2$ (p = 0.04); 12 weeks 2/1 (p = 0.1); 24 weeks $2/0.5$ (p = 0.009); 1 year 1/0 (p = 0.0002. Function cast/fixation (VAS 0-10); 8 weeks $5/7$ (p = 0.1); 12 weeks 7/7 (p = 0.7); 24 weeks $8/9$ (p = 0.1); 1 year $9/10$ (p = 0.02). Functional outcome excellent or good/total: Plaster 12/19; Fixation 19/22.	"Primary external fixation for severely malpositioned Colles' fractures might lead to a better radiographic and functional end result than conventional plaster-cast treatment."	5 fractures in plaster cast group redislocated after 11 days, and re- reduction and external fixation were required, with 3/5 reporting good or excellent results.
Merchan 1992 (score=5.0)	External Fixation/C asting	RCT	No mention of sponsorship or COI.	N = 70 with comminuted intra- articular fractures of the distal radius of types III to VIII;	Mean age: 36 years; 58 males, 12 females	Closed reduction and forearm plaster (n=35) vs. application of a Clyburn dynamic external fixator (n=35)	Follow up at 1, 3, and 7 weeks	"Significant loss of position occurred in 27 (77%) of the plaster group at the 7-day examination Patients stabilized with an external fixator had maintained their reduced position." In fixator group, 54.3% had excellent reduction, 34.3% good reduction, 8.7% fair	"It does appear that a good anatomic position combined with early rehabilitation of wrist function produces very favorable functional results in patients under 45 years of age."	Study labeled as double blind; however, only an independent assessor could be blinded which was not well described.

								reduction and 2.7 poor reduction compared to plaster group where 37.2% had excellent reduction, 17.2% had good reduction, 34.2% had fair reduction, and 11.4% had poor reduction. 4 occurrences of pin tract infection were found, however they were superficial and responded to treatment by cleansing and antibiotics. 3 encounters of pin loosening occurred. Reflex sympathetic dystrophy did not develop with Clyburn fixator however, severe		
								develop with Clyburn fixator however, severe Sudeck's atrophy developed in 2		
								plaster-treated patients.		
Stein 1990 (score=5.0)	External Fixation/Ca sting	RCT	No mention of sponsorship or COI.	N = 126 with distal radius fracture	Mean age: 55.4 years; no mention of sex.	Fixation with above-the-elbow cast immobilization (n=80) vs. external fixation (n=40)	Follow up at 1, 2, 4, and 6 weeks, then at 6 months and 4 years.	Patients categorized on 4 grade severity scale based on deformity, dorsal angulation, and shortening. Garland and Werley	"Extraarticular fractures of the distal radius should be treated with cast immobilization. Comminuted	Study randomizes by day of admission and apparently resulted in a 72:1 ratio of allocations to

								objective and subjective results showed 71 of 88 Grade I, II cast group had excellent or good results. In types II, IV fracture, external fixation had better scores 36 of 40 vs. 15 of 22 (p <0.001).	intraarticular fractures of the distal radius should be treated with external fixation, which maintains accurate anatomic position until solid fracture healing is achieved."	casting and a randomization failure.
Pring 1988 (score=4.5)	External Fixation/Ca sting	RCT	No mention of sponsorship or COI.	N = 75 patients with Colles' fractures	Mean age: 61.7 years; 14 males, 61 females	Forearm cast alone (n=39) vs. bipolar fixation of displaced fracture (n=36)	Follow up at 1, 2, 5, and 12 weeks and 6 months	Mean percentage grip cast/Bipolar: 7 weeks 28.5/21.6, 12 weeks 46.2/48.5, 6 months 63.8/67.6. "Nine fractures treated with plaster alone redisplaced and required manipulation. No patient initially treated with bipolar fixation required remanipulation. Functional results at 6 months did not reach statistical significance."	"A good final position (functional position) is desirable, even in the elderly; that bipolar fixation provides a method of achieving this, and that it is applicable to all but open fractures of the distal radius."	Conclusions are based on trend and not statistical significance.
Lagerström 1999 (score=4.5)	External Fixation/Ca sting	RCT	Sponsored by County Council of Uppsala, and the Trygg-Hansa Foundation Fund, Stockholm, Sweden. No mention of COI.	N = 33 patients with displaced Colles' fracture involving the distal radio- ulnar joint	Mean age: 58.3±8.4 years; 5 males, 28 females	Plaster cast (P- group) (n=16) vs. external fixation using AO External Fixator® (E- group) (n=12) vs. secondary fixator group (PE Group).	Follow up at 2 years	Differences between uninjured and injured sides; P- group vs. E-group in Maximum Voluntary Contraction (MVC) (Newtons) (Higher difference is weaker); 6 weeks: 190.7*** SD = 49.0 vs. 206.7 *** SD = 77.5; 10 weeks: 126.4** SD = 48.8	"For injured side patients with plaster casts showed significantly higher MVC (stronger) than patients with primary external fixation on day immobilization device removed until between 18 weeks and 1 year	Author suggests slower rates for MCV recovery as basis for early intervention with physiotherapy, particularly in the external fixation and secondary external fixation groups.

								vs. 155.6** SD = 59.6; 52 weeks: 32.6 SD = 38.1 vs. 34.2* SD = 35.0. *p<0.05; **p<0.01; ***p<0.001	when groups equalized. Patients that failed casting and had external fixation had slower recovery trends."	
Jenkins 1988 (score=4.0)	External Fixation/Ca sting	RCT	No mention of sponsorship or COI.	N = 106 who had sustained a Colles' fracture sufficiently displaced to require manipulative reduction	Mean age: 37.0 years; no mention of sex.	Forearm plaster (n=47) vs. external fixator in patients (n=59) (AO/ASIF minifixator)	Follow up at baseline, 1 week, 4 weeks, 3 months, and 12 months.	Comparison of excellent and good outcomes/total: Subjective: external fixator 44/59, plaster 32/41. Objective external fixator 57/59, objective 40/41. Fixator group had much greater proportion of excellent than the plaster group. At 12 months, the plaster group had significantly reduced grip strength than externally fixated group (93.9% SD \pm 9.4% vs. 84.1% \pm 19.6 (p = 0.05).	"The wrist's immobilization does nothing to retard its early recovery. External fixation of these fractures is indicated solely for the purpose of improving long- term function by virtue of the improved anatomy that the treatment affords, and for this reason methods of treatment that permit early wrist mobilization at the possible expense of the anatomical position are not justified."	Study accounted for grip strength in dominant vs. non-dominant contralateral comparisons.
Howard 1989 (score=4.0)	External Fixation/Ca sting	RCT	No sponsorship or COI.	N = 50 patients with severely displaced comminuted Colles' Fractures;	No mention of mean age or sex.	Plaster with fracture manipulated under Bier's block and supported by molded below- elbow plaster backslab vs. external fixation with 2 pairs self	Follow up at 3 and 6 months	For overall anatomical result, 14/25 fixator cases graded excellent compared with 2/25 plaster treated cases (p <0.001). No significant differences in functional results when combining	"External fixation produces significantly better anatomical results than plaster in severely displaced comminuted Colles' fractures and a significant	Most other studies reviewed reported functional results as excellent and good combined (considered satisfactory).

						tapping 2.0mm Hoffman pins inserted into radius, proximal to line of crossing of radial nerve.		excellent or good outcome/total: 3 months Plaster 12/25, External fixation 14/25 6 months plaster 18/25, External fixation 19/25. However, a significant difference in excellent only at 6 months. 16/25 vs. 9/25 (p <0.05).	improvement in function."	
Young 2003 (score=4.0)	External Fixation/Ca sting	Prospective Study	No mention of sponsorship or COI.	N = 125 with dorsally angulated fractures of the distal radius;	Mean age: 57.5 years; 28 males, 97 females	Group 1: primary bridging external fixation (n=36) vs. Group 2: manipulation of the fracture with dorsal plaster slab converted to below-elbow plaster cast at 1 week (n=49)	Follow up at 6 weeks, 3, 6, and 12 months	At 7-year follow-up, 17 died, 22 lost to follow-up, leaving 86. "There were no difference between groups for ranges of flexion, extension, pronation, supination and ulnar and radial deviation or grip strength." Gartland and Werley scores similar with 34/36 of external fixation group and 47/49 of casting group reporting excellent or good scores. Residual wrist pain low with no differences between groups. Patients showing arthritic changes ext. fix n = 11/36, cast n = 9/49 not significant. Incidence of 14% reported for occurrence of	"Radiographic result after distal radial fracture is significantly better if patients are treated by external fixation rather than by plaster immobilization. However, after 7 years, the outcome measures that the patient notices, such as range of movement and function, are no different between the two treatment methods."	High dropout rate at long-term follow-up.

Roumen 1991 (score=4.0)	External Fixation/Ca sting	RCT	No sponsorship or COI.	N = 101 with displaced Colles' fracture;	Mean Age 70.1 years; 8 males, 93 females	External fixator or conventional cast treatment (control) in patients that failed manipulation and splinting after 2 weeks vs. primary group that did not fail initial treatment (p).	Follow up at 26 weeks	radiological post- traumatic arthritis following intra- articular fractures. Elderly patients with displaced Colles' fractures treated with initial reduction and plaster backslab. At Week 1 and 2, patients with dorsal angulation >10° or radial shortening >5mm re- manipulated and held by external fixator or conventional cast treatment. Anatomical results excellent or good outcome/total:	"External fixation is not indicated for the treatment of redisplacement of a Colles' fracture in an elderly patient. Even severe secondary displacement can be accepted."	No correlation between anatomic and functional outcomes in elderly patients.
								primary 44/58, external fixator 16/21, control 0/22. Functional end- result excellent or good outcome/total: Primary 41/58, External fixator 12/21, control 19/22. No clear correlation between final anatomical result and functional result (Spearman coefficient 0.18, p >0.05).		
					K-V	Vire				
Egol 2008 (score=7.0)	K-Wire	Prospective Randomize d Trial	No sponsorship or COI.	N=88 patients with a distal radius	Mean Age Group 1: 49.9 (18-78).	Group 1: (n=38) patients that received	Follow up at 2 and 6 weeks, and	The mean DASH score in any of the intervals. For all	"None of the improvements was associated	Data suggest similar efficacy between groups

				fracture that needed operative repair	Group 2: 52.2 (19-87); 41 males, 47 females	external fixation and supplementary K-Wire fixation Vs Group 2 (n=39) who were treated with volar plating.)	at 3, 6, and 12 months.	parameters, as a percentage of the injured side, the range of movement was better in internally-fixed group; pronation ($p<0.001$), supination ($p=0.05$), extension ($p=0.05$), radial deviation ($p=0.002$), reached statistical difference at 3 months. Similar complications.	with a better outcome. Furthermore, while the number of complications between the two methods was similar, there was a greater incidence for re- operation in the plating group. Despite this finding, our study showed no evidence for the superiority of one treatment over the other."	but less re- operations were required in the external fixation group.
Allain 1999 (score=7.0)	K-Wire Fixation	RCT	No mention of sponsorship or COI.	N = 60 with dorsally displaced extra-articular or non- comminuted intra-articular fractures of distal radius after trans- styloid K- wire fixation.	Mean age: 75 years; 15 males, 45 females	Postoperative immobilization for 1 week (Group 1) (n=30) vs 6 weeks (Group 2) (n=30)	Follow up at 1 and 6 weeks, 45 days and 1 year	Patients followed at 1-year post-op. One reflex sympathetic dystrophy in Group 1, none in Group 2. Ulnar deviation statistically significant ($p =$ 0.03) after early mobilization (mean difference between normal and impaired wrist). No significant differences in grip strength, (25 kg in Group 1 and 21 kg in Group 20, sick leave, functional discomfort, or outcome satisfaction.	"Addition of plaster cast immobilization of wrist after trans- styloid fixation with two K-wires, in Colles' fractures may not be necessary if styloid fragment large enough to allow good K- wire fixation, as well as if fracture does not consist of more than 2 articular fragments."	No differences found in radiographic outcomes between groups.
Grewal 2011 (score=5.5)	K- Wire/Intern al and	RCT	No sponsorship or COI.	N=50 Patients with fractures	Mean age: 55.9 years;	Group 1 (n=26) patients treated with open	Follow up at baseline, 6 weeks,	Group 1 scored 11 points lower on Patient-Rated Wrist	"[O]ur trial suggests that ORIF (Group 1)	Data suggest ORIF group better than

	External			of the distal	12 malas 29	no duction and	and 3, 6,	Evaluation (PRWE)	maridas o short	external fixation
	External				12 males, 38	reduction and	and 5, 6, and 12	· · · · · · · · · · · · · · · · · · ·	provides a short-	
	Fixation			radius	females	internal fixation.		throughout whole	term advantage	in short term but
						Vs Group 2	months.	study, except at 12	over external	at 1 year, the
						(n=24) patients		months ($p=0.03$).	fixation, but these	results equalize
						with external		Group 1 vs 2	differences do not	among groups.
						fixation		(specifically Volar	persist over time.	
						procedures.		locking plates) had	Our results are	
								significantly lower	viewed with	
								PRWE scores at	caution, given	
								baseline (p=0.03)	that the ORIF	
								and 6 weeks	group also	
								(p=0.06). No	reported lower	
								difference in	pain and	
								radiological	disability at the	
								parameters, range of	initial	
								motion, grip	preoperative	
								strength, and	assessment and	
								complications.	because the trial	
								complications.	had a small	
									sample size."	
Kreder 2005	Internal	RCT	Sponsored by a	N=179	Mean Age	Group 1 (n=88)	Follow up	Patients in group 1	"[W]e	Significant loss
(score=5.0)	Fixation/K-	KC1	Grant from the	skeletally	Group 1: 40	patients treated	at 6 weeks,	had better function	recommend that	to follow up.
(\$016-5.0)	Wire			mature	(20-78).	with Closed	12 and 24		open reduction be	
	wife		Orthopaedic Research and		(20-78). Group 2: 39			overall, scoring a	1	Data suggest that at 2 years of the
				patients with		reduction and K-	months.	mean of 6 points	preceded by an	•
			Education	displaced	(20-81); 109	Wore Fixation		(95% CI: 4.1-33.0)	attempt at	intra-articular
			Foundation,	intra-articular	males, 70	Vs Group 2		in Musculoskeletal	minimally	step and gap
			Orthopaedic	fractures of	females	(n=91) Patients		Functional	invasive	were minimized,
			Trauma	the distal		treated with		Assessment (MFA).	percutaneous	the indirect
			Association and	radius;		open reduction		Pain scores were	reduction. If an	reduction and
			Sunnybrook			and internal		better overall for	acceptable	percutaneous
			Trust Fund. No			fixation.		group 1 (p=0.052)	reduction is	fixation group
			mention of COI.					NS. MFA, group 1	achieved then	had a quicker
								vs 2, 6 months; 15.1	open reduction is	return of function
								vs 37.9 Difference: -	unnecessary and	with better
								12.8 (95% CI: -23.7	function will be	functional
								1.9). Grip	superior."	outcomes.
								Strength, group 1 vs	•	
								2, improved		
								throughout study by		
								10.1 lb (p=0.05).		
								10.1 10 (p=0.05).		
Jeyam 2002	K-	RCT	No mention of	N=21 with	Mean age	(N=9) fracture	Follow-Up	Group 2, 1 week all	"The results of	Data suggest that
(score=4.0)	Wire/Bone		sponsorship.	distal radial	Group 1: 74.	was stabilized	at 1 day,	three radiological	this small study	at 12 and 26
(50010 - 110)	Cement		COI: One of the	Melone	Group 2: 71;	by K-wire using	and $1, 2, 3,$	parameters had	clearly indicate	weeks, the

			authors was supported by funding from Orthofix PLC.	fractures type 1 and 2;	0 males, 21 females	intrafocal technique, then castred for 4 weeks. (Group 1) vs (N=9) fracture site was cleaned and injected with Orthofix Bone source bone cement (Group 2).	6, 12, and 26 weeks.	deteriorated. Group 1 Vs 2, dorsal angle at 1 week, -7 (-19-6) and 6 (-5-15) (p <0.05) remained significant throughout the entire study. Radial angle worse in group 2, not significant. Group 1 vs Group 2, Grip strength at 6 months: 11 (6-17) vs 8 (4-10) (p <0.03).	that hydroxyapatite cement (Bonesource) does not provide adequate fracture stability when used alone."	hydroxyapatite group performed worse on grip strength, palmar flexion and dorsal flexion. There were no outcome measures where this group performed better.
Grewal 2005 (score=4.0)	K- Wire/Exter nal Fixation/Int ernal Fixation	Prospective Randomize d Trial	Sponsored by award from Zimmer Canada. No COI.	N=62 with AO type C intra-articular distal radius fractures	Mean age: 45.5 years; 33 males, 29 females	Group 1 (n=29) were treated with Open reduction and internal fixation Vs Group 2 (n=33) were treated by mini open reduction with percutaneous K- Wire fixation.	Follow up at 2, 4, 6, 10-12 weeks, 6 months, and 1, 2 years.	Complication Rate, Group 1 vs 2; 72.4% vs 24.2% (p=0.004). Grip Strength (% vs uninjured arm), group 1 vs 2, 86% vs 97% (p=0.019). Range of motion not significantly different. Radiographic outcomes not statistically different. Pain scores (DASH), group 1 vs 2, at 1 year; 22.1 vs 10.0 (p=0.02). After hardware taken out in some of the group 1 patients pain scores equalized at 2 years.	"Although dorsal Pi plates still may have a role in treating intra- articular distal radius fractures we have shown that mini open reduction with percutaneous K- wire and external fixation is a technique that provides a safe and effective alternative to open reduction and dorsal Pi plating when treating comminuted intra-articular distal radius fractures."	Data suggest comparable efficacy between groups with the dorsal plate groups having greater numbers of complications.
Strohm 2004 (score=4.0)	Kirschner Wire	RCT	No sponsorship or COI.	N = 100 patients with Colles-type	Mean Age: 65 years; 15 males, 85 females	Kirschner wire osteosynthesis via Kapandji procedure vs.	Follow up from 6-20 months	Martini scores; Kapandji vs. Willenegger. Average 4 (range,	Conventional Kirschner wire fixation remains good method of	Study intervention included both different fixation

Kapoor 2000 (score=4.0)	K-Wire Fixation	RCT	No mention of sponsorship or COI.	fracture of distal radius; N = 90 adult cases of acute displaced intra-articular fractures of the distal end of the radius;	Mean age 39 years; no mention of sex.	Willenegger procedure. Closed reduction and plaster immobilization vs. external fixation (Roger and Anderson type) vs. Open reduction and external fixation (Kirschner wires, small T plates or both) in patients with displaced intra- articular fractures.	Follow up at 4 years	16-38 points) vs. 28 (range, 11-36 points) ($p < 0.005$). Difference in the modified Martini score between the treatment group was found for type-A2 ($p = 1.004$) and A3 ($p = 0.007$) fractures but not for type-C1 fractures ($p = 0.6$). Final functional assessment (%); Plaster vs. Fixator vs. Open reduction: Good and excellent 43 vs. 80 vs. 63. Fair and poor 57 vs. 20 vs. 37. Average loss of arc with plaster 37° in comparison with 19° by external fixator. Average grip strength (in comparison with normal side) in groups was fixator 70%, open reduction and internal fixation 68% and plaster	osteosynthesis for treating displaced fractures of distal part of radius. "We found both the functional and radiographic outcomes of the Kapandji method to be significantly better than those of the Willenegger technique." "Displaced severely comminuted intra-articular fractures should be treated with an external fixator."	and different length of casting. Follow-up times differ among patients. Study intervention is different for fixation vs. internal fixation related to mobilization and physiotherapy. Follow-up times differ not clearly stated for each patient group.
					External Fixat	ion vs. Pinning		63%.		
Ludvigsen 1997 (score=6.0)	External Fixation/Pe rcutaneous Pinning	RCT	Sponsored by a grant from the Norweigan Orthopaedic Society. No mention of COI.	N = 60 with Colles' Fracture type Older 3;	Mean Age: 59.5 years; 7 males, 53 females	External fixation (n=29) vs. percutaneous pinning (n=31)	Follow up at 6 weeks and 6 months	Patients immobilized for 6 weeks; outcome assessed after 6 months. Groups showed similar	Most unstable distal radial fractures, classified as Older's type 3 and 4, can be treated	With equivocal results, author justification for conclusion is based on other studies that loss

								results with respect to radiographic parameters and function. All fractures healed and no difference in complication rate was observed.	with percutaneous pinning and a plaster cast, which is simpler and cheaper than external fixation.	of reduction may occur if external fixator is removed before 8 weeks, as radial shortening occurring during this time may result in loss of reduction.
Krishnan 2003 (score=5.5)	External Fixation/Pi nning	Prospective RCT	No mention of sponsorship or COI.	N=60 patients with intra- articular fractures of the distal radius;	Mean age: 56 years; 19 males, 41 females	Group 1 (n=30) pinned with a "Delta" frame and instructed to do wrist exercises Vs Group 2 (n=30) pinned in the "Hoffman" style and were not able to move wrist.	Follow Up at 1, 6, 12, 26, 52 weeks.	No statistical difference between groups in extension, ulnar deviation, pronation and supination, grip strength, comparable complications in both groups except for rupture of extensor pollicis brevis tendon. Flexion, Group 1 vs Group 2 at 6, 26, and 52 weeks median (range) in deg; 28 (10-60) vs 35 (10-90) (p.0.02), 45 (30-95) vs 55 (40-95) (p=0.008), 50 (25-100) vs 60 (45-100) (p=0.02). Radial deviation, group 1 vs Group 2, at 6 weeks; favored group 1 (p=0.002). Completing daily activities was better in group 2 than group 1 (p=0.034) at week 2.	"In conclusion, this study demonstrated that the outcomes of patients with complex unstable intraarticular fractures of the distal radius are similar, regardless of whether they are treated with a static bridging external fixator or a dynamic non- bridging external fixator."	Data suggest comparable efficacy between groups.

Leung 2008 (score=4.0)External Fixation/Pi nningRCTSponsored by the AO Research Institute. COI, one or more of the authors have received or will receive benefitsN= 137 with an acute intra- articular of distal radial fracture;Mean Age 44 years; 85 males, 52 femalesGroup 1 (n=74) at 6, 12, and 24 were treated using external fixation and percutaneous pinning.Vs Group 2 (n=70)Follow-Up at 6, 12, and 24	prescription drug, device removal,treatment of choice for these fractures."bathing and dressing problems, and otherfractures."
for personal or professional use. fractures that were stabilized with plates. Image: Stable of the stabl	operation all favored medullary pinning.

Rozental 2009	Internal	Prospective	No sponsorship	N=45 patients	Mean Age	Group 1 (n=23)	Follow up	Range of Motion	"The present	Data suggest
(score=6.5)	Fixation	Randomize	or COI.	with an	Group 1: 51	patients treated	at 6, 9, 12	Parameters (deg),	study confirms	similar efficacy
(score=0.5)	FIXation	d Trial	01 COI.	unstable	(19-77).	with open	weeks, and	group 1 vs 2, 6	the hypothesis	between groups
		u IIIai		fracture of the	(19-77). Group 2: 52	reduction and	1 year.	weeks; Extension:	that volar plate	but better early
				distal radius;	(24-79).	internal fixation	i year.	$45\pm20 \text{ vs } 16\pm13$	fixation results in	outcome results
				uistai raulus,	(24-79).	Vs Group 2		(p<0.01). Flexion:	less functional	in the open
						(n=22) patients		(p<0.01). Hexion. 50 ± 12 vs 26 ± 16	disability in the	reduction
						treated with		p<0.01). Supination:	first few months	external fixation
						Closed		$79\pm21 \text{ vs } 40\pm29$	after treatment	group with fewer
						reduction and		(p < 0.01). Pronation:	than does	overall numbness
						percutaneous		$77\pm17 \text{ vs } 63\pm26$	percutaneous pin	of complications.
						pinning.		(p=0.04). Ulnar	fixation. At one	of complications.
						pinning.		Deviation: 27 ± 10 vs	year after the	
								$15\pm11 \text{ (p<0.01)}.$	injury, we did not	
								Radial Deviation:	identify a	
								$15\pm$ vs 7 ± 6	difference	
								(p<0.01). Grip	between the	
								Strength (% vs	treatment groups	
								uninjured arm),	with regard to	
								group 1 vs 2, 6	functional or	
								weeks; 49.3±20.9 vs	radiographic	
								25.6±30.1 (p<0.01).	outcomes."	
								Pinch Strength (%	outcomes.	
								vs uninjured arm),		
								group 1 vs 2, 6		
								weeks; 59.1±25.8 vs		
								$38.8\pm27.0 (p=0.01).$		
								DASH Score, group		
								1 vs 2, 6 weeks;		
								27±17 vs 53±28		
								(p<0.01). 9 weeks;		
								17±17 vs 39±25		
								(p<0.01). 12 weeks:		
								11±13 vs 26±23		
								(p=0.01). No		
								significant		
								difference between		
								radiological		
								outcome, return to		
								work/life activities,		
								or complications.		
Hahnloser	Internal	RCT	No mention of	N = 46 with	Mean Age:	Internal fixation	Follow up	43% of [pi]-plates	"With open	Recommendation
1999	Fixation		sponsorship or	unstable	55.8 years;	via two 1/4 tube	at 1, 3, and	were too large and	reduction,	against pi-plate
(score=6.0)			COI.	comminuted			6 months	19% could not be	cancellous bone	

				fracture of distal radius;	11 males, 35 females	plates (n=25) vs. [pi]-plate (n=21)		matched properly to distal radius. Range of wrist motion of the operative wrist expressed in percentage of the normal contralateral side: [pi]- plaster/tube plates Flexion 68 (±26 SD)/ 85 (±15); Extension 67 (±23)/ 86 (±12).	grafting, and internal plate fixation in comminuted distal radial fractures, excellent results can be achieved. In our experience, we cannot recommend the [pi]-plate in its current shape and prefer to stabilize distal radius fractures and dorsal fragment dislocations with two 1/4 tube plates."	for internal fixation.
Földhazy 2010 (score=5.0)	External or Internal Fixation	RCT	No mention of sponsorship or COI.	N=59 with displaced fractures of the distal radius	Mean Age Group 1: 70 (62-81) Group 2: 73 (60-85); 6 males, 53 females	Group 1: (n=29) patients treated with open reduction and internal fixation with plaster casting. Vs Group 2: (n=22) Patients treated with closed reduction and external fixation.	Follow up at 2, and 5 weeks, 2, 6, and 12 months.	No significant difference in Clinical outcomes, and complications. Slightly better dorsal extension and radial deviation in group 1 at final follow up (p=0.036 and p=0.043, respectively). Final dorsal angulation, group 2 vs 1, 1 year; 11±9 vs 20±14 (p=0.001).	"[W]e believe that the results of this prospective, randomized and comparative study are that in 6085 year old patients, with a displaced distal radial fracture after low energy trauma, no obvious clinical benefit could be demonstrated using closed reduction and external fixation as compared with closed reduction and plaster treatment."	Data suggest comparable efficacy between groups although primary external fixation group showed a positive radiographical effect. However, one third of the external fixation group had a complication.

Ekenstam 1989 (score=5.0)	Internal Fixation	RCT	Sponsored by the Disabilities Committee of the Swedish insurance companies. No mention of COI.	N = 41 with Lidström Group Iia+c or Frykman Groups II and VI;	Mean Age: 51.1 years; 10 males, 31 females	Triangular ligament was repaired after closed reduction (Group A) (n=19) vs. closed manipulation and above- elbow cast (Group B) (n=22).	Follow up at 1 week and 2 years	Clinical examination results controls/group B/group A mean (SD): Strength 60(22)/58 (18)/59(25); Flexion 68(11)/58(11)/57(15). No difference for any part of clinical exam for 2 treatment methods.	"Repair of the ruptured triangular ligament in extraarticular fractures of the distal radius is not better than conventional treatment."	Dropout rate unclear. Randomization and baseline comparability not clear.
				E	xternal Fixatior	n vs. Bone Cement				
Schmalholz 1989 (score=6.0)	External Fixation/Bo ne Cement	RCT	No mention of Sponsorship or COI.	N = 47 with Frykman Types 1 and 2 that redislo- cated after two reduct- ions;	Median Age Group 1: 66 years. Group 2: 70 years; 0 males, 47 females	Bone cement (methylmethacr ylate) (Group 1) vs. plaster cast (Group 2).	Follow up at 2 weeks, 1, 2, 3, and 6 months and 2 years	21/24 patients in Group 1 and 10/23 in Group 2 recovered full dorsiflexion; 8 in Group 1 and 1 in Group 2 regained full strength. Wrist appearance satisfactory for all in Group 1/none in Group 2 at 8 weeks. Group 1 function excellent in 6, good in 17, and fair in 1; Group 2 saw good in 2, fair in 12, and poor in 9. (p <0.001).	"The operated on group were better with regard to all objectively measurable characteristics; all operated on fractures had healed radiographically, and the cement was surrounded by cortical bone."	Description of 2nd study sounds similar. Unclear if these 2 reports represent one trial with 3 arms split into 2 reports.
Schmalholz 1990 (score=6.0)	External Fixation/Bo ne Cement	RCT	No mention of Sponsorship or COI.	N = 48 with redislocated Colles Fractures;	Median Age Group 1: 67 (50-75). Group 2: 66 (50-81); 2 males, 46 females	Group 1: received Dorsal bone deficiency filled with bone cement (methylmethacryl ate) (n=23) vs. Group 2: received external fixation (n=25).	Follow up at 2 weeks, 1, 2, 3, and 6 months and 1 year	Surgery on day 16 (median 16, range 14-18) in both groups. Group 1 (cement) had significant improvement in volar flexion, supination, pronation, and grip strength first 2-4 months post	Final results equal in the 2 groups, but Group I improved earlier and had no complications.	Open reduction and bone cement appears more effective than external fixation.

								treatment. At 6 months all differences equalized. Group II, 24% had complications; none in Group I.		
Cassidy 2003 (score=5.0)	Norian SRS Cement	Randomize d Prospective Trial	Sponsored by the Norian Corporation. COI, three authors were employees of Norian.	N=323 patients who had sustained a displaced and/or unstable distal radial fracture;	Mean Age Group 1: 63.5 ± 11. Group 2: 63.7 ± 12; 51 males, 272 females	Group 1: patients treated with Norian SRS cement and a closed reduction. (n=161) Vs Group 2: patients treated only with closed reduction and either external fixation or cast immobilization (n=162).	Follow up at 1, 2, 4, and 6 weeks and at 3, 6, and 12 months.	Group 1 v Group 2 subjective pain rating difference; Group 1 lower at 2 and 4 weeks, (p=0.02, p=0.02, respectively). Group 1 required less pain medicine at 2 weeks (p=0.004). Group 1 vs Group 2 grip hand strength at 6-8 weeks, 18 lb vs 10 lb $(p<0.0001)$. Group 1 at 6-8 weeks had better digital range of motion $(p<0.01)$. Group 1 had significantly less swelling of forearm at 2 weeks, (p=0.0146), and various digits at 6-8 weeks took lees time to pick up small objects (p=0.0023). Group 1 vs group 2, ulnar variance at 12 months. 2.0 vs 1.4 (p=0.02). Complications largely due to loss	"Our data suggest that Norian SRS cement provides adequate fixation for the majority of distal radial fractures to permit early wrist mobilization."	Data suggest Norian SRS cement is beneficial for most distal radial fractures and may allow faster recovery due to accelerated rehabilitation. The control group experienced a significantly higher number of post procedure infections.

Sanchez- Sotelo 2000 (score=5.0)	External Fixation/Bo ne Cement	RCT	No sponsorship or COI.	N = 110 with distal radius fractures;	Mean Age: 66.0 years; 13 males, 97 females	Remodellable bone cement (Norian SRS) and cast for 2 weeks (n=55) vs	Follow up at 6 weeks, 3, 6, and 12 months	of reduction, no significant difference in complications between groups. Mean ranges of movement and mass grip strength as percentages of normal side. Norian	"The injection of a remodellable bone cement into the trabecular defect of fractures	Positive study for the use of remodellable bone cement over immobilization.
						closed reduction and cast for 6 weeks (n=55)		SRS/Control: Extension 6 weeks $65.09\pm 8.26/40.67\pm 6.$ 06 (p < 0.001); 1 year $95.7\pm 3.2/90.1\pm 3.4$ (p < 0.01). Flexion 6 weeks $53.84\pm 5.51/43.60\pm 5.$ 93 (p < 0.001); 1 year $86.2\pm 3.41/77.8\pm 4.2$ (p < 0.01). Grip Strength 6 weeks $38\pm 4.43/21.42\pm 4.87$	of the distal radius provides a better clinical and radiological result than conventional treatment."	
								(p <0.001); 1 year 92.3±4.32/80.3±7.3 (p <0.001). Radio- ulnar pain Norian SRS/ Control: 3 months 45 (81.8 %)/ 30(54.5%); 12 months none 49 (89.1%)/ 38 (69.1%). Complication Norian SRS/ Control:		
Kopylov 2001 (score=4.0)	External Fixation/Bo ne Cement	RCT	Sponsored by Norian Corp., Greta and Johan Kocks Stifelse,	N = 23 osteo- porotic patients with	Mean Age: 66.6 years; no mention of sex.	External fixation: received immobilization	No mention of follow- up.	Malunion 10 (18.2%)/23(41.8%); Reflex sympathetic dystrophy 3(5.4%)/4 (7.3%). Clinical findings reported in 1999 study. Stereometric findings are	"Stereometric analysis showed that 5 weeks of immobilization is	Second report on population.

Kopylov 1999 (score=4.0)	External Fixation/Bo ne Cement	RCT	the Medical Faculty of Lund University and the Swedish Medical Research Council. No mention of COI. Sponsored by Norian Corp. and the Swedish Medical Research Council. No mention of COI.	distal radial fracture; N = 40 with distal radial fractures	Mean age 67.5 years; 36 males, 4 females External Fixa		Follow up at 2, 5, and 7 weeks, 3, 6, and 12 months	reported here. In all fractures there was a good correlation (r2 = 0.93, p = 0.0001) between longitudinal radiostereometric analysis displacement from the first to last investigation. "SRS can be used in the treatment of unstable distal radial fractures. The more rapid recovery of grip strength and wrist mobility in the SRS group appears to be due to the shorter immobilization time."	sufficient for healing with external fixation in this age group. Treatment of the fracture with Norian SRS might reduce the immobilization time to 2 weeks but additional hardware may have to be used to ensure stability of the fracture system." "The shorter immobilization time with SRS permitted earlier return of hand function. The question remains whether early mobilization by itself is enough to reach a good final result, even in the absence of fixation with SRS. That question is addressed in an ongoing study."	No differences were found at 2 years in grip strength or mobility.
Atroshi 2006	External	RCT	Sponsored by	N=38 dorsally	Mean Age:	Group 1: (n=19)	Follow Up	No significantly	"The lack of a	Data suggest
(score=7.5)	Fixation		grants from Region Skane, Sweden. No COI.	displaced distal radius fracture;	71 years; 7 males, 31 females	patients treated with wrist- bridging fixation. Vs Group 2 (n=19) patients treated with non-	at 10, 26, and 52 weeks after surgery.	different results in the mean DASH scores between both groups. No difference in patient satisfaction, or pain between groups. No	clear clinically relevant advantage does not support non- bridging fixation instead of bridging fixation	similar efficacy between groups but non-bridging external fixation group better for maintaining radial length in

						bridging external fixation.		difference in range of motion between groups, No significant different between grip strength.	for older patients with distal Radius fracture."	several displaced radial fractures in the elderly.
Wei 2009 (score=7.0)	External Fixation	Prospective Randomize d trial	Sponsored by the Doris Duke Clinical Research Fellowship and BiometEBI. COI, one or more of the authors have received or will receive benefits for personal or professional use.	N=46 patients with an unstable distal radial fracture	Mean Age Group 1: 58 ± 17 years; 13 males, 33 females	Group 1 (n=22) patients treated with external fixation Vs Group 2 (n=12) patients treated with a radial column plate Vs Group 3 (n=12) patients treated with a volar plate.	Follow up at 10-14 days, 6 weeks, and 3, 6, and 12 months post-op.	Disabilities of the Arm, Shoulder and Hand (DASH) results, 6 weeks, group 3 vs group 1; 41 ± 23 vs 56 ± 19 (p=0.037). DASH 3 months group3 vs group 2 and vs group 2 and vs group 1; 7 ± 5 vs 28 ± 17 (p=0.027), and 29 ± 18 (p=0.028). DASH at 1 year, group 3 vs 1 and 2; 4 ± 5 vs 18 ± 14 (p=0.025) and 18 ± 12 (p=0.056). Grip Strength (percentage value compared to uninjured side, at 6 months, group 1 vs 2; 75 ± 21 vs 53 ± 9 (p=0.042). Lateral pinch (% vs uninjured side); group 2 vs 3, at 3 months and 12 months. 66 ± 14 vs 86 ± 13 (p<0.042), 73 ± 8 vs 94 ± 5 (p<0.036). Range of motion; Extension, group 1 vs group 3 and 2 (degrees), 6 weeks; 10 vs 38 & 32 (1 v 3 p=0.023), (1 v 2 p=0.032),	"In conclusion, this study provides new evidence supporting the trend toward fixation of distal radial fractures with locked volar plates."	Data suggest the use of a locked volar plate resulted in better patient reported outcomes at 3 months but at 6 months and 12 months, all 3 groups had good outcomes in terms of ROM, strength and radiographic alignment but the radial column plate group had significantly better radial inclination and length compared to other 2 groups.

								respectively. Supination (degrees), group 1 vs 2 and 3, 6 weeks; 34 vs 57 and 55 (1 v 2 p=0.041), (1 vs 3 p=0.049) respectively. Radiographic Measurements; Radial inclination (deg), group 2 v 3, 6 weeks; 25.0 \pm 5.2 vs 21.1 \pm 7.0 (p=0.003). Radial Length (mm), group 1 vs 2, 6 weeks; 11.4 \pm 2.1 vs 13.0 \pm 3.5 (p=0.038). Radial Inclination (deg), group 2 vs 1, at 12 months; 29.5 \pm 5.2 vs 20.9 \pm 3.4 (p=0.007). Group 2 vs 3; 29.5 \pm 5.2 vs 17.6 \pm 2.1 (p=0.003). Radial Length (mm), group 2 vs 1, 12 months; 16.5 \pm 3.5 vs 10.8 \pm 2.1 (p=0.002). Group 2		
								vs 10.8±2.1 (p=0.002). Group 2 vs 3; 16.5±3.5 vs		
Karantana 2013 (score=4.5)	External Fixation/Pl ate	RCT	No sponsorship or COI.	N=130 patients with a distal radial fracture;	No mention of mean age or sex.	Group 1 (n=64) patients treated with open reduction and volar plating Vs Group 2 (n=66) patients treated with closed reduction and external fixation	Follow-Up at 6, and 12 weeks, also at 1 year.	9.5 \pm 2.7 (p=0.027). Patient evaluation measure (PEM), group 1 vs 2, 6 weeks; 34 \pm 13 vs 45 \pm 12 (p<0.001). Quick Dash, group 1 vs 2, 6 weeks; 41 \pm 21 vs 52 \pm 20 (p=0.002). Grip Strength (% vs uninjured arm),	"In conclusion, use of a volar locking plate resulted in a faster early postoperative recovery of function compared with that following closed reduction	Data suggest comparable efficacy at 3 months and 1 year post procedure. The volar locking plate group did demonstrate some increased grip strength as

								group 1 vs 2, 6 weeks; 40 ± 23 vs 10 ± 12 (p<0.001). 12 weeks; 65 ± 26 vs 45 ± 22 (p=0.002). 1 year; 95 ± 22 vs 84 ± 19 (p=0.005). Range of Motion, group 1 vs 2, 6 weeks; Extension (deg): 57 ± 22 vs 17 ± 30 (p<0.001). Felxion (deg): 59 ± 18 vs 47 ± 22 (p=0.001). Pronation (deg): 80 ± 17 vs 65 ± 28 (p=0.001). Supination (deg): 73 ± 23 vs 37 ± 26 (p<0.001). More complications within group 2; (p=0.047).	and percutaneous wire fixation. However, there was no significant difference at or after twelve weeks."	well as anatomical improvement but these results were not significant.
Arora 2011 (score=4.5)	External Fixation	Prospective Randomize d Trial	No sponsorship or COI.	N=73 with distal radial fracture that were unstable;	Mean Age 76.7 years; 18 males, 55 females	Group 1 (n=36) individuals who were treated with open surgery and fixed with K- Wire, volar locking plate, or DVR. Vs Group 2 (n=37) individuals casted for 5 weeks.	Follow up at 6 and 12 weeks, as well as 6 and 12 months.	No significant differences in clinical parameters. Significantly more complications in the operative treatment group (p <0.05). DASH scores, 6 weeks group 1 vs 2; 18.8±17.9 vs 34.4±22.5 (p <0.001). Patient- Rated Wrist Evaluation (PRWE) scores at 6 weeks; group 1 vs 2; 36.4±28.7 vs 64.9±29.0 (p <0.001). DASH Scores at 12 weeks,	"Volar fixed- angle plate systems have made plate osteosynthesis popular for elderly individuals with osteoporotic bones. However, at twelve months after surgery, the active range of motion, the pain level, and the PRWE and the DASH scores were not different between the operative and	Data suggest at 12 months, ROM, pain level and PRWE and DASH scores equivalent. Patients in surgical group reported better grip strength throughout trial.

				New A	ret al ca		group 1 vs 2; 13.3 ± 14.8 vs 23.2 ± 19.3 (p=0.02). PRWE score at 12 weeks, group 1 vs 2; 33.7 ± 32.0 vs 54.4 ± 31.8 (p=0.01). Last follow up, dorsal tilt, radial inclination, radial shortening, and intra-articular step- off were significantly better, and loss of reduction was significantly lower in group 1 (p<0.05).	nonoperative treatment groups."	
Navarro 2016 Open (score=7.0) Redu Exter Fixati olar Plate/ Wire	ction/ nal ion/V	Sponsored by Swedish Research Council, the regional Agreement on Medical Training and Clinical Research between the Stockholm County Council and Karo-linska Institutet (ALF), and the King Gustav and Queen Victoria Free Mason	N=140 patients with a dorsally displaced distal radius fracture	Mean age: 63 years; 11 males, 128 females	Volar Locking Plate (n=70) vs External Fixation with K- Wires (n=70)	Follow up at 3 and 12 months	Lower quality of life measured by EQ-5F was lower in external fixation group (p<0.02) at 2 and 6 weeks. Grip strength was improved more in volar plate group at 3 months (p=0.007) and 1 year (p=0.072). Range of motion was only better for radial deviation in volar plate group at 1 year (p=0.021).	"Volar plating and external fixation with optional addition of K- wires are 2 equally suitable treatment options for dorsally displaced distal radius fractures in a population aged 50–74 years after low-energy trauma. Volar plating and external fixation yielded similar clinical results 3	Minimal differences between groups at 3 months and 1 year only enrolled older patients, may not be generalized to younger groups.

Costa 2014 (score=5.5)	K- Wire/Volar Locking Plate	RCT	Sponsored by Health Technology Assessment scheme of the	N=461 adults with dorsally displaced fracture of the distal radius	Mean age: 56.1 years;	Locking Plate Fixation (n=231) vs K- Wire (n=208)	Follow up at 3, 6, and 12 months	Adjusted treatment effect for PRWE score was -1.3 (95% CI -4.5-1.8) in favor of the plate group	"Volar plating and external fixation with optional addition of K-	Methodological details sparse, no outcome differences between groups.
			NIHR. No COI.					(p=0.40). No other significant differences between groups were observed.	wires are 2 equally suitable treatment options for dorsally displaced distal radius fractures in a population aged 50–74 years after low-energy	
									trauma. Volar plating and external fixation yielded similar clinical results 3 months and 1 year after treatment."	
Landgren 2017 (score=5.5)	Volar Locking Plate/Frag ment Fixation	RCT	Sponsored by Swedish Research Council, Greta and Johan Kock, Alfred OSterlund, Maggie Stevens, Thure Carlsson foundations, and the Medical Faculty of Lund. No COI.	N=50 patients with primarily nonreducible or secondarily redisplaced distal radius fractures	Mean age: 56 years; 11 males, 31 females	Volar Locking Plate: (n=25) vs Fragment Specific Fixation: (n=25)	Follow up at 2 and 6 weeks, 3 and 12 months	Achieving normal grip strength was shown in 90% of the volar locking plate group and 87% in the fragment specific group (p=0.62). Absolute grip strength was 25 kg for volar locking plate and 29 kg in the fragment specific group (p=0.55). Medium <i>Quick</i> Dash score was similar in both groups.	"In treatment of primarily nonreducible or secondarily redisplaced distal radius fractures, volar locking plates and fragment-specific fixation both achieve good and similar patient- reported outcomes, although more complications were recorded in the fragment- specific group."	No differences between groups except for radiographic outcomes. Higher complication rate in fragment specific fixation treatment group.

Gradl 2016 Intramedu (score=5.5) ary nailing/Pa mar lockir plate	g	No mention of sponsorship. No COI.	N=28 patients with intraarticular distal radius fractures	Mean age: 64.3 years; 4 males, 24 females	Volar Locking Plate Fixation: (n=14) vs Intramedullary Nailing (n=14)	Follow up at 8 weeks and 2 years	Both groups showed 82% achievement of improved wrist motion and grip strength. Patients in nailing group regained more extension than the plate group (98% of unaffected side vs 94% on affected side).	"The present study suggests that intramedullary nail fixation is a reasonable alternative to volar plate fixation for the treatment of intra- articular distal radius fractures and both techniques can yield reliably good results."	Small sample size, matched on sex and age. Differences in radiographic measures at 2 years were the only statistically significant differences.
Bartl 2014 Cast (score=5.5) Immobili ation	RCT	No mention of sponsorship. Author Stengel received compensation from Biomet, Stryker, and the AO Foundation, the German Trauma Society (Deutsche Gesellschaft für Unfallchirurgi e e.V., DGU), and the German Social Accident Insurance (Deutsche Gesetzliche Unfallversiche rung, DGU).	N = 185 with AO type C distal radial fractures	Age and sex information only available for 174 participants . Mean age: 74.84 years; 21 males, 153 females	Open reduction and volar locking plate fixation (ORIF) – treated primarily or after soft- tissue conditional with open reduction and volar locking plate fixation (via volar Henry approach), prescribed physiotherapy according to standards of individual center 2 weeks after surgery (n=94) vs.	Follow-up at 3 and 12 months.	Short Form-36 health questionnaire (SF- 36 PCS) at 3 months – ORIF: 44.5 ± 8.4 , Cast: 42.0 ± 10.6 (Mean difference = 2.5, p=0.096). SF-36 PCS at 12 months – ORIF: 48.6 ± 10.4 , Cast: 45.3 ± 11.3 (3.3, p=0.058)	"The findings with respect to mobility, functionality, and quality of life at 12 months provide marginal and inconsistent evidence for the superiority of volar angle- stable plate osteosynthesis over closed reduction and casting in the treatment of intra-articular distal radius fractures. Primary nonsurgical management is also effective in	Study was stopped early because of low enrollment and recruitment. Data suggest open reduction and plate fixation superior to closed reduction and casting in patients older than 65 years wrist complex distal radial fracture for the outcomes of range of motion and radiographic differences.

						Closed reduction and closed forearm cast for 6 weeks (n=91)			suitable patients."	
Christersson 2016 (score=5.5)	Cast Immobiliz ation	RCT	No sponsorship or COI.	N = 109 with moderately displaced distal radius fractures	Mean age: 65.8; 11 males, 98 females	All patients underwent closed reduction procedure. Immediate removal of plaster cast (active group) (n=54) vs. Continued plaster cast fixation for an additional 3 weeks (control group) (n=55)	Follow-up at 10 days, 1 month, and 12 months	Active group displaced more in dorsal angulation $(4.5^\circ, p<0.001)$, radial angulation $(2.0^\circ, p<0.001)$, and axial compression (0.5 mm, p=0.01) compared to control from 10 days to 1 month. Active group displaced more only in radial angulation (3.2°, p=0.002) compared to control at 12 months	"Early mobilisation 10 days after reduction of moderately displaced distal radius fractures resulted in both an increased number of treatment failures and increased displacement in radial angulation and axial compression as compared with the control group. Mobilisation 10 days after reduction cannot be recommended for the routine treatment of reduced distal radius fractures."	The 10 day cast group had significantly more displacement than 1 month cast group.
Williksen 2013 (score=5.0)	Cast Immobiliz ation	RCT	No mention of sponsorship. No COI.	N = 114 patients with unstable	Age and sex information	External fixation (EF) (Hoffman II	Follow-up at 2, 6, 16,	QuickDASH scores for EF and VLP groups,	"Although we did not find a significant	Only 1 statistically significant

				distal radius fractures	only available for 111 participants . Mean age: 54 years; 22 males, 89 females	external fixator or Synthes used) with adjuvant pins introduce in second metacarpal and in the radius, pins removed 6 weeks after surgery (n=60) vs. Volar locking plate (VLP), performed through flexor carpi radials approach, three plates used (n=54)	26, and 52 weeks	respectively, at 16 weeks: 3, 6 (mean difference = -3, p=0.21). At 26 weeks: 4, 4, (0.4, p=0.85). At 52 weeks: 1, 3 (-2, p=0.21)	difference between the groups for the QuickDASH score, we believe that our results support the use of VLPs for the treatment of unstable distal radius fractures. A serious concern is that some patients will have to have their plates removed; therefore, improving the surgical technique is important."	difference suggesting no clinical difference between two groups.
Drobetz 2016 (score=5.0)	Cast Immobiliz ation	RCT	No COI. No mention of sponsorship.	N = 56 patients with displaced radius fracture	Age and sex information only available for 50 participants . Mean age: 51.83 years; 28 males, 22 females	Volar locking plate (VLDRP) – volar Henry approach, Synthes plates used (n=29) vs. Another treatment modality (control) – case immobilization with or without wires	Follow-up at 2, 6, and 12 weeks	Comparison at 3 months for VLDRP and control groups, respectively: DASH score – 40, 50 (p=0.063), PRWE score – 21, 47 (p=0.007), Grip strength (% of grip strength of uninjured limb) – 64, 42 (p=0.012)	"The present study suggests that volar locking plates produced significantly better functional and clinical outcomes at 3 mo compared with other treatment modalities. Anatomical reduction was	Non- intervention comparison was an ill- defined broad combination of treatments.

						or external fixator (n=27)			significantly more likely to be preserved in	
									the plating group."	
Park 2017 (score=5.0)	Cast Immobiliz ation	RCT	No COI or sponsorship.	N = 69 with unilateral distal radius fracture	Mean age: 66.77 years; 6 males, 63 females	All wrists positioned in slight flexion and ulnar deviation as to not immobilize metacarpophal angeal joint. Randomized to either short arm plaster (n=36) vs. long arm plaster (n=33). 6 to 7 weeks post-injury the plaster was removed, followed by the wearing of removable short arm splint for 2 additional weeks	Follow-up at 1, 3, 5, 12, and 24 weeks	Differences at 3 months between short and long arm cast, respectively: Visual analog scale (VAS) – 3.7, 3.1 (p=0.05), DASH – 55.6, 52.9 (p=0.50), Volar tilt – -0.2, 3.9 (p=0.01), Radial inclination – 13.4, 15.4 (p=0.21), Radial length (mm) – 5.0, 6.2 (p=0.13). Differences at 6 months between short and long arm cast, respectively: VAS – 2.5, 2.1 (p=0.12), DASH – 30.0, 26.8 (p=0.37), Volar tilt – -3.6, 2.3 (p<0.001), Radial inclination – 10.1, 12.4 (p=0.17), Radial length (mm) – 3.1, 4.5 (p=0.10).	"Our findings suggest that a short arm cast is as effective as a long arm cast for stable distal radius fractures in the elderly. Furthermore, it is more comfortable and introduces less restriction on daily activities."	Study assessed for differences not equality so study conclusions are not justified. Patients enrolled 1 week after injury and initial treatment volar tilt significantly different as is impact on activities.

Yamazaki 2015 (score=5.0)	Fluoroscopi c/Arthrosc opic Reduction	RCT	No mention of sponsorship. No COI.	N=74 patients with unilateral unstable intraarticular fracture of the distal radius	Mean age: 64 years; 16 males, 54 females	Fluoroscopic Reduction: (n=37) vs Arthroscopic Reduction (n=37)	Follow up at 6 and 48 weeks	No significant differences were observed between groups at any time. Mean gap and step in fluoroscopic and arthroscopic groups were similar 0.9 ± 0.7 mm, 0.7 ± 0.7 mm, 0.6 ± 0.6 mm, and 0.4 ± 0.5 mm, respectively (p=0.18 and p=0.35).	"Arthroscopic reduction conferred no advantage over conventional fluoroscopic guidance in achieving anatomical reduction of intra- articular distal radial fractures when using a volar locking plate."	No statistical differences between groups, although there were some statistical trends were seen.
Shukla 2014 (score=4.5)	Cast Immobiliz ation	RCT	No COI. No mention of sponsorship.	N = 110 with Cooney's type IV distal radius fracture (diagnosed via Cooney's classificatio n system), without other skeletal injury	Mean age: 39.12 years; 49 males, 61 females	External fixation – Schanz pins in second metacarpal and in radius proximal to the fracture, a below-elbow plaster of Paris slab applied in all patients for 1 week, external fixator was removed after 8 week (n=62) vs. Volar locking plates – near flexor carpi radialis (FCR) tendon, casts applied did not allow free	Follow-up at 6 and 12 month	Comparison of final Green and O'Brien scores between external fixation and volar locking plates, respectively: At 6 months – 75.54, 80.33 (p=0.12), At 12 months – 87.36, 81.55 (p=0.01)	"External fixation showed superiority over volar locked plating after 1 year of surgery."	Methodological details sparse. Differences in treatment response between patients younger than 50 years and those 50 years and above, particularly for external fixation.

						mobilization (n=48)				
Martinez- Mendez 2017 (score=4.5)	Casting/Vo lar Plating	RCT	No sponsorship or COI.	N =97 patients displaced complex inta- articular distal radius fractures	Mean age: 68.5 years; 21 males, 76 females	Casting: received plaster immobilization for 2 weeks, then a forearm cast for 4 more weeks (n=47) vs Volar plating: received open reduction and volar locking plate fixation (n=50)	Follow up at 2, 6 weeks, 6, 12, and 24 months	Functional and quality of life scores were better in the plating group compared to casting group (p=0.02, p=0.04, respectively). PRWE showed a treatment effect for casting of OR=1.2 (95% CI 1.0=1.72, p=0.04). Casting group showed 26% unacceptable loss of reduction.	"We conclude that the conservative treatment in patients over 60 years old had a high incidence of redisplacement. The functional outcomes and quality of life were better and clinically relevant after volar plating fixation compared with conservative treatment. The restoration of the articular surface and recovery of radial inclination and ulnar variance were important factors influencing the outcomes."	While there is relatively little baseline data for these participants, who were mostly elderly, Data suggest surgical plating is superior to casting for intraarticular distal radius fractures. Study included range of severities from C1-C3 with roughly equal severities between treatment groups.
Sharma 2013 (score=4.0)	Cast Immobiliz ation	RCT	No COI. No mention of sponsorship.	N = 64 with unilateral fractures of distal radius (AO type B or C)	Mean age: 50.25 years; 26 males, 38 females	Nonoperative group – closed manipulation under C-arm guidance, above-elbow plaster of Paris (POP) cast for 4 weeks (n=32) vs. Volar plating – open reduction and internal	Follow-up at 6 weeks, 3, 6, 12, 18, and 24 months	Range of movement and functional scores significantly better in volar plating group (p<0.001) except for ulnar variance and radial and ulnar deviation. Range of motion scores at 24 months for	"In cases of AO type B or C fractures of the distal radius, volar locked plating provides anatomical stable fixation and early mobilization with better clinicoradiologi cal outcome as	Non-operative treatment was above elbow casting for 4 weeks. No baseline outcomes reported. Surgical treatment had better outcomes for most measures of

Gamba 2017 (score=4.0)	Cast Immobiliz	RCT	No COI or sponsorship.	N = 72 with distal radius	Mean age: 77.1 years;	fixation with titanium volar locking plates (Synthes) via extended flexor carpi radialis approach, plaster splint applied for 1 week, upper extremities (n=32)	Follow-up at 1, 3,	nonoperative and volar plating groups, respectively: Palmar flexion – 65.91, 83.86 (p<0.001), Dorsal flexion – 69.04 , 84.33 (p<0.001), Radial deviation – 62.87, 79.14 (p<0.001), Ulnar deviation – 65.91 , 79.62 (p<0.001), Pronation – 32.04 , 34.19 (p=0.088), Supination – 41.96, 43.43 (p=0.932), Grip strength – 72.17 , 89.05 (p<0.001) Loss of reduction parameters for the	compared to conservative treatment." "The above- elbow cast is	range of motion and strength as compared to cast.
	ation			fracture	3 males, 69 females	reduction procedures with mechanical traction via finger traps and manipulation after blocking with bupivacaine. Patients randomized to a below-elbow cast (n=40) vs. above-elbow	and 6 weeks	below-elbow cast group and the above-elbow cast group, respectively: volar tilt loss 10.8, 10.6 (p=0.89), radial tilt loss 4.6, 5.6 (p=0.08), ulnar variance loss 1.4, 0.7 (p=0.19)	not better than the below- elbow cast in terms of loss reduction. However, the below-elbow cast more efficiently controls radial tilt reduction."	No meaningful differences between groups except for radial tilt.

		cast (n=32).		
		Casts were		
		removed after		
		6 weeks		

Evidence for the Use of X-rays for Diagnosis of Wrist Ganglia

There is one low-quality study included in Appendix 2.(1426) (Sakamoto 13)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ganglion, Cyst, Cysts, Xray, Xray, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 371 articles in PubMed, 298 in Scopus, 2 in CINAHL, 0 Cochrane Library, and 3240 from Google Scholar. We considered for inclusion 1 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 3911 articles considered for inclusion, 1 met the inclusion criteria.

Evidence for the Use of MRI for Evaluation of Wrist Pain with Suspected Occult Dorsal or Volar Wrist Ganglia There are 4 moderate-quality studies incorporated into this analysis.(1427-1430) (Anderson 06; Goldsmith 08; Vo 95; Cardinal 94)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: MRI, Magnetic resonance imaging, Ganglion Cyst, Wrist, hand, Ganglion, ganglia, dorsal, volar, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 19 articles in PubMed, 2037 in Scopus, 1 in CINAHL, 8 Cochrane Library, and 40 from Google Scholar. We considered for inclusion 0 from PubMed, 3 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 1 from other sources. Of the 4 articles considered for inclusion 4 diagnostic studies met the inclusion criteria.

Author/Year Study Type	Score	Number	Area of Body	Diagnoses	Type of MRI used	Type of CT used	T1 weighted images	T2 weighted images	X-ray	Myelography	More than one rater	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Anderson	6.0	34 patients	Wrist	Dorsal	1.5-T	-	+	+	+	-	+	+	-	-	35 abnormalities were	"MRI is accurate in	Data suggest
2006				occult	superco										diagnosed with MRI: 25	preoperatively	MRI is useful
		23 women		ganglion	nductin										ganglia, 16 dorsal occult	distinguishing	preoperativel
Retrospec		11 men		cyst	g										ganglia and 6 synovitis.	between ganglion	y in
tive					magnet										Surgery confirmed MRI	and	distinguishing
		Mean age $= 29.5$													diagnosis with an overall	synovitis in the	between
															agreemtn of 71% (95% CI,	setting of chronic	synovitis and
															0.38-0.76) Sensitivity to	dorsal wrist pain"	occult ganglia
															ganglia was 89% (95% CI		particularly in
															56%-99%) to dorsal occult		cases of
															ganglia cysts was 94% (95%		chronic wrist
															CI 70%-100%)		pain and
																	edema.

Goldsmit	5.5	20 patients	Wrist	Occult	Siemens	-	+	+	+	-	-	+ -	-	MRI found 16 of 20 wrist	"MRI scans provide	Data suggest
h 2008		20 wrists		dorsal	' 1.5 T									had an occult ganglion.	relatively good	MRI is a
				wrist	imager									Surgery was performed on	reliability in	good
Retrospec		11 women		ganglion	U									all 20 patients, identifying	establishing the	technique for
tive		9 men		cyst										18 occult ganglions. 16 of	diagnosis of an	visualizing
				2										the 20 wrists had	occult	occult dorsal
		Mean age $= 36$												histological features of a	dorsal wrist	wrist ganglia.
		C												ganglion cyst. The 4	ganglion"	0 0
														negative MRI were positive		
														and 3 of the 18 positive in		
														surgery were negative. MRI		
														at the time of surgery		
														provided a sensitivity of		
														83%, a specificity of 50%		
														and a PPV of 94%.		
														However, when evaluated		
														with histological findings,		
														the sensitivity was 80%,		
														specificity was 20%, the		
														PPV was 75% and the		
														accuracy was 65%.		
Vo 1995	4.0	14 patients with chronic	Wrist	Chronic	1.5-	-	+	+	-	-	-	+ +	-	10 of 14 were positive for	"The use of a	Small sample.
Retrospec		dorsal pain		Dorsal	Tesla									occult dorsal wrist ganglion	properly formatted	Data suggest
tive		1		Wrist	General									on the MRI. 7 of the 10	high-resolution MRI	in the
		No mention of age or		pain of	Electric									MRI positive patients	in this patient	presence of a
		gender		unknown	Signa									underwent surgery after	population was	negative
		5		etiology	U									nonoperative treatment	diagnostic for occult	clinical
				25										failed and was confirmed as	dorsal wrist	workup, MRI
														positive though histological	ganglion."	is useful in
														examination. One of the		detecting
														positive patient developed a		occult dorsal
														palpable ganglion. The two		wrist ganglia.
														other positives were not		0
														confirmed. The PPV is		
														100%		

Cardinal	4.0	14 wrists in 13 patients	Wrist	Occult	1.5-T	-	+	+	-	-	-	+ -	-	-	US identified 11 dorsal	"MR imaging and	Small sample.
1994				dorsal	Imager,										carpal ganglion cyst while	US are equally	Data suggest
		Mean age $= 30$		carpal	Signa										MRI identified 9. One	effective in the	comparable
Prospecti				ganglion	Advanta										patient that was positive on	detection of occult	efficacy
ve		9 women			ge										US denied a MRI. The other	dorsal carpal	between MRI
		4 men													US positive had an	ganglia."	and US for
															inconclusive diagnosis of a		detecting
															ganglion. Five of the cases		occult dorsal
															were confirmed by surgery.		carpal
															One ganglion was missed by		ganglia.
															both imaging techniques.		

Evidence for the Use of Ultrasound for Evaluation of Chronic Wrist Pain with Suspected Occult Dorsal or Volar Wrist Ganglia

There is 1 moderate-quality study incorporated into this analysis.(1431) (Osterwalder 97)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: ultrasonography, ultrasound, sonography, ganglion cysts, ganglion, ganglia, dorsal, volar, hand, wrist, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 43 articles in PubMed, 94 in Scopus, 0 in CINAHL, 7 in Cochrane Library, and 2,190 from Google Scholar. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 1 article considered for inclusion 1 diagnostic study met the inclusion criteria.

Author/Year Study Type	Score	Number	Area of Bdoy	Diagnoses	Type of Ultrasound	CT used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Oster walder 1997 Diagn ostic	6.0	N = 168; mean age = 27 (52 male, 116 female)	Wrist	suspected occult wrist ganglion who complaine d of wrist pain and palpation findings were inconclusi ve	For first three years - Aloka model SSD-6202S, for last two years - Hitachi model EUB- 55S, both models used 7.5-MHz linear transducer and spacer	-	+	-		-	+		-	Out of the 168 patients examined by ultrasound 68 were diagnosed with a cyst and 85 were diagnosed with absence of a cyst. In 15 patients the diagnosis was not clear enough to get a definitive answer. Ultrasound sensitivity, specificity, accuracy, positive predictive value and negative predictive values plus the 95% confidence intervals were the following: 88% (73-96%), 85% (64-95%), 87% (76-94%), 90% (75-97%), 83% (62-94%)	"It was concluded that ultrasound of the wrist can be used as a first-line imaging procedure in clinically inconclusive situations and that ultrasound evidence of an occult dorsal ganglion is a reliable indicator for surgery." "Only Cardinal et al. 8 specifically discussed MRI and ultrasound diagnoses of occult wrist ganglions. They reported that ultrasound allowed correct diagnosis in 5 positive ganglions and 1 false negative (2- mm) ganglion that MRI had indicated to be 4 positive, 1 false positive, and 1 false negative cases. It is therefore still uncertain whether the reliability of MRI for the diagnosis of occult wrist ganglions can approach that of ultrasound."	Data suggest US of wrist is useful for imaging inconclusive persistence wrist pain patients who are suspected of having an occult ganglion.

Evidence for Non-Operative Management for Acute Asymptomatic Wrist and Hand Ganglia

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: non operative management, no treatment, ganglion cyst, wrist, hand, ganglion, ganglia, dorsal, volar; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 56 articles in PubMed, 30 in Scopus, 0 in CINAHL, 3 in Cochrane Library, 12596 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, Scopus, CINAHL, Cochrane Library, Google Scholar, and 0 articles from other sources. Zero articles met the inclusion criteria.

Evidence for Aspiration for Acute Cosmetic and Ganglia Related Pain

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: aspiration; ganglion cyst, wrist, hand, ganglion, ganglia, dorsal, volar; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 11 articles in PubMed, 29 in Scopus, 0 in CINAHL, 5 in Cochrane Library, 8,180 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 1 from Cochrane Library, 0 Google Scholar, and 1 from other sources. Of the 3 articles considered for inclusion, 2 randomized trial and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: aspiration, ganglion cysts, ganglion or ganglia, dorsal or volar, hand, wrist, hand, wrist; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random^{*}, randomization, randomly; systematic, retrospective, and prospective studies to find 5 articles. Zero articles met the inclusion criteria.

Evidence for Aspiration with Steroids

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ganglion Cyst (wrist ganglia, dorsal or volar wrist ganglia), Aspiration with steroids; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 4 articles in PubMed, 15 in Scopus, zero in CINAHL, zero in Cochrane Library, 498 in Google Scholar, and zero from other sources. We considered for inclusion 3 from PubMed, zero from Scopus, zero from CINAHL, zero from Cochrane Library, zero from Google Scholar, and zero from other sources. Of the 3 articles considered for inclusion, 3 randomized trials and zero systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: aspiration, steroid, steroids, ganglion cysts, ganglion or ganglia, dorsal or volar, hand, wrist, hand, wrist; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 2 articles. Zero articles met the inclusion criteria.

Evidence for Aspiration and Multiple Wall Punctures of Cyst Wall

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Aspiration and multiple punctures of cyst wall, Ganglion Cyst (wrist ganglia, dorsal or volar wrist ganglia); controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed zero articles in PubMed, 2 in Scopus, zero in CINAHL, zero in Cochrane Library, 155 in Google Scholar, and zero from other sources. Zero articles met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: aspiration, puncture, punctures, multiple punctures of the cyst wall, ganglion cysts, ganglion or ganglia, dorsal or volar, hand, wrist, hand, wrist.; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

Evidence for use of Splinting after Aspiration for Treatment of Dorsal or Volar Wrist Ganglia

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: aspiration, splint, splints, splinting, ganglion cyst, wrist, hand, ganglion, ganglia, dorsal, volar; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 2 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 1,294 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for Installation of Hyaluronidase into Cystic Structure

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: aspiration, hyaluronoglucosaminidase, hyaluronidase, Ganglion Cyst, Wrist, hand, Ganglion, ganglia, dorsal, volar; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 2 in Scopus, 0 in CINAHL, 1 in Cochrane Library, 376 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 0 from other sources. Of the 1 article considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: Aspiration, hyaluronidase, hyaluronidase instillation, ganglion cysts, ganglion or ganglia, dorsal or volar, hand, wrist, hand, wrist; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

Evidence for Use of Aspiration and Sclerosing Agents

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: aspiration and sclerosing agents, phenol and hypertonic saline, ganglion cyst, wrist, hand, ganglion, ganglia, dorsal, volar; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, Scopus, CINAHL, Cochrane Library, 346 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, Scopus, CINAHL, Cochrane Library, Google Scholar, and 0 articles from other sources. Zero articles met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: aspiration, sclerosing agents, ganglion cysts, ganglion or ganglia, dorsal or volar, hand, wrist, hand, wrist; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

Evidence for Surgical Excision of Upper Extremity Ganglia

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Surgical Excision, Ganglion Cysts, Ganglion, Ganglia, Dorsal, Volar, Hand, Wrist; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 11 in Scopus, 1 in CINAHL, 5 in Cochrane Library, 20 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 1 from Cochrane Library, 0 Google Scholar, and 0 from other sources. Of the 2 articles considered for inclusion, 2 randomized trials and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: Surgical excision, ganglion cysts, ganglion or ganglia, dorsal or volar, hand, wrist, hand, wrist; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 10 articles. Of the 10 articles we considered for inclusion 0. Zero articles met the inclusion criteria.

Evidence for Arthroscopic versus Open Excision for Ganglia

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Arthroscopy, Arthroscopic, Open Excision, Surgery, Ganglion Cysts, Ganglion, Ganglia, Dorsal, Volar, Hand, Wrist; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 2 in Scopus, 1 in CINAHL, 1 in Cochrane Library, 20 in Google Scholar, and 2 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 1 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 2 from other sources. Of the 2 articles considered for inclusion, 0 randomized trials and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: arthroscopic vs. open excision, ganglion cysts, ganglion or ganglia, dorsal or volar, hand, wrist, hand, wrist; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 3 articles. Of the 3 articles we considered for inclusion 1. Of the 1 considered for inclusion, 0 are randomized controlled trials and 1 systematic reviews.

Evidence for 7 moderate-quality RCTs incorporated into this analysis.(115, 1433, 1434, 1437, 1443-1446) (; Jagers Op Akkerhuis 02) There are 2 low-quality RCTs in Appendix 2.(1440, 1447) (Balazs 15, Varley 97)

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
				Aspi	rations and Mu	ltiple Puncture group	p			
Stephen 1999 (score=4.0)	Aspirations and Multiple Punctures	RCT	No mention of sponsorship or COI.	N = 119 with ganglia	No mention of age. Male to female ratio 1:3.1.	Simple aspiration (n = 65) Vs Aspiration and multiple wall punctures (n = 54)	Follow-up for 1 year.	"16 of 51 ganglia (31%) treated by aspiration alone resolved and did not recur in contrast to 9 of 41 ganglia (22%) in the multiple puncture group."	"The study has demonstrated that multiple puncture of the ganglion wall does not improve the results of simple ganglion aspiration."	Lack of study details. No randomization or allocation details. Drop-out 23% at 1-year follow-up.
				Aspiration an	d Steroid Alone	e (prior use of Hyalu	ironidase)			
Paul 1997 (score=4.0)	Aspiration and Steroid Alone (prior use of Hyaluronida se)	RCT	No mention of sponsorship or COI.	N = 70 with ganglia of the wrist or hand.	Mean age given. 29 males, 41 females.	Group 1, local anesthetic of 0.5% lignocaine plus 0.5 mls of ganglion contents were aspirated v via a 16 gauge needle (n= 35) Vs Group 2, treated by conventional technique of aspiration under local anesthetic and immediate injection of 40 mg of Depomedrone (n= 35).	Follow up at 2 years	Patients reporting excellent results significantly higher in hyaluronidase group (49% vs. 20%, p = 0.0051). However, good and excellent ratings combined showed trend for hyaluronidase (89% vs. 57%) but not significant, (p = 0.072).	"The cure rate with the combined use of hyaluronidase and methylprednisolon e was 89% compared to 57% when treated by aspiration and instillation of methylprednisolon e alone."	Lack of study details. 100% follow-up achieved at 2 years. Treatment may be beneficial for viscous cystic fluid that is too viscous for aspiration.

Limpaphayo m 2004 (score=6.5)	Aspiration and Surgical Excision and Steroid Injection	RCT	No mention of sponsorship or COI.	N = 28 pts with first time dorsal carpal ganglion	Mean age: 26.6 years; 4 males, 24 females	Surgery, 5 cc of 1% Xylocaine $(n = 11)$ vs Aspiration, steroids, and immobilization $(n = 13)$.	Follow up at 6 months	At 6 month follow- up, the success rate was 81.8% by surgical excision and 38.5% by aspiration,(p = 0.047).	"Result of treatment can be varied but by this RCT, surgery was shown to obtain a superior result in terms of success rate than aspiration, methylprednisolon e acetate injection plus wrist immobilization."	Single trial of aspiration. Lack of blinding. Only included dorsal wrist ganglia.
Latif 2014 (score=4.0)	Aspiration and Surgical Excision and Steroid Injection	RCT	No mention of sponsorship or COI.	N = 173 with ganglia within wrist, ankle and knee.	Mean age 26 years; 36 males and 147 females	Group 1 who opted for aspiration and injection treatment (n = 143) Vs Group 2 who opted for surgical treatment (n = 44).	Follow-up baseline and 6 months.	Group 1 vs group 2 success at third week of injection: 82 (57%) vs 41 (93%). Success rate at 6 months (116 (81%) vs 0 (0%). Failure rate within group 1 vs group 2: 27 (19%) vs 3 (7%) (p <0.028).	"In symptomatic ganglia, surgical excision is a better treatment option as the failure rate is less compared to triamcinole acetonide injection after aspiration"	Data suggest surgical excision best treatment for symptomatic ganglia vs. injection- aspiration. At 6 months, injection- aspiration success rate 81.0% vs. surgical excision 93.0%. Failure rates significant at 19.0% for injection- aspiration group and 7.0% for surgical excision group.
Jagers Op Akkerhuis 2002 (score=4.5)	Aspiration and Surgical Excision and Steroid Injection	RCT	No mention of sponsorship or COI.	N = 89 patients with untreated ganglia of wrist or foot.	Mean age: 39.5 years; 27 males, 62 females	Hyaluronidase + Aspiration (n = 43) Vs Surgical Excision (n = 46)	Follow-up 1 year.	Hyaluronidase treatment resulted in recurrence in 33 of the 43 patients (77%). Recurrences after surgery were found in 11 of the 46 (24%) patients: six within 3 months	"Surgical excision is preferable to aspiration after hyaluronidase, assuming that the aim of treatment is resolution of the ganglion. However	Data suggest HA groups had a recurrence rate at 1 year of 77% vs. the surgery group 24% (p<0.01) when treating ganglia showeing lack of efficacy.

				Arthrosop	ic Possetion us	s Open Excision Tec	shnique	and five between 3 months and 1 year.	hyaluronidase and aspiration has a 23% success rate and can be used for those patients who prefer not to undergo surgery."	
				Artinoscop		S Open Excision rec	liiique			
Rocchi 2008 (score= 4.0)	Arthroscopic Resection vs Open Excision Technique	RCT	No mention of sponsorship. No COI.	N = 51 with dorsal wrist ganglions	Mean age: 29.8 years; 17 males, 24 females.	Arthroscopic resection (n = 41) vs Open excision of volar ganglion cyst (n = 10).	Follow-up for 47.8 months.	Comparisons by radiocarpal ganglia (RCG) and midcarpal ganglia (MCG) locations. For open resection of RCG, mean functional recovery time 13 days with mean time lost from work 21 days, 15/20 reporting good results at 24 months and 3 bad results. Arthroscopic RCG 18/20 good results with 9 days recovery time and 9 days lost time. MCG subgroup, 5/5 good results with open excision with functional recovery time 10 days, lost time 17 days; 1/5 in arthroscopic group treated successfully.	"Comparing our two groups, we noted rather better results with arthroscopy in the treatment of radiocarpal ganglia, and better results for open operation in the treatment of midcarpal ganglia."	No statistical analyses presented.
Kang 2008 (score= 4.0)	Arthroscopic Resection vs Open Excision Technique	RCT	No sponsorship. No mention of COI.	N = 72 with ganglion recurrence or wrist pain.	Mean age for the open group was 36 years and for the arthroscopi	Arthroscopic technique consisted of 2 stab incisions at the standard 3-4 and 4-5 portal sites (n = 41)	Follow-up of 12 months.	At 4-8 weeks, 1/41 in arthroscopic group vs. 0/31 in open excision group had recurrence (p = 0.381). 17% in arthroscopic group	"The results of our study suggest that the technique of arthroscopic surgery does not achieve superior	Lack of study details. High attrition rate at 12 month follow-up. No blinding.

			c group 34	Vs Open	reported residual	rates of ganglion	
			years.	excision of	pain vs. 10% (p =	recurrence."	
				dorsal ganglion	0.369). At 1 year,		
				cyst (n= 31).	no significant		
					difference in pain or		
					recurrence.		

Evidence for the Use of Medications for Upper Extremity Ganglia There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: anti-inflammatory agents, nonsteroidal, NSAIDS, non-steroidal anti-inflammatory, ibuprofen, acetaminophen; ganglion cyst, wrist, hand, ganglion, ganglia, dorsal, volar; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 3 in Scopus, 0 in CINAHL, 8 in Cochrane Library, 7,710 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Exercise for Upper Extremity Ganglia There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: exercise, exercising, physical activity; ganglion cyst, wrist, hand, ganglion, ganglia, dorsal, volar; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1 articles in PubMed, 5 in Scopus, 0 in CINAHL, 9 in Cochrane Library, 15,300 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for Special Studies for HAVS

A recent review of the literature concluded that there does not appear to be any single test with satisfactory diagnostic capability in diagnosing HAVS (white finger), but supports the use of cold provocation testing (CPT) as reasonable.(1460) However, a large scale review of cold provocation testing in over 40,000 UK miners being evaluated for compensation claims found only slight correlation of self-reported clinical severity and CPT results, concluding that CPT should not be used for evaluating the vascular component of HAVS.(1461) There remains no established standard for CPT methodology, which makes interpretation and comparisons difficult. While the test is relatively benign and inexpensive, the results are of unknown diagnostic utility.

There is little information available supporting the utility of thermographic imaging. Most of the reports are of small populations. The most recent study (21 patients) concluded that none of the available methods is sufficient for arterial constriction testing, but may be useful in follow-up testing of individuals.(1462) A similar story exists for finger systolic blood pressure monitoring as a diagnostic test. A recent prospective study measuring the changes in finger systolic blood pressure (FSBP) after segmental local cooling for vibration-induced white finger in vibration exposed vs. non-exposed populations showed a significant decrease in FSBP in the exposed group with reported HAVS vs. non-exposed as well as the exposed with no history of HAVS. The sensitivity and specificity of the FSBP test with a cut-off value of 75% of normal at 23 +/- 1 degrees C, were 65.2 and 87.5%, respectively, and at 21 +/- 1 degrees C, they were 73.9 and 82.5%, respectively.(1463) However, the study used self-report of HAVS and included retired (no longer exposed) persons in the exposed with HAVS group.

Testing for neurological deficits may be slightly more beneficial than vascular testing for confirming the severity of nerve damage associated with HAVS, although they are not definitive in objectively identifying HAVS. In a follow-up report of UK miners being evaluated for HAVS claims, 57,000 persons evaluated with vibrotactile threshold testing and thermal aesthesiometry showed some evidence that these tests are reliable indicators of underlying neurological damage.(1464)

Thus, there is insufficient evidence for making evidence based recommendations on the utility of each of the various tests currently available for the vascular and neurological components of HAVS. Administering a combination of these tests may improve the diagnostic utility when considered in context of the medical history and occupational exposures. Nerve conduction studies may also be indicated to rule out other associated or concomitant upper extremity disorders, although are not likely of useful benefit for diagnosis of HAVS. In addition to neurovascular physiologic testing, there are limited reports of serologic testing for HAVS.

Evidence for the Use of Diagnostic Testing

There are 3 moderate-quality studies incorporated into this analysis.(1458, 1465, 1466) (Coughlin 01a; Coughlin 01b; Poole 04) There are 4 low-quality studies in Appendix 2.(1467-1470) (Lindsell 99; Kurozawa 91; Bogadi-Sare 94; Lawson 97)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Hand-Arm Vibration Syndrome, Vibration white finger, dead finger, white fingers, hand-transmitted vibration, hand-arm vibration, traumatic vasospastic disease, Cold provocation, cold stress thermography, finger systolic blood pressure, vibrotactile threshold testing, thermal aesthesiomtry, never conduction velocity, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 0 articles in PubMed, 2 in Scopus, 0 in CINAHL, 16 Cochrane Library, and 120 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 4 from Google Scholar, and 5 from other sources. Of the 9 articles considered for inclusion 7 diagnostic studies met the inclusion criteria.

Author/Year Study Type	Score	Z	Area of Body	Diagnoses	Type of Thermography	CT used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Coughlin 2001 Same as OCC MED Case Control	5. 5	31 subjects in two groups. Group A: 10 healthy volunteers. 5 men, 5 women. Median age of 35. Group B: 21 patients. 20 men, 1 woman. Median age of 45	Hand	HAVS with RP	Cold Provocation	-	-	-	-	-	-	-	-	After cold provocation, the finger temperature and time for the finger temperature to return to pre-cooling levels were able to distinguish the HAVS group and the normal group. The sensitivity of CPT was low after cooling, but reach up to 95% 3 min after rewarming. The accuracy of the test was also the greatest towards the last stages of rewarming. The specificity and PPV were high during precooling stages and remained relatively high during the rewarming stages. NPV was low during the precooling stage and became high (>90) during the rewarming stages.	"CPT has a good sensitivity, specificity, positive predictive value and negative predictive value; it strongly supports the clinical diagnosis of digital vasospasm."	Data suggest CPT test has good sensitivity and specificity and supports a diagnosis of digital vascospasm.

Author/Year	Score	Study Design	Population/ Case Definition	Investigative Test	Gold Standard / Comparative Test	Results	Conclusion	Comments
Poole 2004	6. 0	Case Control	N = 46 24 Males with HAVS VS 22 Males without HAVS (Control) Mean age = 46	Measuring FSBP after cold provocation at 30, 15 and 10°C	FST measurement following immersion of hands in 15°C water for 5 min	FSBP on the middle finger yielded a sensitivity of 60%, specificity of 84.1%, PPV of 71.5%, and a NPV of 75.9%. Compared to FSBP, FST had results of 68%, 71%, 61%, and 77%, respectively.	"Based on our data, the FSBP may also have limited use in confirming a positive diagnosis of vibration-induced vascular problems."	Data suggest FSBP is of limited value as a diagnostic test for HAVS although it may have value in ruling out and/or confirm the vascular component of HAVS.
Coughlin 2001 OCC MED	5.5	Case Control	N = 50 particip ants 20 with HAVS VS 15 Sedenta ry worker VS 15 manual workers	Two-Point discrimination	Depth sense perception	When testing using DSP, there was no significant difference in the right hand of all three groups. The left hand was significantly poorer in the HAVS group than the two others. DSP has a sensitivity of 41, specificity of 94, PPV of 82 and NPV of 70. When testing with TPD, both hands were significantly poorer in the HAVS group than the two other groups. TPD has a sensitivity of 46, specificity of 94, PPV of 84, and NPV of 72.	"The increased sensitivity of the TPD disc would suggest that it should be used in preference to the DSP disc for the assessment of sensorineural dysfunction in patients with HAVS."	Data suggests the 2 point disc providers increased sensitivity for the assessment of HAVS vs. the depth sense disc.

No	lo		
me	nention		
of	f mean		
ag	ge.		

Evidence for the Use of Serologic Testing or Connective Tissue Disorders Testing

There is 1 moderate-quality study incorporated into this analysis.(1471) (Kanazuka 96) There is 1 low quality study in Appendix 2.(1472) (Kennedy 99)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Hand-Arm Vibration Syndrome, Vibration white finger, dead finger, white fingers, hand-transmitted vibration, hand-arm vibration, traumatic vasospastic disease, Cold provocation, cold stress thermography, finger systolic blood pressure, vibrotactile threshold testing, thermal aesthesiomtry, never conduction velocity, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 0 articles in PubMed, 0 in Scopus, 4 in CINAHL, 9 Cochrane Library, and 150 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 from Google Scholar, and 2 from other sources. Of the 3 articles considered for inclusion 3 diagnostic studies met the inclusion criteria.

Author/Year	Score	Study Design	Population/ Case Definition	Investigative Test	Gold Standard / Comparative Test	Results	Conclusion	Comments
Kanazuka 1996 No mention of sponsorshi p or COI.	4.0	Case Contr ol	N=175 Males 100 Patients with HAVS (Mean age = 63.0±6.3) Vs 25 Patients with collagen disease (Mean age	TM one-step sandwich enzyme immunoassay	Not mentioned	Patients with HAVS had a significantly higher level of plasma TM (3.32±1.11 ng/mL) than the normal control (2.49±1.05 ng/mL, p<0.0001). There was no significant difference between the HAVS group and the collagen disease group (3.65±2.02 ng/mL, p<0.01).	"[W]e suggest that endothelial injury is present in vibration syndrome, the degree of endothelial injury in vibration syndrome equals that in collagen disease, and the endothelial injury in chain-saw operators is greater than that in rock-drill operators."	Data suggest endothelial injury exists in patients with VWF as well as collagen disease.

= 43.5±16.8	8)	
Vs		
50 Health patients (Mean age = 56.8±7.8)	ge	

Evidence for the Use of Calcium Channel Blockers for HAVS There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: calcium channel blockers, hand arm vibration syndrome, vibration white finger, dead finger, white fingers, hand-transmitted vibration, hand-arm vibration, traumatic vasospastic disease; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 19 articles in PubMed, 0 in Scopus, CINAHL, and Cochrane Library, 152 from Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, CINAHL, Cochrane Library, Google Scholar, and from other sources. Of the 1 articles considered for inclusion, 0 randomized trials and 1 systematic studies/background met the inclusion criteria.

Evidence for the Use of Exercise for HAVS There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: exercise, exercising, physical activity, Hand-Arm Vibration Syndrome, vibration white finger, dead finger, white fingers, hand-transmitted vibration, hand-arm vibration, traumatic vasospastic disease; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomily; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 5 articles in PubMed, 2 in Scopus, 0 in CINAHL, 14 in Cochrane Library, 1,158 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of X-ray for Evaluation of Lacerations with Suspected Fracture or Foreign Body There are no quality studies incorporated into this analysis. A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Laceration management, x-ray, xray, radiography, lacerations with suspected fracture, foreign bodies, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 24 articles in PubMed, 20 in Scopus, 0 in CINAHL, 0 in Cochrane Library, and 1880 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Ultrasound for Evaluation of Suspected Superficial Foreign Bodies There are 4 quality studies incorporated into this analysis.(1476-1479) (Soubeyrand 08; Tahmasebi 14; Wu 12; Fornage 86)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ultrasound, Laceration Management, Suspected superficial foreign bodies, ultrasonography, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 122 articles in PubMed, 62 in Scopus, 0 in CINAHL, 0 in Cochrane Library, and 8,560 from Google Scholar. We considered for inclusion 0 from PubMed, 2 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 2 from Google Scholar, and 0 from other sources. Of the 5 articles considered for inclusion 4 diagnostic studies met the inclusion criteria.

Author/Year Study Type	Score	Area of Body N	Diagnoses	CT used Type of Ultrasound	Used	Blinding of rater More than on rater	Myelography	assessed Surgery Performed	Long term follow-up (mean when noted) Clinical outcomes	Results	Conclusion	Comments
---------------------------	-------	-------------------	-----------	-------------------------------	------	---	-------------	-------------------------------	---	---------	------------	----------

Soubeyrand	7.5	N=30	Hand	Laceration	Doppl	-	-	+	-	-	+	+	72	There were 20 injuries of the finger and 10	"In conclusion, US proved	Data suggest US is
2008		injuries in 26	and	Manageme	er								hours	of the palm The right side was involved in	highly effective	effective in the
Diagnostic		patients (19	Wrist	nt/Lesion	Ultras									17 of 30 injuries (57%) and the dominant	in detecting tendon and arterial	detection of volar
		males, 7			ound									hand was involved in 11 of 30 injuries	lesions. The results were less	injuries without
No mention of		females)												(37%). Injury at home occurred in 18 cases	reliable	tendon or arterial
sponsorship or		Mean age:												and at work in 10 cases. Two patients were	regarding nerve damage. US	leslions but not as
COI.		34 years												injured on the street. Penetrating object was	may be effective	good for detection
														glass in 17 injuries, knife in 7 injuries,	in identifying hand lesions that	of nerve leslions.
														metallic object in 2, human teeth in 2,	require surgical repair and in	
														machinery in 1, and a stone in 1. A complete	selecting	
														US examination was performed	patients who can be treated	
														in all 30 cases, despite moderate	without	
														pain in two cases. Of 98 examined tendons,	surgical exploration, provided	
														81 appeared intact and 17 were	they undergo	
														damaged. Of	a second physical examination	
														81 examined nerves, 63 appeared intact	72	
														and 18 were damaged. Of 75 examined	hours after the injury. Further	
														arteries, 61 appeared intact and 14	studies in	
														were damaged. The lesion path was	larger numbers of patients are	
														visualized	needed	
														in 22 of the 30 injuries. In five	to evaluate this possibility."	
														injuries, the path did not extend beyond		
														the fascial layer (superficial injury), and		
														in two injuries, the path ended in the		
														muscle. Foreign bodies were visualized		
														in five injuries.		

Tahmasebi	5.5	N=51	HWF	Laceration	USG	-	-	-	-	-	+	-	-	Data suggest	US can
2014		patients (41		Manageme										Predominant chief complaints of the patients "Real-time high-frequency USG detect radiolu	icent-
Diagnostic		males, 10		nt										were: foreign body sensation in 24, is a highly sensitive and accurate soft-tissue fo	reign
		females)												discharging wound in 15, and pain in 12 tool for detecting and removing bodies that	
Sponsored by Nil		Mean age:												cases. Ten cases had a history of surgical the radiolucent foreign bodies, radiographs of	can not.
and no COI.		24.95±13.4												exploration without the use of USG which are difficult to be	
		years												examination, which had no foreign body visualized by routine	
		5												detected. On USG scan, 100% of the foreign radiography."	
														bodies were echogenic. USG revealed a	
														foreign body in 50 patients. All patients	
														underwent surgical exploration or USG-	
														guided removal. Forty-six patients had a	
														foreign body removed. One patient had a	
														negative USG exam and surgical exploring	
														revealed a 7-mm thorn. USG was falsely	
														positive in three cases with failed surgical	
														manipulation due to the presence of air	
														bubbles and scar tissue, as well in as one	
														case with calcified granuloma. Foreign	
														bodies were thorn, wood, glass, and plastic.	
														The sites of the foreign bodies were foot,	
														hand, leg,_arm, forearm,_ankle, wrist, knee,	
														and thigh. Sizes of foreign body varied from	
														4-51 mm and in 50% of cases, the size of	
														the foreign body was greater than 13 mm.	

Wu 2012 Diagnostic	4.5	N=34 patients	H W F	Laceration Manageme nt	Bedsid e Tendo n Ultras onogra phy	-	+	-	-	-	-	+	-	"Thirty-four patients were enrolled in this study. There were 6 finger injuries, 11 hand injuries, 6 forearm injuries, and 5 lower extremity injuries. Based on MRI or direct wound exploration, 4 patients had partial tendon injuries, 9 patients had complete tendon injury, and 21 patients had no evidence of tendon injury noted. Bedside ultrasound was able to accurately diagnose the extent of tendon injury in 33 of the 34 total cases. In comparison, physical examination accurately diagnosed 29 of the 34 total cases. On average, time to diagnosis and disposition based on bedside ultrasound findings was 46.3 minutes. In contrast, overall time to wound exploration, MRI, or consultation was 138.6 minutes.	"Bedside ultrasound is more sensitive and specific than physical examination alone for detecting tendon lacerations and takes less time to perform than traditional wound exploration techniques or MRI. Data obtained from bedside ultrasonography can be used to improve diagnostic accuracy and enhance and expedite patient care."	No mention of gender or mean age. Data suggest bedside US increases the sensitivity/specificit y in detection of tendon inuuries when comared to physical exam alone.
Fornage 1986 Diagnostic No mention of sponsorship or COI.	4.0	N=10 patients suspected of having a foreign body in either hand or foot.	Hand and Foot	Laceration Manageme nt	High- resolut ion linear array real- time scanne r sonogr aphy	-	-	-	-	-	+	-	-	"Eight foreign bodies were found at surgery; glass in 4 cases, metal in 3 cases, and vegetable material in 1 case. All foreign bodies were visualized as hyperechoic on sonograms. An acoustic shadow was present in 2 cases only (glass fragments). A hyperechoic comet-tail artifact secondary to reverberations inside the dense echogenic foreign body was visualized in 3 cases. In 7 cases a surrounding hypoechoic mass ranged from 1.2-3 cm in diameter correlated well with inflammatory changes found at surgery. Seven of the eight foreign bodies were glass or metallic fragments and were radiopaque with sizes of 0.1-1 cm. In 1 case a vegetable fragment responsible for a cyst could not be seen on the radiograph, but was demonstrated on sonograms.	"Evaluation of foreign bodies should begin with radiographs. If these are negative or inconclusive, sonography may be helpful in detecting nonopaque foreign bodies or foreign bodies in areas that are not easily evaluated by radiographic projections. When a foreign body is visualize, sonography allows its 3D localization.	No mention of gender or mean age. Data suggest after initial radiographic evaluation for foreign bodies are negative, sonography may be useful in locating foreign bodies.

Evidence for the Use of CT for Evaluation of Suspected Superficial Foreign Bodies There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Laceration, Foreign, CT, CAT, Computerized Tomography, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 60 articles in PubMed, 12 in Scopus, 0 in CINAHL, 63 Cochrane Library, and 4680 from Google Scholar. Zero articles met the inclusion criteria.

Evidence for Wound Preparation

There is 1 high-(1486) and 3 moderate-quality(1485, 1489, 1490) RCTs incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: wound preparation, wound cleansing, irrigation, debridement, wound healing, laceration, wound, cuts, management, repair, care, upper extremity; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 4 articles in PubMed, 0 in Scopus, 15 in CINAHL, 5 in Cochrane Library, 8321 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 5 from Google Scholar, and 0 from other sources. Of the 4 articles considered for inclusion, 4 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	(0-11)					
			Wound	Irrigation Tap Water	r vs Normal/Sterile Saline	
Bansal	9.0	N = 46 (17 female and)	Wound irrigation by high pressure	Post irrigation	"Our study suggests that tap water may serve as a cost-saving	Hand lacerations were excluded. Pediatric
2002		28 male) with simple	(25-40 PSI) syringe using tap	culture positive in	alternative to normal saline for irrigating simple lacerations before	population.
		lacerations. Age range	water	11/21 (52%) for	repair."	
RCT		2-15.	(N = 21)	tap water, 7/24 for		
			vs	sterile saline		
Sponsored by funds			Normal sterile saline	(29%) p = 0.20.		
from Sarah M. and			(N = 24).	No difference in		
Charles E. Seay				infection rates at		
Distinguished Chair in			Follow-up for 48 hours.	48 hours.		
Pediatric Medicine,						
University of Texas. No						
mention of COI.						
Moscati	7.5	N = 715 with acute	Tap water irrigation at sink (N =	11/374 in saline	"Compared with sterile saline, tap water for wound irrigation is	Sixty percent of enrolled lacerations were of
2007		simple lacerations	300)	group developed	more cost-effective and appears to be equally safe and	upper extremity. Baseline comparability of
		require ing sutures or	vs	infection (3.3%)	efficacious."	common variables not presented. Author
RCT		staples. Age and gender	High pressure sterile saline	vs. 12/339 (4.0%)		estimates total US savings \$65.6 million by
		not specified.	(N = 334).	with no significant		using tap water irrigation vs. current practice.
Sponsored in part by a				difference between		
grant from the Federal			Follow-up for 48 hours.	the groups.		

Highway Administration and he Calspan University at Buffalo Research Center. No mention of COI.						
			Wound irri	gation: Syringe Irrig	ation vs Pressurized Canister	
Chisholm 1992 RCT Sponsored in part by a grant from Dey Laboratories, Inc.	5.0	N = 542 (male to female ratio 1.8:1 and 2.7:1 in Canister group) with lacerations requiring closure. Mean age for Syringe and Canister groups; 24.9 and 23.8 years.	220mL canister of sterile NS with 0.006% benzalkonium chloride (N = unknown) vs NS irrigation using 30-mL syringe, 20-gauge IV catheter tip 1 in. above skin edge, depress syringe plunger with maximal force (N = unknown). Follow-up	Face and hands most frequently lacerated. Mean irrigation time for pressurized canister group (281) 3.9 vs. 7.3 minutes for syringe irrigation group (254) (p < 0.0001). Wound complications occurred in 8/221 (3.6%) in syringe irrigation group and 12/245 (5.0%) in pressurized canister group, (p = 0.50).	"There was no significant difference in infection rates between the two groups. The pressurized canister group's wounds were cleansed in almost half the time of those in the syringe group."	Lack of control for dressing type, use of topical antibiotics. Final wound observations made by multiple observers including patient self-report office based practitioners, and ED practitioners.
			Sterile vs I	Nonsterile Gloves for	Uncomplicated Lacerations	

Perelman	7.5	N = 816 (221 female	Standard intervention, sterile	Infection rates:	"[S]tudy provides evidence that clean, nonsterile, boxed gloves	All wounds injected with pressure. Unclear if
2004		and 595 male) any type	(N = 408)	sterile gloves (n =	can be safely used for repairing uncomplicated traumatic	blinding possible for proportion of follow-ups
RCT		of uncomplicated soft	VS	24) 6.1% (95% CI	lacerations without increasing the risk of wound infections."	completed at study sight vs. those going
KC1		tissue lacerations. Age	Clean non-sterile gloves for	3.8-8.4%) vs.		elsewhere. Laceration sites: extremities in
Sponsored by research		for Standard and Clean	uncomplicated lacerations in	clean gloves (n =		61.8% of patients, head or neck in 36.6%, and
grants from Canadian		nonsterile groups:	immunocompetent patients	17) 4.4% (2.4-		trunk or buttocks in 1.6%.
Association of		30.2 ± 18.2 and	(N = 408).	6.4%) (NS). No		
Emergency Physicians		30.5±19.1.		difference in		
and Bales Research			Follow-up for 1 year.	infection rates		
Foundation of North				(relative risk 1.37;		
York General Hospital.				95% CI 0.75 to		
No COI.				2.52; p = 0.295).		

Evidence for Wound Anesthesia

There are 5 high-(1491, 1496, 1497, 1499, 1500) and 5 moderate-quality (1492-1495, 1498) RCTs incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: anesthesia, wound healing, laceration, wound, cuts, management, repair, care, upper extremity, local infiltration plus topical anesthetic; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 76 articles in PubMed, 39 in Scopus, 3 in CINAHL, 3 in Cochrane Library, 4524 in Google Scholar, and 5 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 5 Google Scholar, and 5 from other sources. In relation, 10 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Conflict of Interest (COI)						
			•	Digital vs. Local Infilt	ration	1
Chale 2006	9.0	N = 55 (16) female and 39 male) with	Digital block 1 to 2 mL of lidocaine 1% was injected on both sides of the finger (N = 28)	Wound outcomes; digital vs. local anesthesia: Time until onset of anesthesia in	"Digital and local anesthesia of finger lacerations with prior application of LET to all wounds results in similar pain of needle insertion, anesthetic infiltration, and pain of suturing."	Application of LET to all wounds makes comparison of digital to local needle injection
RCT		traumatic lacerations of 1	vs Local anesthesia 1 to 2 mL of lidocaine	minutes: 7.7 vs. 1.9 p = 0.001. Mean pain of needle		pain difficult in the absence of LET, which is most cases in
No mention of sponsorship or COI.		finger. Age 40.1 (19.3) digital group; 36.3 (14.0)	1% was injected(N = 27).Both had topical anesthetics as co-intervention.	insertion in mm: 29.4 vs. 28.1 $p = 0.87$. Mean pain of anesthetic infiltration in mm 24.9 vs. 22.6, $(p = 0.72)$.		the U.S.
		topical group.	15 minute topical application	24.9 V3. 22.0, (p = 0.72).		
Robson 1990	5.0	N = 60 (gender not specified) with	Digital block 1 ml of anesthetic was applied (N = 28) vs	Assessment by patient and operator for pain related to application of anesthesia and	"[D]idigital block should be considered as the method of choice in all cases of digital lacerations requiring local anesthesia for their repair."	No baseline comparison data was presented.
RCT		lacerations of the digits. Age	Local anesthesia 2% plain lignocaine $(N = 32)$.	suturing significantly better for digital block compared		
No mention of sponsorship or COI.		over 16 years.	Follow-up unclear.	with local infiltration, (p < 0.01).		
		1	1	Injectable Agents	5	1
Ernst 1996 RCT	10.0	N = 200 (50) female and 130 male) with simple	Group A, buffered 1% lidocaine (N = 45) vs Group B, buffered 1% lidocaine with epinephrine	"Buffered lidocaine (A) and buffered lidocaine with epinephrine (B) were significantly less painful to	"Although we found buffered lidocaine solutions less painful to inject in this four-agent comparison study, we were unable to detect a statistically significant difference."	Author confirms findings of related study on diphenhydramine causing more pain on injections with
No mention of		lacerations not involving	(N = 46) vs	inject than was diphenhydramine with		solutions at room temperature in this study.
sponsorship or COI.		vascular compromise infection. 18 years of age.	Group C, 1% lidocaine with epinephrine (N = 47) vs Group D, 0.5% diphenhydramine for suturing of	epinephrine (D) (p < 0.01 for both the physicians and the patients). Lidocaine with epinephrine (C) was not		in this study.
			minor lacerations (N = 42).	statistically different from A, B, or D (p < 0.05). For suturing (anesthesia		

			Follow-up unclear.	effectiveness), the patients and the physicians found that lidocaine with epinephrine with or without buffering (B or C) worked better than A or D, ($p < 0.01$)." Topical Agents		
Ernst 1995 RCT Sponsored by grant from Louisiana State University Emergency Medicine Residency Grant Fund. No mention of COI.	9.5	N = 95 (23 female and 76 male) with linear lacerations of face or scalp. Mean age LAT/TAC group: 33±11 / 34±13.	LAT or lidocaine – adrenaline-tetracaine (N = 48) vs TAC or tetracaine – adrenaline – cocaine (N = 47). Follow-up for unclear.	LAT found to have fewer painful sutures than TAC ($p = 0.036$). For physician ratings, difference between LAT vs. TAC groups showing that LAT more effective than TAC during suturing, ($p = 0.093$). Patient ratings however showed no significant difference in pain scores.	"We found that patients had smaller percentages of sutures causing pain in the LAT group than in the TAC group."	This study of topical anesthetics was in an adult population. Study limited to small lacerations (< 5 cm). Anesthetic solutions were refrigerated which may have affected results (painful injections).
Singer 2001 RCT No mention of sponsorship or COI.	9.5	N = 60 (14 female and 44 male) with pretreating lacerations prior to lidocaine injection. Mean age 8.5 years.	EMLA cream (N = 31) vs LET or cream for pretreating lacerations prior to lidocaine injection (N = 29). Anesthetic application times range from 15 to 135 minutes, not other follow up specified.	"51/54 wounds received supplemental injection of lidocaine and were similar in the both groups (92% for LET vs 97% for EMLA, $p =$ 0.47). Wounds treated with LET were more frequently anesthetic to a stick with a 27-gauge needle than wounds treated with EMLA (73% vs 40%, respectively, $p =$ 0.01) no difference in the median pain of supplemental lidocaine injection between the two groups."	"[P]retreatment of uncomplicated lacerations with LET or EMLA cream results in a similar reduction in the pain of subsequent injection of lidocaine."	Lack of placebo group.
Schilling 1995 RCT	8.5	N = 171 (51 female and 100 male) with uncomplicated laceration on face or scalp.	Lidocaine, epinephrine, tetracaine (LET) solution (N = 57) vs Tetracaine, adrenaline, cocaine (TAC) solution (N = 58).	"In the TAC and LET groups combined, 116 of the 151 patients (76.8%) received adequate anesthesia before suturing. There was no difference between TAC	"LET is an effective alternative to TAC for topical anesthesia during suturing of uncomplicated lacerations on the face and scalp in children."	Applicability uncertain as population was pediatric with scalp/facial lacerations. May have had adult parents with needle phobia.

Sponsored by FA Bean Education and Research Fund, Minneapolis Children's Medical Center. No mention of COI.		Mean age TAC/LET group: 5.9 ±3.3/6.4±3.4	Serum lidocaine obtained 10, 20, and 40 minutes after LET and TAC application.	(79.5%) and LET (74.4%) (p = 0.46). There was no difference between TAC and LET in adequacy of anesthesia before suturing or duration of anesthesia during suturing of lesions located on the forehead/eyebrow or scalp area."		
Pryor 1980 RCT No mention of sponsorship or COI.	7.5	N = 151 (gender not specified) with lacerations. Age range 1 to >17, mean age 9 years.	Topical TAC (N = unknown) vs topical lidocaine (N = unknown) vs placebo for lacerations <5cm (N = unknown). Wound complications assessed at 48 to 72 hours.	"These was no significant difference between patients anesthetized with TAC (18%) and lidocaine (23%) in their need for additional lidocaFine following initial anesthetic application and/or during wound repair; 83% of the patients in the placebo group required supplemental lidocaine.Successful initial anesthesia did not differ significantlyin any of the anesthetic groups. TAC produced initial anesthesia more often in extremity locations vs lidocaine or placebo."	"These results suggest that TAC, when applied correctly, may be the preferred anesthetic for laceration repair in children."	Blinding only in TAC vs placebo group. Remarkably, 17% of topical placebo group did not require anesthesia. Study was pediatric population.
Zempsky 1997 RCT Sponsored by by grant from the General Clinical Research Center, Children's Hospital of Pittsburgh. No	7.5	N = 32 (gender not specified) with lacerations. Ages 5 to 18 years.	EMLA without supplemental anesthesia (N = 16) vs TAC for suturing uncomplicated extremity wounds (N = 16). Mean time of anesthetic application in the EMLA- treated group was 55 minutes cs 29 minutes in TAC-treated group, (p < 0.01).	"85% of EMLA group had complete wound repair without supplemental anesthesia, compared with 7 of 16 patients (45%) in the TAC-treated group (p- 0.03)The mean time of anesthetic application in the EMLA-treated group was 55 minutes, compared with 29 minutes in the TAC-treated group (p<0.01). The EMLA- and TAC-treated groups were not significantly different	"Our data show that extremity wounds treated with EMLA for 60 minutes require supplemental anesthesia less often than those wounds treated with TAC for 30 minutes."	No mention of control of other analgesics. May not be applicable to adults. Although inclusion criteria was up to 18 years old.

mention of				with regard to the VAS		
COI.				scores."		
Kuhn	7.5	N = 181	MAC	"There was no significant	"MAC can be substituted for the less readily available TAC whenever	Purpose of study was to
1996	1.5	(gender not	(N = 95/114)	difference in the overall	expedient."	determine if acceptable
1990		specified) with	(1 - 35/114) VS	efficacy of the two	expedient.	alternative to tetracaine, which
RCT		lacerations.	TAC topical anesthesia for wound suturing	solutions MAC was		is not readily available in
KCI		Age >12 years.	(N = 37/66).	significantly more effective		Australia. Allocation method
Sponsored by		Age >12 years.	(11 - 37/60).	in anaesthetizing wounds of		and baseline comparability
grant from			Follow-up unclear.	the head than of the		unclear.
Development			ronow-up unclear.	extremities (p<0.001), while		unciear.
Fund of				TAC did not differ		
Society of				significantly in effectiveness		
Hospial				between the two		
Pharmacists of				sitesPatients' preference		
Austraila. No				for topical anesthesia in the		
mention of				future did not differ markedly		
COI.				between the two treatment		
COI.				groups: 70/86."		
Vinci	7.0	N = 156 with	Group I, TAC 11.8% cocaine	"Solutions containing 11.8%	"The application of a TAC solution containing 4% cocaine is as effective as a	No placebo group. Allocation
1996	/.0	lacerations.	(N = 49)	cocaine (TAC 1) and 4%	TAC solution containing 11.8% cocaine; use of this 4% solution decreases	unclear. Population 3-18 year
1770		Age range 3-18	VS	cocaine with adrenaline	the cost of the agent."	olds.
RCT		years.	Group II, TAC 4% cocaine	(TAC 2) were significantly		
		j cuist	(N = 49)	more likely ($p < 0.001$) to		
No mention of			vs	produce complete anesthesia		
sponsorship or			Group III, tetracaine plus cocaine 4% for	then the solution with 4%		
COI.			lacerations anesthesia	cocaine without		
			(N = 58).	adrenalineA A second dose		
				of TAC 3 was more often		
			First assessment after 15 minutes and 15 after	required to produce complete		
			second application.	or partial anesthesia, (p<		
			11	0.003).		

Evidence for Wound Repair

There are 29 moderate-quality RCTs incorporated into this analysis. (151, 1501-1504, 1506, 1509, 1510, 1512-1515, 1517-1530, 1532-1534) There are 4 low-quality RCTs (1507, 1535-1537) in Appendix 2.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: wound repair, wound healing, laceration, wound, cuts, management, repair, care, upper extremity; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 454 articles in PubMed, 95 in Scopus, 17 in CINAHL, 2 in Cochrane Library, 15062 in Google Scholar, and 0 from other sources. We considered for inclusion 20 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 9 Google Scholar, and 4 from other sources. Of the 34 articles considered for inclusion, 34 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments				
	Suturing vs. Healing by Secondary Intention									
Quinn 2002 RCT Sponsored by US National Institutes of Health. JQ was paid by Ethicon, for speaking and educational sympsiums.	7.5	N = 91(40 female and 51 male) with lacerations. Age in Suture and Conservative groups: 40 (16) and 38 (15).	Suturing method of securely closing wounds (N = 47) vs Conservative treatment of uncomplicated lacerations <2cm (N = 48). Follow-up at 8 and 10 days.	Mean scores for cosmetic appearance; suturing vs. conservative treatment: Doctor scores 83mm vs. 80mm; patient scores 83mm vs. 82mm. One sutured wound treated with antibiotics for infection. No infections in conservatively treated wounds.	"Similar cosmetic and functional outcomes result from either conservative treatment or suturing of small uncomplicated lacerations of the hand, but conservative treatment is faster and less painful."	Results are specific to hand lacerations < 2 cm in linear length. The authors caution against generalization to cosmetically sensitive areas.				
			Suturing Techniques	I						
Singer 2005 RCT No mention of sponsorship. No COI.	7.0	N = 65 (9 female and 56 male) with lacerations; mean age 18.5±20.0.	Single-layersutures (N = 32) vs Double-layer closure of facial lacerations (N = 33).	Mean number of deep sutures used in patients assigned to a 2-layer closure was 2.8 ± 1.4 . Wound outcomes; Single vs. double-layer. No infections in either group.	"Single-layer closure of non- gaping, minor facial lacerations is faster than double- layer closure."	Results may not be applicable to other body areas.				
Alam 2006 RCT Sponsored by by research funds from Department of Dermatology, Northwestern University.	7.0	N = 36 (21 female and 15 male) with lacerations. Age 18-65 years.	Simple running polypropylene sutures 14 days (N = unknown) vs Subcuticular running polypropylene sutures 14 days (N = unknown) vs Subcuticular running polypropylene sutures not removed (N = unknown) vs Subcuticular polyglactin 910 sutures left in place (N = unknown). Follow-up at 3 and 9 months.	No difference in suture at either 3 months or 9 months. Greater scar width at 3 and 9 months, with back wounds being wider, ($p < 0.001$). No technique was superior.	"While scar width does not appear to vary significantly based on choice of epidermal closure, bilayered closures of the trunk and extremity have better overall appearance and less associated erythema at 3 and 9 months."	Patient was both control and experimental arm with 2 lesions per person.				

Jones 1993 RCT No mention of sponsorship or COI. No COI.	7.0	N = 30 (gender not specified) with lacerations. Age for traditional and shorthand group: 27.9 ± 6.3 and 25.3 ± 5.5 .	Shorthand vertical mattress sutures (N = 15) vs Classic mattress sutures for lacerations ranging from 2 to 9cm (N = 15). Follow-up 7 to 10 days for wound assessment.	"Suture repair times were significantly shorter using the shorthand vertical mattress stitch compared with the traditional method (88.4 vs. 45.6 sec/suture; p <0.05). No incidents of significant scar widening, cross- hatching, or prolonged inflammation were noted with the shorthand vertical mattress technique."	"The shorthand vertical mattress stitch is an efficient, alternative method for laceration repair that does not compromise wound eversion."	Allocations unclear. No blinding.
Karounis 2004 RCT Sponsored by the Montreal Children's Research Institute and the Canadian Association of Emergency Physicians. No mention of COI.	5.0	N = 95 (58 male and 37 female) with lacerations < 12 hours old requiring suture repair. Mean age for groups A and B: 8.1 and 9.5 years.	Group A, absorbable catgut sutures (N = 50) vs Group B,non-absorbable nylon sutures (N = 45). Follow-up at 4 months.	No differences were found in proportion of optimal WES (6/6) between Group A and NA (62% vs. 49%; relative risk = 0.73% ; 95% CI = 0.45 to 1.17). No differences found between Group A and NA for rates of dehiscence (2% vs. 11%; p = 0.07).	"Long-term cosmetic outcomes in wounds repaired with simple plain gut sutures seem to be at least as good as in wounds repaired with non- absorbable nylon sutures."	Randomization, allocation unclear. High drop-out rate.
Kundra 2010 RCT No mention of sponsorship or COI.	4.5	N = 100 (21 male and 49 female) elective day case hand and wrist surgery. Mean age Absorbable/ non-absorbable group: 54.0 / 57.3.	Absorbable 3/0 Vicryl rapide [™] (N = 37) vs Non-absorbable (3/0 nylon) for the wound closure (N = 33). Follow-up 6 weeks post-surgery.	Mean VAS score for wound satisfaction were 82.5 for non-absorbable group vs 80.4 for the absorbable group. Mean DASH scores were 21.7 vs 21.1 absorbable group.	"Either suture material can be used confidently with respect to overall aesthetic appearance in such patients."	Data suggest both suture types were comparable, but data based upon questionnaire responses.
	•		Suture vs. Stapl		-	
Orlinsky 1995	7.0	N = 141 with suturable linear lacerations of the extremities. Average age	Stapling (N = 78) vs	"The average speed for stapling was 8.3 seconds per centimeter and for	"We conclude that, with respect to emergency	Results are based on hourly wage rather than payment by procedure codes. No outcomes measures for cosmetic results or complications were presented.
RCT		extremities. Average age	Suturing for skin closure	suturing was 63.2	department repair	results of complications were presented.

No mention of sponsorship or COI.		was 28 years and 29 for suture group.	(N = 83). Follow-up until wound closure, average speed for stapling was 8.3 seconds per centimeter and suturing was 63.2 seconds. Ticsue Adhesives vs. Suture	seconds, ($p = 0.0001$). Cost of labor was calculated to be 1.23 per minuteThe relative labor cost of stapling versus suturing was 0.14 (76 cents v \$ 5.31, $p =$ 0.001). The speed of repair increased with increasing length of lacerations."	of linear nonfacial lacerations, stapling is a less expensive means of skin closure than suturing."	
<u> </u>			Tissue Adhesives vs. Sutur		//TTY 1 1	
Singer 1998 RCT Sponsored in part by a grant from Closure Medical, Inc., Raleigh, NC. No mention of COI.	7.0	N = 124 (48 female and 76 male) with standard closure of traumatic lacerations. Range age 1- 17 years.	Tissue adhesive Octylcyanoacrylate (N = 63) vs Standard wound closure techniques for lacerations (N = 61). Follow-up for 3 months.	Patients treated with octylcyanoacrylate less frequently received local anesthesia (21% vs. 89%, p < 0.001). Groups similar with respect to decontamination with normal saline (81% vs. 75%, $p = 0.36$), irrigation (50% vs. 65%, $p = 0.13$), and use of a scrub (48% vs 31%, $p = 0.08$).	"Wounds treated with Octylcyanoacrylate and standard wound closure techniques have similar appearances 3 months later."	Comparison group included sutures and staples. Not clear how these were selected once randomized to control group.
Quinn 1993 RCT Sponsored by the Children's Hospital of Eastern Ontario Research Nstitute. No mention of COI.	6.5	N = 81 (34 male and 47 female) children with clean facial lacerations less than 4 cm in length and 0.5 cm in width. Age range, 0.7 to 16 years and 0.5 to 15 years.	Tissue adhesive Histoacryl Blue® (N = 37) vs Suturing with local anesthetic (N = 38). Follow-up for 5 days.	Cosmetic outcomes; Histoacryl vs. suture: Mean visual analog scale score (mm) 60.6 vs. 57.2 p = 0.45	"Histoacryl Blue® is a faster and less painful method of facial laceration repair that has cosmetic results similar to the use of sutures."	Pediatric population (newborn to 18). Randomization and allocation not well defined.
Holger 2004 RCT	6.5	N = 150 (108 male and 42 female) with facial lacerations. Mean age for those completing follow-	OC or octylcyano-acrylate tissue adhesive (N = 49 vs NL or 6-0 monofilament suture	No clinically significant differences in cosmetic outcome among the three groups at 9-12 months.	"The use of either octylcyanoacrylate or rapid absorbing gut suture could be	All repairs made by physician assistants. High lost to follow-up rate at 9-12 months.

Sponsored by HealthPartners Research Foundation. No mention of COI.		up and did not: 70.2 and 28.6 (N = 84 and 66).	(N = 49) vs RG or Rapid 6-0 gut absorbable suture (N = 47). Follow-up at 9 and 12 months.		preferred in this setting (ED), eliminating the need for follow-up visits for suture removal."	
Sinha 2001	6.5	N = 50 (9 male and 35 female) with variety of hand operations. Mean	N-butyl 2-cyanoacrylate tissue adhesive (Indermil) (N = 20) vs	No significant difference in cosmetic outcome assessment, but 5 minor	"Evaluation of patients in the two groups of our	Post-operative hand surgery wounds. Study limited to 6 week follow-up. Small sample size limits study power.
RCT		age for adhesive and suture groups: 49 (9) and 51 (17).	Sutures (5-0 nylon) at 2 and 6 weeks $(N = 24)$.	wound dehiscences (3 in tissue adhesive group, 2 in suture group).	study showed similar wound outcomes."	
sponsorship. No mention of COI.		45 (5) and 51 (17).	Follow-up at 2 and 6 weeks.	suture group).	outcomes.	
Shamiyeh 2001	6.5	N = 79 (24 male and 55 female) requiring varicose vein surgery. Are range	S group or Suture 5-0 monofilament (N = 26) vs	There were no differences between the groups for dehiscence or infections.	"Comparing 5-0 monofilament sutures, tapes, and	Cost argument is relative, as all treatment material costs were \$11 or less.
RCT		for group S / T/ and TA: 26 – 70 /	Group T or adhesive tape	The scars were judged slightly better for cosmetic	tissue adhesive for skin closure after	
No mention of sponsorship.		16 - 72 / and $20 - 73$.	(N = 28) vsTA or octylcyanoacrylate tissue adhesive	result in the suturing group, but scores were not	phlebotomy, there was no difference	
No COI.			(N = 25).	statistically significant.	in cosmesis, but closure with tape was by far the cheapest method."	

Singer 2002	6.0	N = 924 wounds of traumatic lacerations,	OCA or octylcyanoacrylate tissue adhesive $(N = 406)$	Wounds widely distributed over body.	"Repair of traumatic	Allocation unclear although baseline comparability was non-significant. Study included large number of wounds
2002		excisions of skin lesions	(N = 400) VS	Many required	lacerations and	(surgical and traumatic) which may improve applicability.
RCT		or scar revisions,	Standard wound closure methods, sutures, adhesive tapes, or staples	subcutaneous sutures	surgical incisions	(surgreat and traumate) when may improve applicationally.
		minimally invasive	(N = 408).	(55%). At 5-10 day	with OCA is faster	
Sponsored by a		surgeries, and general		follow-up, wound	than with standard	
research grant		surgical procerus. Mean	Follow-up 5 to 10 days.	dehiscence and infection	wound closure	
from Closure		age 31.9 and 30.7 for		rates not significantly	techniques, and	
Medical		standard group.		different between groups.	cosmetic outcome	
Corporation,				At 3 months, no	is similar at 3	
Raleigh, NC,				differencefs in wounds	months."	
which				considered optimal (82%		
developed				OCA vs. 83% other).		
TraumaSeal.						
Two						
of the authors						
(AJS, JEH) are						
on the						
speaker's						
bureau of						
Ethicon Inc. No						
mention of						
other COI.						
Quinn	6.0	N = 136 (101 male and 35	Skin closure with octylcyanoacrylate adhesive	Octylcyanoacrylate vs.	"Octylcyanoacrylat	High dropout rate at 3 month follow-up.
1997		female) with lacerations	(N = 68)	sutures: Mean VAS	e tissue adhesive	
_ ~_		requiring suture. Mean	VS	cosmesis scores, mm: 67	effectively closes	
RCT		age 35.3 ± 14.1 and 36.9	Monofilament suture	vs. 68 p = 0.65. Mean	selected	
a		\pm 17.2 for suture group.	(N = 68).	VAS pain scores, mm: 7.2	lacerations. This	
Sponsored by				vs. 18.0 p <0.01;	relatively painless	
Closure			Follow-up for 3 months.	Infection, No.: 0 vs. 1;	and fast method of	
Medical Corp,				Dehiscence, No.: 3 vs. 1	wound repair can	
Raleigh, NC.					replace the need	
No mention of					for suturing several	
COI.					million lacerations	
Oning	6.0	N = 136 (63 male and 13	Ostalanara samlata tisana alkasina	No differences found in	each year."	One was fallow on to 1007 stade.
Quinn	6.0	N = 136 (63 male and 13 female) with traumatic	Octylcyano-acrylate tissue adhesive $(N = 68)$		"One year after	One year follow-up to 1997 study.
1998			(N = 68)	demographic or clinical characteristics between	wound repair, no difference is noted	
RCT		wounds. Mean age for	vs 5-0 or smaller monofilament suture		in the cosmetic	
KU1		OCT and Sutures groups: 37.4 ± 12.4 and $39.6 \pm$	(N = 68).	groups. At 1 year, no difference found in	outcomes of	
Sponsored by a			(1N - 00).		traumatic	
Sponsored by a research gift		18.3 years.	Follow-up at 3 months and 1 year.	optimal wound scores (73% vs. 68%, p = 0.60)	lacerations treated	
from			ronow-up at 5 months and 1 year.	(75% vs. 08%, p = 0.00) or in visual analog scale	with	
110111				cosmesis scores (69 vs.	octylcyanoacrylate	
	I			cosmesis scores (09 vs.	octylcyalloactylate	

C1		Ι		(0.000 m 0.05) (4	
Closure				69mm, p = 0.95) for	tissue adhesive and	
Medical Corp.				octylcyanoacrylate.	sutures. The	
No mention of					assessment of	
COI.					wounds 3 months	
					after injury and	
					wound repair	
					provides a good	
					measure of long-	
					term cosmetic	
					outcome."	
Bruns	6.0	N = 61 (49 male and 12	Histoacryl Blue (HAB) tissue adhesive	Two plastic surgeons	"The use of HAB	Pediatric population (<18 years old). Allocation not well
1996		female) with lacerations	(N = 30)	blinded to treatment. One	is an acceptable	defined.
		less than 12 hours old.	VS	rated no difference	alternative to	
RCT		Between 1 and 18 years of	Suture	between groups, other	conventional	
		age.	(N = 31)	favored HAB for better	suturing."	
No mention of		uge.	(11 - 51)	scar appearance.	Suturing.	
sponsorship or			Follow-up at 1 week and 2 months.	seur appeurance.		
COI.			Tonow-up at 1 week and 2 months.			
Simon	6.0	N = 61 (49 male and 12	Histoacryl Blue (HAB) tissue adhesive	Overall ratings of	"The cosmetic	Second report of similar study group. Allocation
1998	0.0	female) with lacerations.	(N = 30)	cosmetic outcomes were	appearance of	unclear.
1)))0		Median age for with	VS	comparable or better in	facial lacerations	
RCT		follow-up and without:	Sutures in facial lacerations	appearance for HAB	repaired with HAB	
KC1		4.0 and 3.0.	(N = 31).	group by blinded plastic	was comparable to	
No mention of		4.0 and 5.0.	(1N - 51).	surgeons. When reviewed	conventional	
			E-llow on at 2 months and 1 mon			
sponsorship or			Follow-up at 2 months and 1 year.	by Langer line orientation,	suturing, and	
COI.				cosmetic appearance of	appears to be less	
				sutured lacerations worse	affected by the	
				against Langer lines vs.	initial orientation	
				sutured with Langer line	of the wound with	
				orientation. No difference	Langers lines than	
				in Langer orientation with	with conventional	
				HAB group.	suturing."	
Toriumi	5.5	N = 111 (gender not	Octyl-2-cyanoacrylate	Difference in time for skin	"The lower visual	Study population was post-operative plastic surgery for
1998		specified) underwent	(N = 57)	closure between octyl-2-	analog scale score	facial and neck lesions.
		surgical procedure for	VS	cyanoacrylate and sutures	represented a	
RCT		skin closure. Mean age	5-0 sutures	significant ($p < 0.0001$).	superior cosmetic	
		was 41.2 years.	(N = 54).	No significant difference	outcome at 1 year	
Sponsored		-		on modified Hollander	with the octyl-2-	
partially by			Follow-up at 5, 7, and 90 days and 1 year.	scale at 90 days ($p = 0.51$).	cyanoacrylate as	
Closure			r	However, at 1 year, mean	compared with	
Medical				VAS scale for cosmetic	sutures."	
Corporation,				outcome showed	Saturos.	
Raleigh, N.C.				improved cosmetic results		
ivaleigii, iv.e.				for incisions treated with		
					I	

No mention of COI.				octyl-2-cyanoacrylate (p = 0.03).		
Simon 1997 RCT No mention of sponsorship or COI.	5.0	N = 61 (49 male and 12 female) with lacerations. Median age for with follow-up and without: 4.0 and 3.0.	Skin sutures (N = 30) vs Histoacryl blue (HAB) tissue adhesive (N = 31). Follow-up at 1 year.	Wounds evaluated at 2 months and 1 year. Wounds comparable in cosmetic appearance at 2 months by one rater and significantly better for HAB by second rater. At 1 year, wounds comparable by both raters.	"The use of HAB in an ideal alternative to conventional suturing for cutaneous closer of low-tension lacerations in children with a long term cosmetic outcome comparable to conventional suturing."	Allocation, baseline comparability not described.
Handschel 2006 RCT No mention of sponsorship or COI.	5.0	N = 45 with an orbital floor fracture or facial wounds. The mean Age in the adhesive group was 47 years and 42 years in suture group.	Dermabond (octyl-2-cyanocrylate) (N = unknown) vs Ethilon 6-0 sutures (N = unknown). Follow-up at 3 months after surgery.	Patients rated skin adhesive higher on VAS, whereas surgeons rated sutured wounds as best cosmetically based on photographs. The scar wound depth was statically significantly greater in skin adhesive group than suture group.	"The adjustment of the edges of the wounds as measured by the depth of the scar is significantly worse with (Dermabond) than with thin sutures. The sutured wounds give better cosmetic results in younger patients in particular."	Authors used standardized incision (periorbital) to control wound type. Lack of study details for randomization. Small sample size. Results may be more applicable to cosmetically sensitive areas (face).
Karcioglu 2002 RCT No mention of sponsorship or COI.	4.0	N = 92 (male to female ratio 1.26) with lacerations equal to or shorter than 5 cm. Mean age 34 ± 11.04 .	Histoacryl Blue (HAB) tissue adhesive (N = 24) vs Suture repairs (N = 28). Follow-up at 10 days and 3 months.	"There were no statistically significant scores of cosmetic outcomes at the tenth day and third month. The ratio of patients who reported satisfaction from the method was significantly higher in the HAB group than the sutured group (p = 0.007). Costs of treatment were	"HAB is a cheaper method of laceration repair and results in greater satisfaction of both the patient and the physician. The cosmetic outcomes are the comparable."	Lack of study details. No baseline data presented. High dropout at follow-up visits at 10 days and 3 months.

				significantly lower than		
				sutures ($p = 0.000$)."		
	1		Tissue Adhesive vs. Adhesive Stri			I
Singer 1998	7.0	N = 124 (48 female and 76 male) with standard closure	Tissue adhesive (Octylcyano-acrylate) (N = 63)	Patients treated with octylcyanoacrylate less	"Wounds treated with	Comparison group included sutures and staples. Not clear how these were selected once randomized to
RCT		of traumatic lacerations; age 1-17 years.	vs Standard wound closure techniques for lacerations	frequently received local anesthesia (21% vs. 89%,	Octylcyanoacrylate and standard	control group.
Sponsored in part by a grant			(N = 61). Follow-up assessment at a median of 93.5 days.	p <0.001). Groups similar with respect to decontamination with	wound closure techniques have similar	
from Closure Medical, Inc., Raleigh,			Fonow-up assessment at a median of 95.5 days.	normal saline (81% vs. 75%, p = 0.36), irrigation (50% vs. 65%, p = 0.13),	appearances 3 months later."	
NC. The authors also acknowledge the ED				and use of a scrub (48% vs 31%, p = 0.08).		
academic associates.						
nurses, and physicians for						
assistance in data collection. No mention of						
other COI. Bruns 1998	6.0	N = 83 (55 male and 28 female) with lacerations.	2-OCA or 2-Octylcyano- acrylate	Length of time for cutaneous closure was	"2-OCA is an acceptable	Similar study design as previous study by same author (Bruns 1996). Funded by manufacturer of ethilon and
RCT		Mean and median age for 2-OCA and Sutures / Staples:	(N = 42) vs staples, steri-strips or monofilament sutures	decreased (median, 2- OCA 2.9 minutes vs. suture/staple 5.8 minutes;	alternative to conventional methods of wound	Dermabond.
Sponsored in part by a grant from Closure		3.5 (2.0, 5.0) and 4.0 (3.0, 6.0)	(N = 41). Follow-up at 3 months.	p <0.001). Assessment of pain not significantly different between groups.	repair with comparable cosmetic	
Medical Corporation.			ronow-up at 5 monuis.	95% receiving 2-OCA would choose 2-OCA over	outcome."	
No COI.				standard wound closure at next visit for laceration repair. No significant		
				differences in clinical characteristics between groups at 3 months.		
Mattick	5.5	N = 60 (28 male and 16	2-Octylcyano-acrylate or tissue adhesive	Evaluation at 3 and 12	"In conclusion,	Small sample size with high percentage lost to follow-
2002		female) children with	(N = 30)	months. "Cosmetic	both tissue	up.

		suitable lacerations.	vs	outcome for both	adhesives and	
RCT		Between 1-14 years of	Adhesive strips	treatments was high, with	adhesive strips are	
		age.	(N = 30).	no significance when	excellent "no	
No		2		viewed from the critical	needle"	
sponsorship.			Follow-up at 3 and 12 months.	eye of both the parent and	alternatives for the	
Ethicon			1	the plastic surgeon."	closure of suitable	
supplied the				1 0	pediatric	
Dermabond					lacerations."	
tissue adhesive						
and the camera.						
The Steristrips						
were from						
departmental						
stock.						
Zempsky	5.5	N = 97 (60 male 37	3M Steri-Strip Closure, 2-Octylcyano-acrylate	Wound dehiscence	"Steri-strips and	Lack of study details. No allocation and minimal
2001		female) and with simple	(N = 48)	occurred in 1 steri-stirps	Dermabond	baseline compatibility data provided.
		facial lacerations in	vs	and 5 dermabond patients.	provide similar	
RCT		children. Mean age for	Dermabond orAdhesive strips	No difference in total	cosmetic outcomes	
		Steri-step group and	(N = 49).	complication rates	for closure of	
No mention of		Dermabond:		between groups ($p = 0.11$).	simple facial	
sponsorship or		5.2 (2.7) and 5.3 (4.1)	Follow-up at 2 months.	Wound scores for rating	lacerations "	
COI.		years.		surgeons not significantly		
				different.		

Singer5.0Plast ReconstrSurg2002RCTSponsored by aresearch grantfrom ClosureMedicalCorporation,Raleigh, NC,whichdevelopedTraumaSeal.Two of theauthors (AJS,JEH) are on thespeaker'sbureau ofEthicon Inc. Nomention ofCOI.	N = 924 and 814 patients (542 male and 382 female) wounds. Mean age 31.3 (21.1) years.	Octylcyanoacrylate tissue adhesive (N = 455 wounds) vs Standard wound closure methods sutures, adhesive tapes, or staples (N = 469). Follow-up for 3 months.	Characteristics associated with suboptimal cosmetic appearance on multivariate analysis were presence of associated tissue trauma 3.9 (95 C.I. 1.4-10.7), use of electrocautery (OR 2.9, 95% CI 1.8-6.5), extremity location (OR 2.9, 95% CI 1.2-3.7), wound width (OR 1.08, 95% CI 1.01-1.14). Wound infection associated with tissue trauma (8.7% vs. 1.7, p = 0.04) and incomplete wound apposition (6.6 % vs. 0.5 %.	"Suboptimal wound appearance is increased with extremity wounds, wide wounds, incompletely apposed wounds, associated tissue trauma, use of electrocautery, and infection.".	This is the second report of same population. Some methodology details lacking in this report.
		Tissue Adhesive vs. Tissue A	dhesive		
Osmond 7.0 1999 RCT Sponsored by Closure Medical Corp., Raleigh, NC. No mention of COI.	N = 94 (37 female and 57 male) with facial lacerations. Age at least 18 years.	Octylcyano-acrylate (N = 47) vs butylcyano-acrylate for superficial linear facial lacerations (N = 47). Follow up at 3 months.	No difference between butylcyanoacrylate and octylcyanoacrylate in time of wound repair (4.2 vs. 4.0 min, $p = 0.88$), pain induced by the procedure (VAS score 24 vs. 15, $p =$ 0.37), and ease of procedure as rated by study physician (12 vs. 15).	"Although octylcyanoacrylate may have some superior physical properties compared with butylcyanoacrylates , based on this trial we recommend that children with selected facial lacerations (superficial, linear, < 4cm) may have their lacerations closed by either method."	Study population limited to pediatrics (<18 years old) with facial lacerations.

			Flexor Tendon Laceration Repair with Device v	vs. Simple Tendon Repair		
Su 2005 RCT No mention of sponsorship or COI.	5.0	N = 67 (67 male and 20 male) with 85 flexor tendon injuries digits 2-5. Zone II laceration of flexor digitor-um profun- dus tendon with or without superficialis laceration. At least 18 years of age.	Teno Fix [®] repair (N = 29) vs Simple repair with cruciate suture (3-0/4-0 polypropylene) plus circumferential (6-0 monofilament nylon). Tendon had to be wide enough for use of the device. Rehabilitation with passive ROM first POD. Kleinert method for 1 st 3 weeks (N = 38). Active flexion protocol at 4 weeks. Follow-up at 12 weeks.	Excellent/good and fair/poor results in: Teno Fix vs. 67% and 33% vs. traditional suture 70% excellent/good and 30% fair/poor. Ruptures developed in 0% Teno Fix vs. 9/51 (18%) traditional suture ($p = 0.01$). No differences in pain, grip/pinch strength or DASH scores, ($p > 0.05$).	"Tendon repairs with the Teno Fix [®] have lower rupture rates and similar functional outcomes when compared with conventional repair, particularly in patients who are noncompliant with the rehabilitation protocol."	Some baseline differences may be due to 7 crossovers to control group for technical reasons. High dropouts in control group at 6 months. More smokers in control group combined with more ruptures in controls raise concern for potential confounding.
			Other		protocol.	
Sener 2015 RCT No mention of sponsorship or COI.	5.5	N = 54 (39 male and 15 female) with hand lacerations. Age range 18-65 years.	Local infiltration anesthesia or LIA; hydrochloride 2% and 27 gauge needles used (N = 23) vs Peripheral nerve block or PNB (N = 31). Follow-up not given.	Response to injection pain and suture pain, ($p = 0.220$ and $p = 0.316$). Patient satisfaction and need for additional local anesthetics, ($p = 0.785$ and p = 0.628). Difference statistically significant for time to loss of pinprick sensation in the local infiltration group 1.3 min vs 2.2 minutes in block group, ($p < 0.001$). Significant difference regarding pain response to suturing; 8.8 vs 14.50, (p = 0.045).	"In conclusion, LIA or PNB for hand laceration surgery is convenient and predictable."	Data suggest both groups with comparable efficacy except for time required to administer (nerve block 2.2 min and local anesthesia 1.3min)
Moazzam 2003 RCT No mention of sponsorship or COI.	5.0	N = 20 (17 male and 3 female) undergoing free radial forearm flap surgery. Average age 58 years (range 28–84).	Cross-suturing, using a 4/0 gauge suture of Polyglyconate (N = 10) vs Control, the graft was applied without cross-suturing of the wound (N = 10). Follow-up at 3 and 7 months.	Cross-suturing group had immediate reduction in size of 30-68%, the mean reduction of 53%. Reduction of area of the cross-sutured forearm scars made after 3-7 months from 40 to 77%, with a mean reduction of 65%. At 3-7 months after surgery in the control	"A cross-suturing technique is presented to reduce the deformity of the radial forearm flap donor defect."	Small sample size. Data suggest cross-suturing technique decreased size of forearm deformity when compared to controls (65% vs. 38%) as well as decreasing the area of the split skin donor site.

	cases had a reduction in	
	scar area ranging from 17	
	to 68%, the mean of 38%.	

Evidence for Follow-up Wound Care

There is 1 moderate-quality RCT incorporated into this analysis.(1542)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: follow-up wound care, semi occlusive dressing, routine wound check, wound healing, laceration, wound, cuts, management, repair, care, upper extremity; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 67 articles in PubMed, 84 in Scopus, 176 in CINAHL, 10 in Cochrane Library, 25 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, CINAHL, Cochrane Library, Google Scholar, and 0 articles from other sources. Of the 1 article considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments						
Study Type	(0-11)											
	Wounds of Minor Skin Excision and Wound Management											
Heal	6.0	N = 857 (600	Intervention group, or wound kept dry and covered 48 hours	Infection rates:	"Wounds can	Wounds were post-surgical excision repairs, which may be different characteristically						
2006		male and 257	(N = 450)	dry group 8.9%	be uncovered	from traumatic laceration. No blinding.						
		female) with	VS	vs. no dressing	and allowed							
RCT		wounds or minor	Control group, dressing removal and bathing within 12	and wet 8.4%,	to get wet in							
		skin excision.	hours of repair	intervention rate	the first 48							
No mention of		Mean age 44	(N = 420).	ratio not inferior	hours after							
sponsorship or		years.		to control p	minor skin							
COI.			Follow-up within 12 and 24 hours.	< 0.05.	excision							
					without							
					increasing the							
					incidence of							
					infection."							

Evidence for the Use of Antibiotic Prophylaxis

There is 1 high-quality RCT on topical antimicrobials(1549) and 3 moderate-quality RCTs on antibiotic prophylaxis that are incorporated into this analysis.(1544-1546)

Antibiotic Prophylaxis

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Antibiotic, Prophylaxis, Wound, Healing, Laceration, Cuts, Management, Repair, care, Upper, Extremity; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 5 articles in PubMed, 4 in Scopus, 8 in CINAHL, 8590 in Google Scholar, and 1 in Cochrane Library. We considered for inclusion 2 from PubMed, 0 from Scopus, 1 from CINAHL, 2 from Google Scholar, 1 from Cochrane Library and 0 from other sources. Of the 8608 articles considered for inclusion, 4 randomized trials and 6 systematic studies met the inclusion criteria.

Topical, Antimicrobials

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Topical, Antimicrobials, Wound, Healing, Laceration, Cuts, Management, Repair, care, Upper, Extremity; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic review, retrospective, and prospective studies. We found and reviewed 58 articles in PubMed, 0 in Scopus, 8 in CINAHL, 5960 in Google

Scholar, and 1 in Cochrane Library. We considered for inclusion 2 from PubMed, 0 from Scopus, 3 from CINAHL, 5960 from Google Scholar, 3 from Cochrane Library and 0 from other sources. Of the 6026 articles considered for inclusion, 0 randomized trials and 1 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	(0-11)					
Dire 1995	8.5	N = 426 (gender	BAC or topical antimicrobials Neomycin	Wounds were primarily head/neck followed by hand,	"The use of topical	Study unable to address question of anti-microbial vs. no
D. 677		not specified)	(n = 109) vs. NEO group or bacitracin (n	lower extremity, and arm. Overall 42/426 infections	antibiotics resulted in	topical preparation. Infection rates in antimicrobial arms
RCT		with hand	= 110) vs. SIL or silvadene group (n =	(9.9%). Infection rates with 95% CI. Bacitracin 5.5%	significantly lower	similar to previous studies using same techniques without
		lacerations. Age	99) vs. PTR or petroleum ointment group	(2.0-11.6), Neomycin 4.5% (1.5-10.3). Silvadene	infection rates than did the	antimicrobial treatment. Possible conclusion is that use of
No mention of		BAC/	(n = 108). Follow-up for 15 months.	12.1% (6.4-20.2). Petrolatum 17.6% (10.9-26.1).	use of a petrolatum	ointments without antimicrobial therapy increase risk of
sponsorship or		NEO/SIL/PTR		Petrolatum was significantly higher ($p = 0.0034$) than	control."	infection.
COI.		group: 19.9		others. No differences between other arms.		
		(15.1)/18.3				
		(13.7)/19.7				
		(14.1)/17.1				
		(13.1).				
Lindsey 1982	6.0	N = 260	0.9% NaCl vs. 5% sodium benzyl	"The study was terminatedafter the inclusion of 260	"It appears that two out of	Methodology details sparse. Analyses and results also
			penicillin for lacerations	lacerations, when the upper sloping boundary was	three or three out of four	sparse.
RCT		Gender and age		crossed for late infections [A]nalysis of the	infections can be averted	
		were not	Follow-up history not disclosed.	distribution of preferences in the data at the time of	merely by flooding the	
No mention of		disclosed.		stopping the study indicated high levels of statistical	wound with penicillin	
sponsorship or				significance in the early purulent infections as well."	immediately before	
COI.					suture."	
Roberts 1985	4.5	N = 418	Povidine-iodine powder aerosol	"There was no significant difference in the infection	"This trial does not show a	No blinding of observer. Lack of study details. High
			treatment of wound vs. none prior to	and imperfect healing rates between the povidine	significant difference in	dropout rate.
RCT		Povidone Iodine	suture repair	iodine and control groups. Significant factors	infection rate with	
		average age 33.0		(P<0.01) in the infected wounds were the condition of	povidine iodine therapy.	
No mention of		with 74.3% male	Follow-up history not disclosed.	the dressing and part of the injured hand (palmar	The number of infected	
sponsorship or		and No treatment		injuries). Neither the patients age, the time from	cases which were	
COI.		average age 28.1		injury to suturing or the number of sutures made a	statistically analyzed was	
		with 71.2%		significant difference to the incidence of perfect	small."	
		males.		healing."		
Roberts 1977	4.0	N = 368 patients	Trilopen IM vs. Flucloxacillin PO vs.	"Chi-square analysis showed no significant difference	"Overall infection rate was	Lack of study details. No allocation or baseline
		with hand	Control (no antibiotics)	in infection rate between the three groups ($P > 0.3$),	9.8 %, lower than other	compatibility data provided.
RCT		lacerations.	Follow-up 7 days after suturing.	but the Trilopen-treated group healed better ($P < 0.05$)	published work. Our	
		Triplopen group		than either of the other groups. Severe contamination	results show that a course	
No mention of		mean age is 30.4,		of the original wound and a change of dressing carried	of flucloxacillin gave no	
sponsorship or		Flucloxacillin		out at home were also found to be significant	improvement in wound	
COI.		group mean age		compared to controls."	healing over a policy of	
		is 29.8, and No			using no antibiotics. The	
		antibiotics group			other surprising fact58%	
		mean age is 33.8.			of patients said they had	
		No gender			experienced no pain at all	
		disclosed.			when the anesthetic had	
					worn off."	

Evidence for the Use of NSAIDs/Acetaminophen for Upper Extremity Post-Laceration Repair

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDS, Wound Healing, Laceration, Lacerations, Wound, Cuts, Management, Repair, care, upper extremity; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 3 articles in PubMed, 10 in Scopus, 0 in CINAHL, 1 in Cochrane Library, 2900 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of NSAIDs/Acetaminophen for Exercise for Laceration Management There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: exercise, exercising, physical activity, wound healing, laceration, wound, cuts, management, repair, care, upper extremity, hand, arm, forearm; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 72 articles in PubMed, 39 in Scopus, 17 in CINAHL, 195 in Cochrane Library, 72,700 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for the Use of Bite Wound Cultures and Sensitivity of Animal and Human Bites There is 1 high-(163) and 2 moderate-quality(162, 1550) RCTs incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: wound culture, human, animal, dog, cat, bite, bites, diagnostic, diagnostic, diagnostic, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 1 articles in PubMed, 12 in Scopus, 0 in CINAHL, 17 in Cochrane Library, and 29,100 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 3 from other sources. Of the 3 articles considered for inclusion 3 diagnostic studies met the inclusion criteria.

Author/Year Study Type	Scor e (0-	Sample Size	Comparison Group	Results	Conclusion	Comments
Conflict of Interest (COI)	11)		Oroup			
Skurka	8.5	N = 39 (gender not specified) with	Penicillin V-	Overall infection	"Prophylactic penicillin failed to prevent	Small sample size. No control for co-interventions. Culture
1986		obviously infected wounds, allergy to	K (100,000	rate 7.7%.	infection in dog bite wounds. Cultures	samples of infected wounds not resistant to penicillin. Sample
		penicillin, antibiotics administere within 3	U/Kg/day	Infection rate of	showed various organisms but were of no	size for wounds sutured too small for comparison $(N = 2)$,
RCT		days prior to bite. Age 1-16.	q6hours x 2	antibiotic group =	predictive value for development of infection.	although neither became infected.
			days (n = 19)	5% vs. placebo =	It seems failure is better correlated to the	
No mention of sponsorship.			vs. Placebo (n	10.5%, (p = NS).	quality of the local wound care than to	
All three authors worked in the			= 20).		prophylactic antibiotic."	
Division of Infectious Diseases						
at the hospital where study was						
held.						

Brakenbury 1989	5.0	N = 122 (42 female, 80 male). Mean ages	Amoxicillin/	Non-significant	Amoxicillin/clavulanate significantly reduced	Study included a mixture of dog, human, and cat bites,
RCT Beecham Research Laboratories sponsored the research and helped with the analysis.	5.0	of antibiotic and placebo groups for general bites is 30 and 34. Mean ages for same groups for hand bites are 30 and 37.	Amoxicilin/ clavulanate for 5 days vs. placebo in full thickness animal bite wounds.	Non-significant trend toward faster healing with amoxicillin/clavula nate. No difference in age subgroups in rate healing. In adults, 33% of wounds in antibiotic treatment group became infected vs. 60% receiving placebo (p = 0.009). In children, difference non significant (24% antibiotic vs. 20% placebo). Wound infection significantly reduced by antibiotics in wounds older than 9 hours, but not in fresher wounds.	Amoxicinit/clavulanate significantly reduced the wound infection rate in patients with bites where the skin is broken and where the patient presented 9 to 24 hours after injury.	study included a mixture of dog, numan, and cat bites, although a majority was dog bites. Study included primarily bites to the hand.
Boenning 1983 RCT Douglas A. Boenning is the Microbiology Laboratory director for The Children's Hospital of Philadelphia. Coauthor Gary R. Fleisher is the assistant director of The Children's Hospital of Philadelphia Emergency Department. No mention of sponsorship.	4.0	N = 55 (gender not specified) with mean age for penicillin group and control group being 10.5 and 9.5 respectively.	Penicillin V 250mg PO QID for 5 days vs. no antibiotics	Overall infection rate 3.6%, with no significant difference between control and penicillin groups. No difference in types of organisms isolated prior to treatment.	Penicillin prophylaxis of superficial non- facial dog bites in children appears no better than local wound care alone when lesions are cleansed soon after occurring. Initial cultures of dog bite wounds have no value in predicting subsequent wound infection.	Quasi-randomization by odd-even day of admission. No blinding, non-placebo control group.

Evidence for the Treatment of Dog Bites

There is 1 high-(163) and 5 moderate-quality(162, 1550, 1551, 1553, 1554) (Rosen 85) RCTs incorporated into this analysis. There is 1 low-quality RCT in Appendix 2.(1552)

Blood Borne Pathogen Protocol

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Blood borne pathogen protocol, Human bites, animal, dog, cat, bites, bite, Torso, Upper Extremity; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 0 in Scopus, 0 in CINAHL, 1 in Cochrane Library, 618 in Google Scholar, and 7 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 7 from other sources. Seven articles met the inclusion criteria.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Prophylactic Antibiotics/ Cat bites, lacerations, upper extremity, bites, hand, arm, forearm;controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1 article in PubMed, 6 in Scopus, 2 in CINAHL, 9 in Cochrane Library, and 1542 in Google Scholar. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 in Google Scholar, and 0 from other sources. Of the 2 articles considered for inclusion, 0 randomized trials and 1 systematic study met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: prophylactic antibiotics, dog bites, torso, upper extremity; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomly; systematic, retrospective, and prospective studiesto find 2 articles. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
Skurka 1986 (score= 8.5)	Prophylacti c Antibiotics for Dog Bite Wounds	RCT	No mention of sponsorship or COI.	N = 39 with obviously infected wounds, allergy to penicillin, antibiotics administer within 3 days prior to bite.	No mention of mean age or sex. Ages of participant s were 1- 16 years.	Penicillin V -K (100,000 U/Kg a day 6 hours for 2 days (n = 19) vs. Placebo (n = 20).	Follow up within 48 to 72 hours.	Overall infection rate 7.7%. Infection rate of antibiotic group = 5% vs. placebo = 10.5%, (p = NS).	"Prophylactic penicillin failed to prevent infection in dog bite wounds."	Small sample size. No control for co- interventions. Culture samples of infected wounds were not resistant to penicillin. Sample size for wounds sutured too small for comparison (n = 2), although neither became infected.
Brakenbury 1989 (score= 5.0)	Prophylact ic Antibiotics for Dog Bite Wounds	RCT	No mention of sponsorship or COI.	N = 125 with dog, human and cat bites.	Mean age for adults: 33.5 years, and 9 for kids; 42 females, 80 males for adults & 20 females, 43 males for kids	Augmentin (n=88) for 5 days vs. Placebo (n=97) in full thickness animal bite wounds.	Follow up on day 3 and on day 7 if wound was not healed.	Non-significant trend toward faster healing with amoxicillin/ clavulanate. No difference in age subgroups in healing rates. In adults, 33% of wounds in antibiotic treatment became infected vs. 60% receiving placebo ($p = 0.009$). In children, difference non- significant (24%	"Amoxicillin/cla vulanate significantly reduced the wound infection rate in patients with bites where the skin is broken and where the patient presented 9-24 hours after injury."	Study included a mixture of dog, human, and cat bites, although a majority was dog bites. Study included primarily bites to the hand.

Jones 1985 (score= 4.5)	Prophylacti c Antibiotics for Dog Bite Wounds	RCT	No mention of sponsorship or COI.	N = 113 patients for dog bite wounds.	Mean age and gender not specified.	5 day course of Co- trimoxazole 960 mg twice daily (n=58 wounds) vs. placebo (n=55 wounds)	Follow up at 1 week.	antibiotic vs. 20% placebo). Wound infection significantly reduced by antibiotics in wounds older than 9 hours, but not in fresher wounds. Incidence of wound infection 13.8% in placebo vs. 5.5% in antibiotic group (p = 0.135). Hand wounds, infection rate 16.7% in placebo vs. 0% antibiotic (p = 0.0595).	"In conclusion, we feel that the routine treatment of dog bite wounds with antibiotics is not justified, but that hand wounds should be considered for such treatment."	Thirty-five subjects who failed to return for follow-up were classified as non- infected. Study had low power (required 370 patients in each group for sufficient power).
Rosen 1985 (score=4.5)	Prophylacti c Antibiotics for Dog Bite Wounds	RCT	No mention of sponsorship or COI.	N = 33 (66 wounds with dog-bite wounds who were admitted wit hin 8 hours of the incident.	Mean age 27.8 years for antibiotics group and 31.8 years for placebo group; 73 females, 77 males	Prophylactic antibiotics (either cloxacillin, dicloxacillin or erythromycin) group receiving 250mg 4x times daily for 5 days (n = 35 wounds) vs. Placebo control group (n = 31 wounds). Both groups	Follow-up at 2 or 3 days.	Overall infection rate was 7.6% with 2/35 infections in antibiotics group, 3/31 in placebo group (p = NS). All infected wounds were of the hand/wrist vs. elsewhere p <0.01).	"Antibiotic administration does not reduce the likelihood of subsequent infection in the management of recent dog-bite wounds, or the incidence of infection when only hand wounds were considered."	Authors found higher risk for infection in hand/wrist wounds than other body parts. No information provided on compliance or other co- interventions.

						received standardized wound cleaning based on protocol.				
Boenning 1983 (score=4.0)	Prophylacti c Antibiotics for Dog Bite Wounds		No mention of sponsorship or COI.	N = 55 children with non- facial dog bites	Mean age for penicillin group: 10.5 years; control group: 9.5 years. gender: not specified	Penicillin V 250mg PO QID for 5 days (n=25) vs. no antibiotics only local wound care (n=30)	Follow up at 2-5 days	Overall infection rate 3.6%, with no significant difference between control and penicillin groups. There was no difference in types of organisms isolated prior to treatment.	Penicillin prophylaxis of superficial non- facial dog bites in children appears to be no better than local wound care alone when lesions are cleansed soon after they occur. Initial cultures of dog bite wounds have no value in predicting subsequent wound infection.	Quasi- randomization by odd-even day of admission. No blinding, non- placebo control group.
Dire 1992 (score=4.0)	Prophylacti c Antibiotics for Dog Bite Wounds	RCT	No mention of sponsorship. COI: Authors Dire and Hogan were part of the Emergency Medicine Rersidence Program for the Darnall Army Community Hospital where the study was held.	N = 185 patients presenting with non- infected dog bite wounds to the emergency department.	Mean age 9.0 years for antibiotic group and 9.2 years for placebo group; 110 males, 75 females.	Oral antibiotics (cephalexin, dicloxacillin or erythromycin) (n= 89) vs. no antibiotic treatment. (n=96)	Follow up at 3-7 days.	One wound (1.1%) in antibiotic group and 5 (5.1%) in control group became infected ($p = 0.212$). No partial-thickness wounds became infected. No difference in wound infection rates for sutured wounds in the two groups ($p =$ 0.562).	"Our results do not show a significant difference in wound infection rates among all low-risk dog bite wounds with or without oral antibiotic use. Routine prophylactic antibiotics would not seem cost- effective in the	Sparse study details. No blinding or placebo. Wounds were irrigated with povidone- iodine.

-						· · · · · · · · · · · · · · · · · · ·
					low-risk dog bite	
					population."	

Evidence for the Treatment of Human Bites

There is 1 moderate-quality RCT incorporated into this analysis.(164)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Prophylactic Antibiotics / Human bites, torso, Upper extremity, lacerations, antibiotics, Animal bites ;controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 8 in Scopus, 1 in CINAHL, 5 in Cochrane Library, and 3161 in Google Scholar. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 3 from Google Scholar, and 1 from other sources. Of the 5 articles considered for inclusion, 1 randomized trial and 3 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: prophylactic antibiotics, human bites, torso, upper extremity; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
Zubowicz 1991 (score= 5.0)	Prophylacti c Antibiotics for Uncomplic ated Human Bite Wounds	RCT	No mention of COI or sponsorship.	N = 48 patients presenting with human bites of the hand.	Mean age: 26 years; 23 males, 25 females.	Ceclor 250mg po tid vs Kefzol 1gm IV q8 and penicillin G 1.2 million U IV q 6 h vs. placebo	Followed daily for clinical signs of infection.	Infection rate in placebo group was 47% (7/15) with no infections in oral or IV antibiotics groups (p <0.05).	"In uncomplicated human hand bite, wound toilet coupled with daily dressing changes and an oral prophylactic broad-spectrum antibiotic is satisfactory treatment in compliant patient."	Adult population. Sparse study details including lack of randomization and allocation methods. Patients admitted to hospital for control of co- interventions and compliance.

Evidence for the Use of Prophlactic Antibiotics for Cat Bite Wounds There are no quality studies incorporated into this analysis. A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Prophylactic Antibiotics/ Cat bites, lacerations, upper extremity, bites, hand, arm, forearm; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1 article in PubMed, 6 in Scopus, 2 in CINAHL, 9 in Cochrane Library, and 1542 in Google Scholar. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 1 in Google Scholar, and 0 from other sources. Of the 2 articles considered for inclusion, 0 randomized trials and 1 systematic study met the inclusion criteria

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: prophylactic antibiotics, cat, bites, bite, torso, upper extremity; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 1 articles. Zero articles met the inclusion criteria. Evidence for the Treatment of Bite Laceration Repair There is 1 moderate-quality RCT incorporated into this analysis.(1551) There is 1 low-quality RCT in Appendix 2.(1557)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library and Google Scholar without date limits using the following terms: Suture, Bites, Human, Animal, Dog, Cat, Bite, Torso, Upper Extremity, controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 2 in Scopus, 3 in CINAHL, 5 in Cochrane Library, and 50 in Google Scholar. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 1 from Cochrane Library, 2 from Google Scholar, and 2 from other sources. Of the 6 articles considered for inclusion, 4 randomized trials and 2 systematic studies met the inclusion criteria.

Author/Year	Scor	Sample Size	Compari	Results	Conclusion	Comments
Study Type	e (0-		son			
	11)		Group			
Dire 1992	4.0	N = 185 (75 female/110 male).	Oral	One wound	"Our results do not	Sparse study details. No blinding or placebo. Wounds irrigated with
		Mean age 9.0 for antibiotic group and 9.2 for	antibiotic	(1.1%) in	show a significant	povidone-iodine.
RCT		placebo group.	s	antibiotic group	difference in wound	
			(cephale	and 5 (5.1%) in	infection rates	
Authors Dire and Hogan were part of			xin,	control group	among all low-risk	
the Emergency Medicine Rersidence			dicloxaci	became infected	dog bite wounds	
Program for the Darnall Army			llin or	(p = 0.212). No	with or without oral	
Community Hospital where the study			erythrom	partial thickness	antibiotic use.	
was held. No mention of sponsorship.			ycin) vs.	wounds became	Routine prophylactic	
			no	infected. No	antibiotics would	
			antibiotic	difference in	not seem cost-	
			treatment	infection rate for	effective in the low-	
				sutured wounds in	risk dog bite	
				groups (p =	population."	
				0.562).		

Evidence for the Use of X-rays for Hand/Finger Osteoarthrosis

There are no quality studies incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms:X-ray, radiography, x-rays, hand and finger osteoarthrosis, joint disease, osteoarthritis, diagnostic, diagnosis, sensitivity, specificity, positive predictive value, negative predictive value, and predictive value of tests, efficacy, and efficiency. We found and reviewed 0 articles in PubMed, 36 in Scopus, 0 in CINAHL, 1 in Cochrane Library, and 378 from Google Scholar. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Evidence for Splinting and Exercise for Hand Osteoarthrosis

There are 10 moderate-quality RCTs and randomized crossover trials incorporated into this analysis.(1558, 1566-1574) (Bani 13; Becker 13; Carreira 10; Villafane 13) There are 4 low-quality RCTs and 1 low-quality controlled clinical trial(1559, 1561, 1575-1577) (Boustedt 09; Adams 14; Weiss 00) in Appendix 2.

Rest:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Rest, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthritis, Osteoarthritis, Controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 26 articles in PubMed, 20 in Scopus, 169 in CINAHL, 1 in Cochrane Library, 100 in Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Ice:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Ice, Cryotherapy, Cold Therapy, Ice Pack, Self-Applied Ice, Cold Pack, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis, controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 12 articles in PubMed, 22 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 47,970 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 0 from other sources. Of the 1 articles considered for inclusion, 0 randomized trials and 1 systematic studies met the inclusion criteria.

Splinting:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: splints, splint, splinting; hand, fingers, thumb, metacarpus, osteoarthritis, osteoarthrosis, degenerative arthritis; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 63 articles in PubMed, 73 in Scopus, 18 in CINAHL, 57 in Cochrane Library, 15,710 in Google Scholar, and 0 from other sources. We considered for inclusion 8 from PubMed, 2 from Scopus, 1 from CINAHL, 2 from Cochrane Library, 4 from Google Scholar, and 0 from other sources. Of the 17 articles considered for inclusion, 10 randomized trials and 10 systematic studies met the inclusion criteria.

Exercise:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Exercise, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials,	Sample Size	Comparison Group	Results	Conclusion	Comments
random allocation, random*, randomized, randomization, randomly; systematic,					

systematic review, retrospective, and prospective studies. We found and reviewed 10 articles in PubMed, 182 in Scopus, 5 in CINAHL, 184 in Cochrane Library, 150 in Google Scholar, and 2 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 2 Google Scholar, and 2 from other sources. Of the 5 articles considered for inclusion, 4 randomized trials and 1 systematic studies met the inclusion criteria. Author/Year Study Type						
Conflict of Interest (COI)						
	Splint vs.	No Splint	-			
Rannou 2009 RCT No conflict of interest disclosed. Funded by the Programme Hospitalier de Recherche Clinique National.	7.0	N = 112 (56 females/56 males) base of thumb OA (trapeziometa- carpal) Age = Mean of 63 for custom-made group, Mean of 63.5 for control group	Custom-made splint vs. no splint. Nocturnal use only prescribed for 12 months.	Pain VAS (baseline/ change at 1 mo/change at 12 months): splint $(45.5\pm19.9/-10.1\pm3.0/-$ 22.2 ± 3.2) vs. control $(47.7\pm19.8/-10.7\pm3.3/-$ 7.9 ± 3.5), p = 0.89 at 1 month and p = 0.002 at 12 months. Similar results for Cochin Hand Function Scale, patient-perceived disability. Pinch strength at 12 months splint: - 5.4 ± 7.1 vs14.4 ±7.7 (p = 0.38).	"For patients with base-of-thumb osteoarthritis, wearing a splint had no effect on pain at 1 month but improved pain and disability at 12 months"	Subjects had severe disease. Baseline duration of disease worse in controls. More co- interventions in controls may have lessened differences. Post-traumatic disease excluded. No differences at 1 month vs. positive differences at 3 months difficult to resolve, particularly with nocturnal splint use.
Bani 2013 RCT crossover No COI. Financial support provided by the University of Social Welfare and Rehabilitation Science.	5.0	N = 35 (25 female/10 male) with grade 1 or 2 thumb carpometacarpal joint osteoarthritis, clinical and radiological diagnosis, pain in the base of the thumb Age = Mean average of 53.42 for prefabricated group, 54.91 for	Prefabricated thumb splints (N=12) vs Custom made thumb splint (N=12) vs Control group (N=11) Follow up	The control group reported no significant differences in pain, function, or grip and pinch strength at week 4. At week 6 pinch strength significantly improved (p=0.000). At week 10 pinch strength (p=0.000) and pain (p=0.05) were the only parameters to improve. At week four both splints produced significant differences in pain	"Both splints increased pain, pinch strength and function compared to baseline and control group. We found no evidence that splints improved grip strength as compared to control group. There were no significant differences in function and pinch in comparing the splints. Pain was the	Data suggest comparable efficacy with respect to functional outcomes but custom made splints were reported to be more comfortable. Small sample size. Crossover design.

group, and 58.64 for control group 10 prediabricated, p=0.000, restorming the control main difference. The custom mained splint results in pains group, and 58.64 for control group in or control group indirectoric transmitted better group, and 58.64 for control group in or control group indirectoric transmitted better group, and 58.64 for control group in or control group reduction. In appears the pfolio in the short- reduction. In appears the pfolio in the short- reduction and y CMC All were control group. All were control group. OA, particularly for poin." control group. Franchication group. OA, particularly for point." control group. Franchication group. OA, particularly for point. control group. Franchication group. Particularly group. control group. Franchication group. Particularly group. control group.	I	custom made	Weeks 4, 6, and	(p=0.000 for	only significant	
in control group custom and plinch custom and splint strength (-0.000, burnot for custom) custom and splint results in pain score were significant for control group. custom and splint results in pain (-0.017, burnot for custom) custom maines splint server here were significant for custom splint (-0.023). that these splints are here in custom splint (-0.023). All were compared to the custom applint (fifteren for control group). at were for pain was short- custom splint (-0.000) for pain." by the probability about the custom applint (-0.000) for pain." sectom and functionality were significant different for custom probability (-0.000) for profetorated, -p-0.000 f						
sengh (p-0.00) demonstrated better p-0.001). Functionality scores were significant or (p-0.018) but not for (p-0.018) but not for custom splints (p-0.220; All were compared to the control group. term in early CMC All were compared to the control group. Herei were solution of the short- term in early CMC and the short- term in early CMC both period in the short- term in early CMC and the short- term in early CMC both period in the short- term in early CMC (p-0.009) Groups- Functionality also improved in both prelabricated (p-0.000) groups- Functionality also improved in custom group. Functionality also improved in custom group. Functionality also improved in custom group for both). At week 10 both splints reduced pain (p-0.000) for custom. Functionality also improved in custom group for both). There were no significant differences between the troo types of splints for functionality queel. and functionality speels. and priod priod for both. both. Custom Splints for functionality speels. and priod priod for both. both. Custom Splints for functionality (p-0.528), or priod strength (p-0.628). At week 10 both. Custom Splints for functionality speels. Custom Splints for functionality speels						
P-0.001, Functionality scores versignificant (p=0.018) but not for custom splints (p=0.232). Al vece compared to the control grap.reduction. 11 appears that these splints are helpfall in the short- term in early CNC OA, particularly for pain."At veck 6 pain was significantly different for the control grap.At week 6 pain was significantly different for the control grap.At veck 6 pain vas significantly different for the custom splint (p=0.049). Grip strength (p=0.049). Grip strength (p=0.049) for to custom splint (p=0.049) for iparcolationAt veck 10 both splints reducted pain (p=0.000) for prefabricated, p=0.0000 for custom, Pinch strength and functionality vere significant (p=0.000) for prefabricated, p=0.0000 for custom, Pinch strength and functionality vere significant (p=0.000) for both, Pere were no significant differences between the two types of pains for functionality (p=0.138), grip strength (p=0.052), At week 10 both, Pere were no significant (p=0.052), At week 10 both, Pere were no significant differences between the two types of pains for functionality (p=0.138), grip strength (p=0.528), or pinch strength (p=0.0528), or pinch strength		- 				
scores were significant for preduction, It appears (p=0.018) but not for custom splints (p=0.232). Teduction, It appears ther the serve of pains significant y GPIC = 0.232). All were compared to the control group. At week 6 pain was significantly different for the custom splint (p=0.049). Grip strength was not improved. Planch strength was improved. Planch strength and functionality was significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.000) for grip strength (p=0.528), or planch strength and hereby significant (p=0.651). At week 10 pain levels significant (p						
prefabricated splints (p=0.018) but not for castom splints (p=0.232). All week of pain was significantly different for the control group.hether this mether ther in early CMC OA, particularly for pain."At week of pain was significantly different for the control group.At week of pain was strength was improved in both prefabricated (p=0.000) groups.At week 10 both splints reduced pain (p=0.000) for particility also improved in costom group (p=0.026).At week 10 both splints reduced pain (p=0.000) for both, p=0.000 for significant (p=0.000) for both, p=0.000 for grefabricated, p=0.000 for functionality week significant (p=0.000) for both, p=0.101 for two types of splints for functionality (p=0.328), or pinin strength (p=0.651). At week 10 pain levels ignificantly						
i i						
custom splints (p=0.232). term in early CMC All were compared to the control group. OA. particularly for pain." At week 6 pain was significantly different for the custom painth (p=0.497). Grip strength (p=0.497). Grip strength was not improved in both prefabricated (p=0.000) and custom (p=0.000) groups. Functionality also improved in ustom group (p=0.266). At week 10 both splitts reduced pain (p=0.000) for prefabricated, p=0.000 for custom (p=0.000) for both (p=0.000) for both, strength was improved in custom group (p=0.266). At week 10 both splitts reduced pain (p=0.000) for both, strength (p=0.266). There were no significant differences between the thory to ypes of splitts for functionality were significant (p=0.000) for both, strength (p=0.136), grip stren						
All were compared to the control group. OA, particularly for control group. At week 6 pain was significantly different for the custom splint (p=0.049). (Crip strength was not improved. Princh strength was improved in both prefabricated (p=0.000) (p=0.000) (p=0.000) groups. Functionality also improved in custom group (p=0.000) for prefabricated (p=0.000) for prefabricated (p=0.000) for prefabricated, p=0.000) for prefabricated, p=0.000 for custom group. At week 10 both splints rength and functionality were significantly were significant (p=0.000) for custom (p=0.000) for custom (p=0.000) for custom). First strength and functionality were significant (p=0.000) for functionality (p=0.0136), grip strength (p=0.528), or prink strength (p=0.551). At week 10 pains (p=0.551). At were 10 pains (p=0.551). At week 10 pains (p=0.551). At were 10 pains (p=0.551). At were 10 pains (p=0.551). At week 10 pains (p=0.551). At were 10 pains (
control group. pain." At week 6 pain was significantly different for the custom splint (p=0.049). Grip strength was not improved. Pinch was not improved in both prefabricated (p=0.000) and custom (p=0.000) and custom (p=0.000) and custom (p=0.000) for punching tables and punching table						
At week 6 pain was significantly different for the custom splint (p=0.049). Grip strength was not improved. Pinch strength was improved in both prefabricated (p=0.000) and custom (p=0.000) groups. Functionality also improved in custom group (p=0.000) or groups. Functionality also improved in custom group (p=0.000) for custom. Pinch strength and functionality were significant (p=0.000) for custom. Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pink strength (p=0.051). At week 10 pain levels significantly						
significanty different for the custom splint (p=0.049). Grip strength was not improved. Pinch strength was improved in both prefabricated (p=0.000) groups. Functionality also improved in custom group (p=0.026). At week 10 both splints reduced pain (p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality for functionality for functionality for (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), o				8F-	L	
significanty different for the custom splint (p=0.049). Grip strength was not improved. Pinch strength was improved in both prefabricated (p=0.000) groups. Functionality also improved in custom group (p=0.026). At week 10 both splints reduced pain (p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality for functionality for functionality for (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), o				At week 6 pain was		
intervent intervent intervent intervent intervent						
(p=0.49). Grip strength was not improved. Pinch strength was improved in both prefabricated (p=0.000) and custom (p=0.000) groups. Functionality also improved in custom group (p=0.026). At week 10 both splints reduced pain (p=0.000 for perfabricated, p=0.000 for significant (p=0.000 for both). There were no significant differences between the two types of splints for functionality for both). There were no significant differences between the two types of splints for functionality for both).						
was not improved. Pinch strength was improved in both prefabricated (p=0.000) and custom (p=0.000) groups. Functionality also improved in custom group (p=0.026). At week 10 both splints reduced pain (p=0.000 for prefabricated, p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.051). At week 10 pain levels significantly						
strength was improved in both prefabricated (p=0.000) and custom (p=0.000) and custom (p=0.000) and custom (p=0.000) groups. Functionality also improved in custom group (p=0.026). At week 10 both splints reduced pain (p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both. There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or princh strength poin levels significantly						
both prefabricated (p=0.00) and custom (p=0.00) groups. Functionality also improved in custom group (p=0.000) for (p=0.000) for prefabricated, p=0.000 for prefabricated, p=0.000 for prefabricated, p=0.000 for significant (p=0.000) for point functionality were significant (p=0.000) for both, There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength point strength public p=0.651). At week 10 pain levels significant						
(p=0.000) and custom (p=0.000) groups. Functionality also improved in custom group (p=0.026). At week 10 both splints reduced pain (p=0.000) for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both splints two types of splints for functionality over significant (p=0.000) for both splints reduced pain (p=0.000) for prefabricated, p=0.000) for both, There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528), or pinch strength (p=0.528)						
(p=0.000) groups. Functionality also improved in custom group (p=0.026). At week 10 both splints reduced pain (p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
Functionality also improved in custom group (p=0.026). At week 10 both splints reduced pain (p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength pin levels significantly						
improved in custom group (p=0.026). At week 10 both splints reduced pain (p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
(p=0.026). At week 10 both splints reduced pain (p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
At week 10 both splints reduced pain (p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
reduced pain (p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly				ч ,		
reduced pain (p=0.000 for prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly				At week 10 both splints		
prefabricated, p=0.000 for custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
custom). Pinch strength and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
and functionality were significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
significant (p=0.000) for both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
both). There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
There were no significant differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
differences between the two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly				There were no significant		
two types of splints for functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
functionality (p=0.136), grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
grip strength (p=0.528), or pinch strength (p=0.651). At week 10 pain levels significantly						
or pinch strength (p=0.651). At week 10 pain levels significantly						
(p=0.651). At week 10 pain levels significantly						
pain levels significantly						
unota (p=0.027).				differed (p=0.024).		

Becker 2013 RCT No COI or sponsorship.	4.5	N = 62 (48 female/14 male) with diagnosis of trapeziometacarpal arthrosis Age = mean of 63	Pre-fabricated neoprene Comfort Cool_ Thumb CMC Restriction Splint (N=32) vs Customized 3.2 mm thick thermoplast hand- based thumb spica splint (N=30) Follow up 9 weeks (average)	Comfort was the only statistically significant variable between the two splints (p=0.048) with participants preferring the neoprene splint. There were no detectable differences between the splints for areas of functionality, pain, pinch strength, satisfaction, and grip strength.	"When compared to custom-made thermoplast splints, pre-fabricated neoprene hand-based thumb spica splints are, on average, more comfortable, less expensive, and as effective in treating trapeziometacarpal arthrosis."	High dropout rate for final analysis. Data suggest comparable efficacy but neoprene splints tend to be reported as being more comfortable.
Carreira 2010 RCT No mention of COI. Study was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo.	5.0	N = 40 (38 female/2 male) with osteoarthritis in trapeziometacarpal joint in dominant hand, clinical and radiological diagnosis, pain in base of thumb of dominant hand of between 3 and 7 on visual analog scale for pain (0 – 10 cm) Age =	Splint group, thermoplastic splint, used splint from day 1 for daily activities (N = 20) vs Control group, thermoplastic splint, used only during evaluations and between days 90 and 180 Follow up Day 45, 90, and 180	Between day 0 and day 90 there was a statistically difference in pain level between the groups (p=0.003). This was also observed at day 45 (p=0.013) and day 90 (p=0.002). In the splint group the pain was significantly reduced when comparing levels from day 0 to 45 (p < 0.001) and 0 and 90 (p < 0.001). No significant difference between the groups in scores of the first (p=0.524) and second (p=0.893) question of the DASH scores. Scores differed significant difference was observed between groups for dexterity, grip	"Splint use during activities of daily living for patients with trapeziometacarpal osteoarthritis reduces pain, but does not alter function, grip strength, pinch strength or dexterity."	Data suggest that functional splints used for OA of the trapeziometacarpal joint "may" reduce pain but do not alter function (grip strength, pinch strength or dexterity).

				strength, and pinch strength. Comparing score differences from day 0 and day 180 the only significant difference was for pain without a splint (p=0.009).		
		nother Splint	D (1) 1	D. 1	<u> </u>	a
Weiss 2004 Randomized Crossover Trial No mention of COI. Funded by grant from the AAHS.	4.0	N = 25 (21 females/4 males); all with first CMC joint OA No mention of ages.	Prefabricated neoprene splint vs. custom thermoplastic short opponens splint for 1 week each	Pain at rest baseline 5.42 (SEM 0.48). Pain after CMT: 3.59 (0.44) vs. PFN: 2.29 (0.33), p <0.05. Pain with pinching favored PFN splint (p <0.05). "Long-term" patient preference 72% PFN vs. 24% CMT.	"[S]ubjects with stage I and II first CMCJ-OA will have pain relief with thumb splinting. In addition, the PFN splint will provide greater relief when compared with the CMT splint."	Suggests prefabricated neoprene splint over MCP and MCM superior to custom made orthosis for very short term treatment of 1 week.
Buurke 1999 Randomized Crossover Trial No mention of COI or sponsorship.	4.0	N = 10 (10 females/0 males) with OA of 1st CMC joint Age = Mean of 67.2	3 thenar eminence orthoses [supple elastic (Uriel 25), elastic with semi- rigid thumb busk (Gibortho ref. 6302) vs. semi- rigid polyethylene (Sporlastic 07051)]; 4 weeks each splint	Wearing comfort: Uriel 62.5 vs. Sporlastic 28.6 vs. Gibortho 23.3 (p <0.05). Order of preference Uriel then Gibortho/Sporlastic. Pain ratings: Uriel 47±34 vs. Sporlastic 55±37 vs. Gibortho 48±31. No preference for pain ratings.	"Eight out of 10 patients prefer the permanent use of a TE orthosis. Six patients chose the supple elastic orthosis and two chose the semi-rigid orthosis."	Small sample size. Half were splinting at the start of study. Crossover trial and 4 weeks duration are relative strengths.
	Exercise	vs. Sham				
Stamm 2002 RCT Sponsored by an unrestricted grant from Merck, Sharp, and Dohme. No mention of COI.	4.5	N = 40 with hand osteoarthritis Mean Age of 60.5 years 35 Females, 5 Males	Control (N = 20) Vs Joint protection and exercise (JPE) group (N = 20)	At baseline, grip strength was slightly, but not significantly, higher in the control group (0.43 ± 0.21) in JPE group and $5.4 \pm$ 0.16 in the control group in the right hand and he left hand yielded $0.44 \pm$ 0.19 and 0.53 ± 0.19 , respectively. After 3 months, grip strength	"Joint protection and hand home exercises, easily administered and readily acceptable interventions, were found to increase grip strength and global hand function."	Program involves minimal 1 visit. Baseline controls' grip stronger than exercise group may bias in favor of exercises. Improvements in strength not related to exercise time

			No mention of Follow up	significantly improved in the JPE for both hands (P < 0.0001 for the right hand and P = 0.0005 for the left hand, when compared to baseline). There was no significant improvement for the control group (P = 0.2335 for the right hand		raises some questions.
Rogers 2009	4.0	N = 46 subjects at least 50 years or	Exercise Group – 16 weeks of daily	and P = 0.1612 for the left hand). Changes in AUSCAN sub-scales did not differ	"The results of this investigation	No placebo control. Exercise regimen
Randomized Clinical Trial Sponsored by the Hygenic Corporation. No COI.		older with radiographic OA. Mean age of 75 years old. 40 Females, 6 Males	 No weeks of daily hand exercise intervention. Vs Sham Group – 16 weeks with OTC nonmedicated hand moisturizing lotion. No mention of group distribution. Time of follow up not mentioned. 	between the two treatment groups. Grip and pinch measures improved after exercise but not sham.	found that while a home-based daily 16-week regimen of hand strength and range of motion exercises modestly improved grip and pinch strength, this benefit was not sufficient to see an improvement in self-reported hand physical function or pain"	emphasized range- of-motion, which may have biased towards null.
Villafñne 2013 RCT No sponsorship or COI.	7.0	N = 60 diagnosed with CMC joint OA Mean Age of 82 years	Control (N = 30) – Placebo group, received detuned ultrasound therapy.	The experimental group (3.7, CI 95% 2.4, 3.8) had a significant greater reduction in pain than the control group (0.3, CI 95% 0). An ANOVA	"This study provides evidence that a multimodal intervention con- sisting of joint mobilization, neural	Data suggest combination therapy (ie. Joint mobilization, neural mobilization and exercise) is better
		51 Females, 9 Males	vs Experimental (N = 30) – Received multimodal treatment protocol	revealed no significant differences in pressure pain threshold between both groups (F=0.44, P=.72). There was no significant difference between the two groups in regards to grip strength (F=1.2, P = .31) and tip	mobilization, neural mobilization, and exercise is beneficial to reduce pain in patients with CMC joint OA."	than sham for pain treatment in patients with CMC joint OA.

			for CMC joint OA- related pain. Follow-up 1 and 2 months after intervention.	pinch strength (F = 0.4, P = .75)		
	Exercise and Splint vs. (Other Exercise and S	plint			
Wajon 2005 RCT	4.0	N = 40 (31 females/9 males) All with Stage I-	Thumb strap splint plus abduction	VAS pain scores (weeks 0/2/6): thumb strap plus abduction exercises	"While both groups improved, neither regimen is superior	Data suggest comparable efficacy. Splint worn full time,
No mention of COI or sponsorship.		III trapezio-meta- carpal OA	exercises vs. short opponens splint plus pinch	(3.0±1.9/2.1±1.8/1.3±2.2) vs. opponens splint plus pinch exercises	to the other in patients with trapeziometacarpal	which may reduce ability to work or perform other
		Age = 59.7 for thumb strap group, 61.2 for short opponens splint	exercises. Splints custom thermoplast. Exercises (5-10 reps, 3 sessions a day) added after 2 weeks of splinting. Total 6	(2.9±2.2/1.8±1.8/0.9±1.2).	osteoarthritis."	activities.
			weeks treatment.			

Evidence for the Use of NSAIDs and Acetaminophen for Hand Osteoarthrosis

There is 1 high-quality crossover trial(1614) and 6 moderate-quality RCTs(1582, 1615-1619) (Gabay 11) incorporated into this analysis. There is 1 low-quality RCT in Appendix 2.(1583)

Acetaminophen:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: antiinflammatory agents, nonsteroidal, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis, NSAIDS, Acetaminophen; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 42 articles in PubMed, 58 in Scopus, 11 in CINAHL, 3 in Cochrane Library, 24081 in Google Scholar, and 0 from other sources. We considered for inclusion 4 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 4 from other sources. Of the 8 articles considered for inclusion, 7 randomized trials and 0 systematic studies met the inclusion criteria.

Gastrointestinal tolerability:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: antiinflammatory agents, nonsteroidal, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis NSAIDS, gastrointestinal tolerability; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1 articles in PubMed, 8 in Scopus, 1 in CINAHL, 13 in Cochrane Library, 5496 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 0 from other sources for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria. Cardiovascular tolerability: A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: antiinflammatory agents, nonsteroidal, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis, NSAIDS, cardiovascular tolerability; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1 article in PubMed, 6 in Scopus, 3 in CINAHL, 10 in Cochrane Library, 5425 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Acetaminophen, Aspirin, cardiovascular tolerability:

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: antiinflammatory agents, nonsteroidal, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis, Acetaminophen, Aspirin, cardiovascular tolerability; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 6 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 5199 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 0 from other sources. Zero articles met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0- 11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Pope 2004 RCT Sponsored by by Physicians Services Incorporated Foundation, Toronto, Ontario. No mention of COI.	8.5	N = 51 (gender not specified) with hip, knee or hand OA. Mean age 54 \pm 2.4 years in N of 1 group, and 59 \pm 2.3 years in conventional therapy	N of 1 group or of diclofenac 50mg plus misoprostol 200 μ g (n = 24) vs. Conventional therapy or placebo for 2 week durations for 6 months (n = 27).	In one group 11 patients preferred diclofenac, none preferred placebo, and 11 had no preference. NSAID appeared to be effective in 81% of patients.	"N of 1 trials were time-consuming in these patients and are more expensive, but with slightly better outcomes. In addition, NSAID seem to be effective in a majority of subjects with OA who have been uncertain of their benefit."	Subjects at enrollment "uncertain the nonsteroidal anti-inflammatory drugs were helpful." Results suggest NSAIDs are efficacious for majority of patients who were uncertain if they were effective.
Barthel 2010 RCT Sponsored by Novartis Consumer Health, Inc. and Endo Pharmaceuticals Inc. COI: MBC is fulltime employee of Endo Pharmaceuticals Inc. MSG is full-time employee of Novartis Consumer Health, Inc. RDA has received research grants from Novartis Consumer Health, Inc. and Ferring Pharmaceuticals, Inc. and consulting fees from Novartis Consumer Health,	7.5	N = 783 (80.2% female and 19.8% male) with radiographically confirmed hand osteoarthritis. Mean age was 63.9 years.	Diclofenac Group- Diclofenac sodium 1% gel (4 g total, 2 g to each hand) (n = 400) vs. Placebo Group- Vehicle consisted of isopropyl alcohol, propylene glycol, cocoyl caprylocaprate, mineral oil, ammonia solution, perfume cream 45/3, carbomer homopolymer type C, polyoxyl 20 cetostearylether, and purified water (n = 383). Follow-up for 8 weeks.	There was no significant difference between groups for VAS pain intensity at 8 weeks, ($p > 0.05$). There were also no significant differences between groups for changes in AUSCAN scores, ($p > 0.05$) and global rating of disease, ($p > 0.05$).	"Pain relief correlated with improvements in physical function, stiffness, and global rating of disease in patients with hand OA, irrespective of treatment."	Combined analyses of 2 prospective RCTs suggesting that pain from hand OA is directly related to function, stiffness, disease status, and improvements in any of above is not dependent upon active vs. placebo treatment. Anticipation of pain is what limits function.

Inc., Ferring Pharmaceuticals, Inc.,						
and Rottapharm and has participated						
in speakers' bureaus for Ferring						
Pharmaceuticals, Inc. and Forest						
Laboratories, Inc.						
Grifka 2004	7.5	N = 594 (490	200 mg Group- Lumiracoxib 200mg od (n =	At week 2, 200mg had pain	"Lumiracoxib 200	Data suggest both lumiracoxib 200mg and 400mg superior to placebo
P (77)		female and 401	205) vs. 400mg Group-Lumiracoxib 400mg	intensity decrease of 21.3	and 400 mg od were	for treating hand OA pain at 4 weeks and overall tolerability
RCT		male) with	od (n = 193) vs. Placebo (n = 196). Follow-	points, 400mg group had	effective and well	comparable between all 3 groups.
		symptomatic	up at 4 weeks.	decrease of 21.1 and	tolerated treatments	
Sponsored by grant from Novartis		osteoarthritis.		placebo was 12.5. Both	for OA of the hand.	
Pharma AG, Basel, Switzerland. No		Mean age 61.9		Lumiracoxib groups	Lumiracoxib	
mention of COI.		years.		showed significant	significantly	
				difference for pain intensity	improved overall OA	
1				vs. placebo (p <0.001). But	pain intensity in the	
				differences not significant	target hand versus	
				between lumiracoxib	placebo, with a	
				groups. At week 4,	tolerability profile	
				respective decreases 28, 30	similar to placebo."	
				and 19.3. Global	1	
				assessment of disease		
				activity also decreased at		
				week 4; 16.3, 20.9 and 9.4		
				in 200, 400 and placebo		
				-		
Widrig 2007	7.5	N = 204 (147	Ibuprofen Group- 4cm strip of gel, applied	groups. Pain intensity and hand	"Our results show	A non-inferiority study. Data suggest comparable efficacy between
widing 2007	7.5	female and 57	4x a day for 3 weeks. (n = 99) vs. Arnica gel	function very similar in	that short-term use,	NSAID and arnica for topical treatment of hand OA.
DCT		male) with hand			up to three weeks, of	NSAID and armea for topical treatment of hand OA.
RCT			4cm strip of gel applied 4x a day for 3	both groups, (p >0.05). No		
		osteoarthritis.	weeks ($n = 105$). Follow-up for 3 weeks.	significant differences	arnica gel improves	
No mention of sponsorship or COI.		Mean age was		between groups for	pain and function in	
		64 years.		secondary outcomes of	hand OA,	
				number of painful joints,	indistinguishably	
				intensity and duration of	from ibuprofen gel."	
				morning stiffness, (p		
				>0.05).		
Smith 2010	7.0	N = 40 (35	Treatment group up to 20ml 0.5% sodium	Patients assessed for pain,	"The data show that	Small sample size. Data suggest injection of subcutaneous sodium
		female/5 male)	salicylate injected on any 1 occasion, given	tenderness and disability	subcutaneous sodium	salicylate effective in thumb OA vs. sham.
RCT		with	all in 1 large patch or divided between 2-4	using the VAS scale. The	salicylate injections	
		osteoarthritis in	smaller patches ($n = 20$) vs. Control Group:	difference was 1.9 cm	are an effective	
Sponsored by past Peacock Trust. No		first	blunt 23-gauge probe pressed on skin over	between the groups for	symptomatic	
COI.		carpometacarpa	each patch as if patch injected $(n = 20)$.	VAS pain at the final	treatment for OA of	
		l joint. Mean	Assessments at weeks 3, 7, and 13 years.	follow-up in favor of the	the thumb."	
		age 66.9 years.		active group, $(p = 0.007)$.		
		age coly yours.		The difference for VAS		
				tenderness score was also		
				tenderness score was also		

Gabay 2011 RCT Supported by the Institut Biochimique	7.5	N=162 patients (42 males, 120 females) with hand OA. Mean age 63.9±8.5	CS group: (n=80) 800 mg tablet of chondroitin sulfate with glass of water taken for 6 consecutive months. Vs.	significant in favor of the active group, 1.4 cm, (p = 0.02). Improvement in patient hand pain was significantly better for the CS group than the placebo group (p=0.016). The decrease in	"This study demonstrates that CS improves hand pain and function in patients with	Data suggest CS efficacy vs. placeboin hand OA patients with improved function and reduced pain.
SA (IBSA), PambioNoranco, Switzerland. Cem Gabay, MD, Carole Medinger-Sadowski, MD, Danielle Gascon, RN, Frank Kolo, MD, Axel Finckh, MD: University Hospitals of Geneva and University of Geneva School of Medicine, Geneva, Switzerland. Dr. Gabay has received consulting fees, speaking fees, and/or honoraria from IBSA, Roche, MSD, Pfizer, and Bristol-Myers Squibb (less than \$10,000 each)		years for CS group and 63.0±7.2 years for placebo group.	Placebo Group: Placebo same size tablet as CS group. (n=82)	FIHOA score showed a similar pattern (p=0.008). Presence of erosive OA was significantly associated with higher FIHOA score (p=0.005), but not with global pain intensity (p=.75). Hand function improved significantly more in the CS groups than in the placebo group (p=0.008). There was a statistically significant difference between groups in favor of CS for duration of morning stiffness and for investigator's global impression of treatment efficacy. No statistical significance for grip strength, acetaminophen consumption, and safety end points.	symptomatic OA of the hand and shows a good safety profile."	
			Gastroin	testinal Complications		
Lisse 2003 RCT Sponsored by Merck & Co., Inc. No COI.	7.0	N = 5,557 (3948 female/1609 male) with knee, hip, hand or spine OA. Mean age 63 years.	Rofecoxib 25mg a day (n = 2785) vs. Naproxen 500mg twice daily for 3 months. Double dummy (n = 2772).	Discontinuation due to adverse GI events lower in rofecoxib group (5.9% vs. 8.1%), RR = 0.74 (95% CI 0.60-0.92, p = 0.005). Similar findings in low- dose ASA takers. Less use of GI meds in rofecoxib group (9.1% vs. 11.2%, p = 0.014). Two perforations, ulcers or bleeding episodes	"[R]ofecoxib, 25 mg once daily, was as efficacious as naproxen, 500 mg twice daily, in controlling symptoms over a 3- month period and was associated with significantly better GI tolerability."	Very large sample size; no placebo. Participants allowed to take H-2 blockers. Results suggest equivalent efficacy for pain, but higher adverse GI symptoms and bleeds for naproxen vs. rofecoxib.

in rofecoxib vs. 9 in	
naproxen ($\mathbf{RR} = 0.22$, $\mathbf{p} =$	
0.038).	

Evidence for the Use of Topical NSAIDs for Hand Osteoarthrosis

There are 4 moderate-quality RCTs or crossover trials (1616, 1620, 1621, 1623) (Rothacker 94; Altman 09; Barthel 10) incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Topical NSAIDs, Topical non steroidal anti-inflammatory drug, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 32 in Scopus, 9 in CINAHL, 67 in Cochrane Library, 150 in Google Scholar, and 2 from other sources. We considered for inclusion 0 from PubMed, 0 from Scopus, 1 from CINAHL, 0 from Cochrane Library, 3 Google Scholar, and 2 from other sources. Of the 6 articles considered for inclusion, 4 randomized trials and 2 systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	(0-11) (COI)		Comparison Group	Results	Conclusion	Comments
			Topical NSAI	Ds vs. Placebo		
Rothacker 1994 RCT Crossover Trial Sponsored in part by Thompson Medical Company, West Palm Beach, Florida. No mention of COI.	7.5	N = 50 (41 female/8 male) with hand OA. Mean age 66 years.	Trolamine salicylate 10% cream single application (n = 24) vs. Placebo single application (n = 25).	Changes in right hand pain severity $(0/45/120 \text{ minutes})$: Trolamine salicylate $(-0.2/-1.3/-1.4)$ vs. placebo $(-0.2/-0.9/-1.1)$, p = 0.60, p = 0.08, p = 0.32. Mean change in pain relief scores at 45 minutes p = 0.047, with other times not significant.	"Trolamine salicylate has been shown to be both safe and effective in this single-application study of patients suffering from morning pain and stiffness associated with osteoarthritis in the hands."	Ultra-short term study, single application. Suggests weak efficacy that is not long lasting.
Rothacker 1998 RCT	6.5	N = 86 with hand OA.	Trolamine salicylate 10% cream vs. placebo. Single applications of each.	Sum of pain intensity differences scores: Trolamine salicylate -3.44 vs2.45, $p = 0.072$. Combined hands analysis $p = 0.049$.	"10% trolamine salicylate cream was shown to be safe and effective for the temporary relief of minor pain and stiffness associated with osteoarthritis in the hands."	Data suggest efficacy over very short-term from single application.
Altman 2009 RCT No mention of sponsorship and COI.	7.5	N = 385 diagnosed with OA in their primary hand. Mean age of 64.1 years old. 296 Females, 89 Males	Diclofenac Sodium Gel Group (N = 198) – Patients were given a topical 1% diclofenac sodium gel. vs Vehicle Group (N = 187) – Patients were given a placebo gel.	At week 8, the diclofenac sodium gel group stayed significantly superior to the vehicle group on the AUSCAN stiffness and functional indices (P<0.048 and P<0.017, respectively). Diclofenac sodium gel decreased pain intensity by 42.3%, total AUSCAN score by 35% and global rating of disease by 36.1%.	"Topical diclofenac sodium gel was generally well tolerated and effective in primary hand OA."	Data suggest topical diclofenac gel was superior to placebo suggesting efficacy.

			Follow up 1, 2, 4, 6, 8 weeks after gel given.			
Barthel 2010	7.5	N = 783 diagnosed with	Diclofenac Sodium Gel Group	Patients with at least 70% improvement from	"Diclofenac sodium 1% gel is indicated for relief of	Data suggest
		primary hand OA by	(N = 400) - Received 4g of 1%	baseline score in VAS pain intensity had large	OA pain in joints amenable to topical treatment,	pain relief
Prospective		American College of	diclofenac sodium gel.	mean improvements in AUSCAN pain,	such as the hands and knees."	correlates with
		Rheumatology criteria		function, stiffness, and global rating of disease.		improved hand
Sponsored by Novartis Consumer			Vs	Those that worsened also experienced a		function in OA
Health, Inc. and Endo		Mean age of 63.9 years		decrease in AUSCAN pain, function, stiffness,		patients
Pharmaceuticals Inc. No COI.		old	Vehicle Group	and global rating of disease. Change in VAS is		irrespective of
			(N = 383) – Received 4g of vehicle gel.	correlated with AUSCAN pain, function,		treatment.
		628 Females, 155 Males		stiffness, and global rating of disease		
			Follow up 1, 2, 4, 6, 8 weeks after gel	(P<0.001).		
			given.			

Evidence for the Use of Complementary and Alternative Therapies for Hand Osteoarthrosis

There is 1 high-(1629)(Reeves 00) are 4moderate-quality RCTs and crossover trials incorporated into this analysis.(1624, 1625, 1628, 1630) (Shin 13) There are 4 low-quality RCTs(1626, 1627, 1631, 1632) in Appendix 2.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Complementary therapy, alternative therapy, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 55 in Scopus, 6 in CINAHL, 70 in Cochrane Library, 150 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, 1 from Scopus, 1 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 7 from other sources. Of the 9 articles considered for inclusion, 9 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Conflict of Interest (COI)						
			I	Capsaicin vs. Placebo		
McCarthy 1992	5.0	N = 21 OA (14) and RA	Capsaicin 0.075% vs. placebo QID for 4 weeks	VAS pain scores were (baseline vs. weeks 1/2/4): Capsaicin -10% vs. placebo -11%/-	"[T]opical capsaicin is a safe and potentially useful drug for the treatment of painful OA of	Blinding questionable. Suggests capsaicin reduces pain.
RCT		(7)		35% vs10%/ -55% vs18% (p <0.02) (graphic interpretations).	the hands."	
Schnitzer 1994	4.0	N = 59 Hand OA	Study began with all on capsaicin 0.025% vs. placebo and all QID	Capsaicin superior to placebo at Weeks 1 and 3 for pain responses ($p = 0.046$ and p	"[I]t may be prudent to taper the regimen gradually to avoid the decrease in pain relief	Data suggest capsaicin effective, however study both decreased treatment
RCT			dosing for 3 weeks, then BID for 6 weeks.	= 0.018). Articular tenderness also favored capsaicin at all times except 6 weeks.	seen with an abrupt decrease in dosage."	frequency and randomized to placebo vs. treatment, thus somewhat limiting conclusions.
	•			Stinging Nettle vs. Non-Stinging Nettle		
Randall 2000	7.0	N = 27 (23)female/4 male)	Stinging Urtica dioica ($n = 13$) vs. non-stinging nettle leaf Lamium	VAS pain scores (baseline/post): stinging nettle (38.3/23.67) vs. non-stinging nettle	"After one week's treatment with nettle sting, score reductions on both visual analogue scale	Success of blinding questionable. Patients applied the plant leaf
Crossover Trial		with OA base of thumb or index	album (n = 14).	(36.59/37.04), p = 0.026. Daily NSAID use: nettle (1.04/0.70) vs. non-stinging	(pain) and health assessment questionnaire (disability) were significantly greater than with	themselves.
No mention of sponsorship or		finger. 2RA, 1 AS. Age range 45-82		nettle ($(0.93/0.93)$, p >0.05. Health assessment scores improved more with	placebo."	
COI.		years.		stinging nettle (p = 0.003). Dextrose vs. Placebo		
				Dextrose vs. Placebo		
Reeves 2000	8.0	N = 27 patients with osteoarthritis	Dextrose Group (N = 13) – Received 0.5 mL of	Flexion range improved significantly (P = 0.003) in dextrose treated joints compared	"Dextrose prolotherapy was clinically effective and safe in the treatment of pain with joint	Data suggest at 12 months, ROM, pain level and PRWE and DASH scores
Prospective RCT		in the hands.	10% dextrose or 0.075% xylocaine in bacteriostatic water.	to placebo-treated joints. After 6 months, the control group received dextrose	movement and range limitation in osteoarthritic joints."	equivalent. Patients in surgical group reported better grip strength throughout
No mention of sponsorship or COI.		Mean age of 64.2 years old.	vs	injections and improved pain reduction from 18% to 54% in the average joints		trial.
				and 9.7% to 38% in total joint collection.		
		16 Females, 11	Control Group ($N = 14$) – Received 0.075%			
		Males	(N = 14) - Received 0.075% xylocaine in bacteriostatic water.			
			Follow up 6 months and 12 months after first injection.			
	I			Diacerein vs. placebo	l	
Shin 2013	7.0	N = 86 patients	Diacerein Group	There are no significant difference in	"The results of this trial indicate that the safety	Data suggest comparable efficacy
RCT		fulfilled the American College	(N=42) – Received Diacerein 50 mg BID or 12 weeks	change in AUSCAN pain score at 4 weeks (Diacerein vs placebo, $P = 0.507$).	profile of diacerein 50 mg BID is acceptable, although the regimen may be unsuccessful in	between groups.
NC1		Board of	Ing DID OF 12 WEEKS	Diacerein vs piacebo, $P = 0.507$). Diacerein was significantly improved (P =	controlling the symptoms of hand OA."	
		Rheumatology	vs	0.004) for the physician global		

Sponsored by	criteria for hand		assessment. Adverse events occurred 38
Myungmoon	OA.	Placebo Group	(90%) times in the diacerein group and 29
Pharmaceutical Co,		(N=44) - Received placebo BID	(67%) in the placebo group.
Ltd.	Mean age of 57.8	for 12 weeks	
COI, Dr. Shin is a	years old.		
consultant to Pfizer		Follow up 4 and 12 weeks after	
Inc.	83 Females, 3	initial enrollment.	
	Males		

Evidence for the Use of Low-Level Laser Therapy for Hand Osteoarthrosis There is 1 high-quality RCT incorporated in this analysis.(1636)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Low Level Light Therapy, LLLT, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 9 articles in PubMed, 18 in Scopus, 1 in CINAHL, 0 in Cochrane Library, 150 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 0 from other sources. Of the 1 articles considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Conflict of Interest (COI)	(0-11)					
			LLLT v	s. Sham		
Brosseau 2005 RCT Sponsored by Ontario Arthritis Society, Ontario Ministry of Health and Long- Term Care, University Research Chair, and inistry of Human Resources. No menstion of COI.	9.0	N = 88 patients diagnosed with OA. Mean age of 65.7 years old. 69 Females, 19 Males	Low Level Laser Therapy Group (N = 42) – Received inactive LLLT vs Sham Low Level Laser Therapy Group	There was no significant difference in VAS sores and morning stiffness. Grip strength significantly improved for participants in the active LLLT group (P = 0.041) and a significant reduction in finger distance between thumb and the base of the fifth metacarpal (P = 0.011). No significant	"LLLT is no better than placebo at reducing pain, morning stiffness, or improving functional status for OA-hand patients."	Suggests LLLT not effective.
			(N = 46) – Received Gallium Aluminum Arsenide LLLT Follow-up 6 and 18 weeks after last treatment of LLLT.	differences were found in other outcomes.		

Evidence for the Use of Intraarticular Injections for Hand Osteoarthrosis

There is 1 high-(1646) and 5 moderate-quality RCTs(1643, 1647-1650) (Spolidoro Paschoal Nde 15; Stahl 05) incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Intraarticular Injections, glucocorticosteroid, hyaluronate injection; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 22 articles in PubMed, 9 in Scopus, 3 in CINAHL, 0 in Cochrane Library, 9928 in Google Scholar, and 0 from other sources. We considered for inclusion 7 from PubMed, 1 from Scopus, 1 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 0 from other sources. Of the 9 articles considered for inclusion, 6 randomized trials and 1 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: intraarticular injections, glucocorticosteroid, hyaluronate injection, hand, fingers, thumb, metacarpus, osteoarthritis, and osteoarthrosis; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 6 articles. Of the 6 articles we considered for inclusion 3. Of the 3 considered for inclusion, 1 are randomized controlled trials and 2 systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
	Glucocorticosteroid vs. Placebo Injections									
Meenagh 2004 (score=8.5)	Intraarticular Glucocortico steriod or Hyaluronate Injections	RCT	No mention of sponsorship or COI.	N = 40 pts with CMC joint OA.	Age range 41-71 years; 4 males, 36 females.	Triamcinolone hexacetonide 0.25mL, 5mg (n = 20) vs. sterile saline, fluoroscopically guided injections (n = 20).	Follow up at 4, 12, and 24 weeks	VAS pain changes (4/12/24 weeks): placebo (18.5/23.3/ 14.0) vs. steroid (10.5/3.5/0.0), NS. Patient and physician global assessments improved in both groups at 4-12 weeks.	"No clinical benefit was gained from intra-articular steroid injection to the CMCJ in moderate to severe osteoarthritis compared with placebo injection."	VAS pain ratings suggest trend towards modest pain reductions especially at 4 weeks, but none at 24 weeks. Suggests steroid injection relatively ineffective.
				Different Types	of Glucocortic	osteroid Injections	(No Placebo)			
Monfort 2015 (score=5.5)	Intraarticular Glucocortico steriod or Hyaluronate Injections	RCT	No COI. No mention of sponsorship.	N = 88 with osteoarthritis in the thumb (via Kellgren- Lawrence grade II-III criteria)	Mean age: 62.8 years; 11 males, 77 females	Three injections (one at week 2, 3, and 4) of 0.5 cm^3 (5 mg) of hyaluronic acid (n=48) vs. Three injections (one at week 2, 3, and 4) of 0.5 cm ³ of betamethasone disodium	Follow-up at 7, 13, 30, 90, and 180 days	Functional Index for Hand Osteoarthritis score (FIHOA) score changes from baseline at day 7, 14, 30, 90, and 180 days, respectively: hyaluronic acid group -0 , -2 , -3 , -4 (p=0.071), -3 , betamethasone	"Both hyaluronic acid and betamethasone were effective and well-tolerated for the management of rhizarthrosis. Hyaluronic acid was more effective over time and more efficiently	Data showed no statistically significant differences between treatment groups. However there was a trend toward better VAS and

Jalava 1983 (score=5.0)	Intraarticular Glucocortico steriod or Hyaluronate Injections	Crossover trials	No mention of sponsorships.	N = 24; 120 injected DIP, PIP joints, yet study describes RA patients	Mean age 48.6 years; 12 males, 12 females.	phosphate 1.5 mg and betamethasone acetate 1.5 mg (n=40) Triamcinolone hexacetonide (n= 59 joints) vs. methyl- prednisolone 0.2-0.3mL/joint (n= 61 joints)	Follow-Up at baseline, week 1, 4, 12, and 24.	group – -1, -1, -3, -1 (p=0.071), -1. No significant difference between groups Effect at 6 months: TH: 21.0% Unchanged; 3.5% Worse, p<005. MP: 32.0 % unchanged; 10.0 % worse	improved functionality and pain in patients with more severe symptoms." "All injections produced clinically significant effects. There were no significant effects. There were no significant differences between the two treatment groups at the start of the treatment, but after 6 months the results in the TH group were significantly better. However, there were also more joints with skin and soft tissue	functional outcomes for hyaluronic acid over corticoid treatment. Crossover trial. States RA patients, but DIP/PIP joint injections. Multiple injections in multiple digits of same patient. No placebo group, thus conclusion on benefit for all not clearly supportable. Data suggest triamcinolone may be superior.
									atrophy in this group than in the MP group."	
				Glucocorticos	steroid vs. Vise	cosupplementation	Injections	<u> </u>	ini group.	
Fuchs 2006 (score=6.0)	Intraarticular Glucocortico steriod or Hyaluronate Injections	RCT	Sponsored by TRB Chemedica AG, Richard- Reitzner-Allee. No COI.	N = 56 thumb CMC joint OA	Median Age, Group 1: 59.5 Group 2: 61.0; 11 males, 45 females	Three intraarticular injections of: Group 1 - Sodium hyaluronic acid (SH) 10mg (n=28) vs. Group 2 - triamcinolone acetonide TA 10mg injections. (n=28) Imaging not used	Follow Up at baseline, 3, 14, and 26 weeks.	VAS pain assessment (visits 1/3/5/6/7): SH (65.5/54.0/34.0/35.0 /30.0) vs. TA (63.5/46.0/20.0/22.0 /45.5).	"A single course of three SH injections is effective in relieving pain and improving joint function in patients with OA of the CMC joint of the thumb. Although in comparison with triamcinolone its effects are achieved more slowly, the results indicate a superior long-lasting effect	No placebo group. Data suggest effect of steroid largely gone at 6 months, but not for visco- supplementation

									of hyaluronan at 6 months after end of treatment period."		
	Viscosupplementation vs. Glucocorticosteroid vs. Placebo										
Heyworth 2008 (score= 7.5)	Intraarticular Glucocortico steriod or Hyaluronate Injections	RCT	Sponsored by a grant from Wyeth-Ayerst Pharmaceuticals and Genzyme Corporation. No mention of COI.	N = 60 with basal joint OA	Mean age 63 ± 1 years; 2 males, 52 females.	(2) 1-mL injections of hylan G-F 20 1 week apart (n = 20) vs. Steroid1mL betamethasone (n = 22) vs. 2 placebo saline injections (n = 18). All received 2 injections, 1 week apart.	Follow up at 2, 4, 12, and 26 weeks	Data graphically presented; suggest grip strengths worse for saline than other 2 groups. However, not statistically significant between groups. Within groups, steroid superior at Weeks 2 and 4 to baseline and Hylan better at Weeks 2, 4, 12, 26 compared with baseline. No between-group VAS differences, but lower VAS pain compared with baseline for controls and steroid at Weeks 2 and 4, however for hylan, reductions were at Weeks 2, 12, 26 compared with baseline.	"There were no statistically significant differences among hylan, steroid, and placebo injections for most of the outcome measures at any of the follow-up time points. However, based on the durable relief of pain, improved grip strength, and the long-term improvement in symptoms compared with preinjection values, hylan injections should be considered in the management of basal joint arthritis of the thumb."	Trend towards Hylan relief lasting longer than gluco- corticosteroid injection. States no baseline difference but stats for age are dissimilar. Dropout rate unclear.	
				Single vs. N	Iultiple Viscos	upplementation In	jections				
Roux 2007 (score=4.0)	Intraarticular Glucocortico steriod or Hyaluronate Injections	RCT	No mention of sponsorship or COI.	N = 42	Mean Age 64.8 ± 8.0 years; 4 males, 38 females.	1ml sodium hyaluronidate (Sinovial) 1 injection (n=14) vs. 2 injections (n=14) vs. 3	Follow-Up at baseline, 1 month, and 3 months.	1 injection VAS (1 month, 3 months): 58.4±16.2, 43.1±22.8; 2 injections: 54.6±18.9,	"No significant differences were found between each group over the study period for pain relief and	No placebo. Unequal treatment control biases towards more treatment. Trend	

			weekly	39.5±28.6; 3	function. But the	towards lower
			injections using	injections:	intra groups	grade disease
			image intensifier	60.1±17.0,	analysis results	across the
			(n=14)	29.8±21.9	show that intra-	categories (x-ray
					articular sodium	grades
					hyaluronidate	3.1/2.7/2.4) may
					injections into the	bias towards
					carpometacarpal	more injections
					joint of the thumb	suggests
					in osteoarthritis	randomization
					can be efficacious	failure and may
					on pain and	be fatal flaw.
					functionality."	

Evidence for the Use of Injections for Hand Osteoarthrosis

There are 2 high-(1629, 1641) quality and 5 moderate-quality RCTs and crossover trials incorporated into this analysis.(1638-1640, 1642, 1651) (Jahangiri 14) There is 1 low-quality RCT in Appendix 2.(1643)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Prolotherapy Injections OR Proliferative Therapy AND Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 2 in Scopus, 1 in CINAHL, 2 in Cochrane Library, 997 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 1 from Scopus, 1 from CINAHL, 0 from Cochrane Library, 1 Google Scholar, and 4 from other sources. Of the 8 articles considered for inclusion, 8 randomized trials and 2 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: prolotherapy injection, hand, fingers, thumb, metacarpus, osteoarthritis, osteoarthrosis; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
	1	I			Prolothera	py Injections				I
Reeves 2000 (score=8.0)	Prolotherapy Injections	RCT	No mention of sponsorship or COI.	N = 27 with 150 joints DIP, PIP and thumb CMC joint OA.	Mean age: 64.19 years; 11 males, 16 females.	0.5ML of 10% dextrose plus 0.075% xylocaine (n=13) vs. 0.075% xylocaine injections into medial and lateral aspects of each joint (n=14). Injections at 0, 2, 4 months	Follow up at 6 months.	VAS after 3 injections improved 37% in active treatment vs. 18% controls (NS). Pain with rest and grip non-significant trend towards dextrose. Pain with movement improved with dextrose (59 to 67 vs. 57 to 48 in controls) (p = 0.027)	"Dextrose prolotherapy was clinically effective and safe in the treatment of pain with joint movement and range limitation in osteoarthritic finger joints."	Small sample sizes and high dropout rates.
Jahangiri 2014 (score=7.0)	Prolotherapy Injections	RCT	No sponsorship or COI.	N = 60 patients with osteoarthritis in the first carpometacar pal joint (CMC)	Mean Age: 63.6 ± 9.7 years; 16 males, 44 females.	Local corticosteroid (LC) group, had placebo injections of 1 ml 0.9 % saline were administered (for masking) followed by a single dose of 40 mg methylprednisol one acetate (0.5 ml) mixed with 0.5 ml of 2 % lidocaine in the 3rd month (n=30) Vs. Group 2: Dextrose Prolotherapy (DX) group, had 0.5 ml of 20 % DX mixed with	Follow-Up at baseline 1, 2, and 6 months.	LC - DX difference, Hand Assessment Questionnaire Disability Index (HAQ-DI) scores (Mean Difference (95% CI)), two months: 1.0 (0.2- 1.9) (p=0.01). 6 months: 1.0 (0.2- 1.8) (p=0.01). Pain, Visual Analogue Scale (VAS), 2 months: 1.0 (0.1- 2.0) (p=0.01). 6 months: 1.1 (0.2- 2.0) (p=0.02). Pinching, 1 month: 2.9 (0.9-4.9) (p=0.005). Both groups improved significantly within themselves and was significant in all	"Both LC and DX can relieve pain and suppress Inflammatory processes. Furthermore, DX has been suggested To strengthen soft tissue too. There are some reports Indicating improvement in ligament laxity after DX prolotherapy."	Data suggest steroid is better at 1 month but a 2 months, both groups had comparable results but at 6 months there was a better outcome in the DX group. After 6 months, both groups showed improved function but DX group had an overall better function score.

			0.5 ml of 2 %	three categories	
			lidocaine	listed above.	
			was injected		
			(n=30)		

Evidence for the Use of Surgery for Hand Osteoarthrosis

There are 5 moderate-quality RCTs incorporated into this analysis.(1654, 1669, 1670, 1675, 1677)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Reconstructive surgery, Hand, Fingers, Thumb, Metacarpus, Osteoarthritis, Osteoarthrosis, trapeziometacarpal arthrosis, trapeziectomy with ligament reconstruction and tendon interposition, thumb CMC joint osteoarthritis, fusion, hand osteoarthrosis; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 136 articles in PubMed, 22 in Scopus, 6 in CINAHL, 1 in Cochrane Library, 20105 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 3 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 Google Scholar, and 1 from other sources. Of the 5 articles considered for inclusion, 5 randomized trials and 2 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: reconstructive surgery, trapeziometacarpal arthrosis, trapeziectomy, ligament reconstruction, tendon interposition, thumb CMC joint osteoarthritis, fusion, hand, fingers, thumb, metacarpus, osteoarthritis, osteoarthrosis; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 38 articles. Of the 38 articles we considered for inclusion 2. Of the 2 considered for inclusion, 2 are randomized controlled trials and 0 systematic reviews.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:
			Trapez	ziectomy vs. Trap	eziectomy plus	Palmaris Longus	Fendon Interp	oosition		
Vermeulen 2014 (score=8.5)	Reconstructi ve Surgery	RCT	No COI. No mention of sponsorship.	N = 79 patients with symptomatic osteoarthritis who failed to improve after nonsurgical treatment and had stage 4 osteoarthritis of the thumb base	Mean age: 64.1 years; 0 males, 79 females	Burton- Pellegrini technique (BP) – incision along radial border of first metacarpal, then removed trapezium, tendon graft of ~10 cm removed, tendon graft passed through bone, sutured into a ball and secured in trapezial space as a spacer (n=40) vs. Weilby technique – trapezium removed as in BP technique, tendon graft was made into a figure-of-8 fashion around the APL tendon and the rest of the FCR tendon (n=39)	Follow-up at 3 and 12 months	Within-group comparisons preoperative scores and 3 and 12 month scores – improvement in both groups for Patient-Rated Wrist/Hand Evaluation (PRWHE) pain scores ($p < 0.001$), PRWHE activities scores ($p < 0.001$), PRWHE total score ($p < 0.001$), improvement in Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire ($p < 0.003$). Between- group comparisons of preoperative and 3 month scores showed larger improvement in BP group for PRWHE pain and total scores ($p = 0.02$, $p = 0.03$). Between-group comparisons from preoperative to 12 months showed no significant difference in improvement between groups ($p > 0.001$)	"After the bone tunnel technique, patients have better function and less pain 3 months after surgery than do those in the non— bone tunnel group, which indicates faster recovery. However, 12 months after surgery, the functional outcome was similar. Because of faster recovery, we prefer the bone tunnel technique in the treatment of stage IV osteoarthritis."	Groups at 12 months had no difference between treatments although recovery may by slightly faster in the Burton- Pellegrini treatment compared with the weilby treatment.

Prosser 2014	Reconstructi	RCT	No mention of	N = 56 with	Mean age:	Allocated to	Follow-up	Both groups	"The rigid orthosis	Data suggest
(score=6.5)	ve Surgery		COI or	osteoarthritis	66.9±8.5	rigid orthosis (n	after	performed equally	and semi-rigid	comparable
			sponsorship.	of TMC joint	years; 11	= 28) vs.	6weeks, 3	well. There was no	orthosis (allowing	efficacy
				underwent	males, 45	Allocated to	months and	significant between-	more wrist and	between rigid vs
				TMC	females.	semi-rigid	1 year.	group difference for	thumb motion)	semi-rigid
				arthroplasty		orthosis (n =	2	PRWHE scores	used from 2 to 6	orthotics post
				allocated to		28). Following		(0.47, CI -11.5 to	weeks following	TMC
				either rigid		surgery, a dorsal		12.4), including	TMC arthroplasty	arthroplasty.
				orthotic or		plaster backslab		subscales for pain	performed equally	1
				Semi-rigid		was applied to		and function, or for	well in this study.	
				orthotic		Immobilize the		any of the	There was no	
				groups.		wrist and thumb		secondary outcomes	significant	
				Stoups.		of all		at one year follow-	difference between	
						participants.		up	the two groups at	
						Immediately		чР	one year for the	
						following			primary outcome	
						surgery the			of PRWHE scores	
						surgeon advised			or for any	
						the patient to			secondary	
						move the fingers			outcome.	
						(composite			Clinically, either	
						extension and			orthosis could be	
						flexion) and thumb			recommended.	
									Patient comfort,	
						interphalangeal			cost and	
						joint (extension			availability may	
						and flexion)			determine choice	
						within the			between orthoses	
						confines of the			in clinical	
						backslab.			practice."	
Davis 2004	Reconstructi	RCT	No COI. No	N = 162	Mean age:	Simple	Follow up	82% good pain	"The outcomes of	Includes patients
(score=6.5)	ve Surgery		mention of	patients with	59 years; 0	trapeziectomy	at 3 and 12	relief and 68%	these 3 variations	in other report
			sponsorship.	painful	males, 162	(n= 62) vs.	months	regained sufficient	of trapeziectomy	below; 21
				trapeziometa-	females.	trapeziectomy		strength for normal	were very similar	bilateral cases -
				carpal osteo-		with Palmaris		activities of daily	at 1-year follow-up	did not always
				arthritis; 183		longus		living at 1-year	evaluation. In the	crossover.
				thumbs; 183		interposition (n=		follow-up. No	short term at least	Results suggest
				surgeries		59) vs.		differences in pain	there appears to be	no differences in
						trapeziectomy		levels at 3 months	no benefit to	outcomes.
						with ligament		(p = 0.58) or 1 year	tendon	
						reconstruction		(p = 0.4). Pain	interposition or	
						and tendon		levels at 3 months	ligament	
						interposition		(No pain or	reconstruction."	
					1	using 50% of		restriction): $T = 12$,		

Davis 2009 Recor (score= 6.5) ve Su	nstructi ırgery	CT No mention of COI or sponsorship.	N = 113 patients; 20 bilateral	Mean age: 60.5 years; 5 males, 103 females.	flexor carpi radialis tendon. (n=62) All thumbs splinted for 6 weeks. Trapeziectomy with Flexor carpi radialis ligament reconstruction, tendon interposition and Kirschner wire insertion followed by splintage for 6 weeks (n= 67) vs. excision of trapezium with no Kirschner wire and immobilization of thumb in soft bandage for 3 weeks (n=61).	Follow up at 3 and 12 months	T+PL = 9, T+LRTI = 10. Discomfort with use but no restriction: T = 24, T+PL = 20, T+LRTI = 19. At 1 year, 81% of trapeziectomy had no pain or only discomfort after use with no activity restrictions vs. 67% of trapeziectomy with LRTI ($p = 0.1$). DASH scores [baseline (95% CI)/3 months/1 year]: Trapeziectomy [65(58-72)/52(44- 59)/34 (26-42)] vs. Trapeziectomy and LRTI [65(59-72)/42 (35-50)/37(28-45). Key pinch: trapeziectomy (4.1/3.5/4.4) vs. trapeziectomy plus LRTI (4.0/3.7/4.7).	"[T]his study found that the results of simple excision of the trapezium, as described by Gervis (1949), are similar to those produced by excision of the trapezium with ligament reconstruction and tendon interposition using the technique described by Burton and Pellegrini (1986)[A]nd, until further larger studies are performed, the value of such additions to trapeziectomy remain unproven."	Suggests no short or intermediate term (1 year) benefits demonstrable of more extensive procedures and trend of benefit for trapeziectomy alone
Hansen 2013 Recor (score=5.0) ve Su	nstructi RC	CT No COI. No mention of sponsorship.	N = 32 hands of 28 patients with Eaton- Glickel stage 2 or 3 TM joint osteoarthritis	Mean age: 56 years; 5 males, 23 females	All patients received an uncemented Elektra grit- blasted titanium hydroxyapatite- coated metacarpal stem in combination	Follow-up at 3, 6, 12, and 24 months	At 24 months the 2- year total translation (TT) similar between C (0.24 mm) and UC (0.19 mm, $p = 0.2$). Grip strength, pain and the Disabilities of the Arm, Shoulder,	"Early implored." "Early implant fixation and clinical outcome were equally good with both cup designs. This is the first clinical RSA study on trapezium cups, and the	Outcome assess using stereoradiograph which have some differential error. Sparse baseline data for a small study

Davis 1997	Reconstructi	RCT	Sponsored by	N = 76	Mean age:	neck/head. Randomized to receive a cemented DLC all-polyethylene cup (c) (n=16) vs. uncemented Elektra chrome- cobalt grit- blasted hydroxyapatite- coated screw up (UC) (n=16) Trapeziectomy	Follow up	scores similar between treatments RSD complications:	for detection of loose implants." "In the short term	there may not be a difference between the cemented polyethylene cups and the uncemented metal cup for total transaction assessed with stereoradiograph Some baseline
(score= 4.5)	ve Surgery		Wishbone Trust. No mention of COI.	patients	58.2 years; 0 males, 76 females.	(n=30) vs. trapeziectomy with soft tissue interposition (n=23) vs. trapeziectomy with ligament re-construction and tendon interposition (n=23)	at 3 and 12 months.	T = 0, T+STI = 0, T+LRTI = 2. Thumb key pinch strengths (baseline/3 months/1 year): T (3.7/3.4/4.8) vs. T+STI (4.0/3.1/4.6) vs. T+LRTI (3.4/3.1/4.4). Hand grip strengths [mean (range in kg)]: T [14.8 (4-46)/14.7(2- 40)/19.2) vs. T+STI [12.4 (4-25)/10.8 (2- 27)/16.9) vs. T+LRTI [11.3 (1- 22)/14.0 (2- 25)/19.1).	at least, tendon interposition and ligament reconstruction do not improve the results of trapeziectomy."	differences. Results suggests trapeziectomy equivalent to combined ligament reconstruction procedure or soft tissue interposition.
Kriegs-Au 2004 (score=4.0)	Reconstructi ve Surgery	RCT	No COI and no sponsorship.	N = 43 patients; 52 thumbs	Mean age: 58.7 years; 6 males, 25 females.	Trapezial excision with ligament re- construction (n=15) vs. trapezial excision with tendon interposition (n=16)	Mean follow up period of 48.2 months	Long-term outcome (Buck-Gramcko Score): 51.3 vs. 44.6 points. Strength measures Group I (ligament reconstruction) vs. (pre-op and final follow-up) vs. Group II (ligament reconstruction and tendon	"Tendon interposition does not affect the outcome after the ligament reconstruction for the treatment of osteoarthritis of the thumb carpometacarpal joint. Furthermore, proximal migration	High dropout rate. Original demographic data not reported. Data suggest tendon interposition not superior to ligament reconstruction.

				interposition): Mean	of the thumb	
				tip-pinch strength	metacarpal does	
				(bar[Pa]): 0.21,	not appear to	
				0.32; 0.23, 0.25;	influence the	
				Mean grip strength	functional	
				bar [Pa]): 0.52,	outcome."	
				0.46; 0.52, 0.44;		
				Mean palmar		
				abduction (degree):		
				10.7, 3.6:2.4; 11.9,		
				4.1:2.9.		

Evidence for the Use of Post-operative Soft Bandages and Splints

There are 7 moderate-quality RCTs(1568, 1681-1686) incorporated into this analysis. There are 4 low-quality RCTs in Appendix 2.(963, 1679, 1680, 1687)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Soft bandage, splint, splinting, immobilization, Postoperative Period, post-operative, rehabilitation, upper, extremity; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomized, randomized, randomized, randomized, systematic, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 120 articles in PubMed, 12 in Scopus, 35 in CINAHL, 1 in Cochrane Library and 18800 in Google Scholar. We considered for inclusion 7 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library 0 from Google Scholar, and 1 from other sources. Of the 18968 articles considered for inclusion, 11 randomized trials and 1 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type Conflict of	(0-11)					
Interest (COI)						
				Immobilization vs. Early	Mobilization	
Crowley 2013	4.0	N = 12 with ulnar	SR: standard rehabilitation	There were no significant	"Our results suggest that	Pilot study of 12 patients. Data suggest early active mobilization lead to
		collateral ligament	for 4 weeks of	differences between groups.	there may be a benefit in	earlier restoration of hand function as well as an earlier return to work but no
RCT		(UCL) injuries of	immobilization in POP		early active mobilization	difference between groups in final ROM. A larger study would support
		the thumb who	thumb spica then 2 weeks of		over	preliminary findings.
No sponsorship or		underwent UCL	flexion, extension,		standard rehabilitation but	
COI.		repair with Mitek	opposition, abduction, and		that a larger randomized	
		bone anchor.	adduction of thumb and		control trial	
		Median age 42	ultrasound, scar massage,		is needed to assess this	
		years.	light function for ADLs, and		more accurately."	
			splint at night and out of			
			home; therapy continued for			
			2-4 more weeks $(N = 6)$			
			VS.			

Germann 2001 RCT No mention of sponsorship or COI.	4.0	N = 20 with extensor indicis proprius transfer for extensor pollicis longer (EPL) tendon rupture. Mean age dynamic motion 52 years, immobilization 42 years.	 (EAM) early controlled active mobilization 3-5 days postop; given custom-made thermoplastic splint; first 4 weeks exercises emphasized flexion, extension, opposition, abduction and adduction of thumb ; next 2 weeks same are SR group (N = 6). Study duration, 8-12 weeks or until participants could resume full ADLs. Dynamic motion protocol (DG group): 2 days after surgery wore forearm splint with limited but progressive increase in active flexion of interphalangeal (IP) joint plus passive extension through wire-rubber band system for 3 weeks (N = 10) vs. immobilization protocol (IG group): forearm cast with 20° wrist extension and abduction for 3 weeks (N = 10). Follow-up at 3, 4, 6, and 8 	Active ROM of IP joint after 4 weeks: DG 74° vs. IG 50° (p<0.05). Grip strength (DG vs. IG): 3 weeks 49% vs. 27% (p<0.05); 4 weeks 45% vs. 60% (p<0.05); 6 weeks 44% vs. 65% (p<0.05). Pinch grip (DG vs. IG): 3 weeks 36% vs. 20% (p<0.05).	"The dynamic protocol can therefore be considered as an important factor for a considerable reduction of overall treatment cost. Although all parameters plateaued after 6 and 8 weeks, the early dynamic motion protocol is the superior concept and has become standard procedure for these patients."	Small sample. Data suggest early dynamic motion group had better ROM of the interphalangeal joint grip and pinch strength at 3 weeks compared to immobilization group. Hand function was comparable between groups at 6 and 8 weeks but the shortened total rehab time in dynamic motion group appears cost effective as there was approximately 10 days of treatment and time off work saved.
			weeks after surgery	Culint va Culi		
S'IL 2011	()	N 50 14		Splint vs. Spli		
Sillem 2011 RCT/Crossover Sponsored by British Columbia Medical Services Vancouver Foundation	6.0	N = 59 with carpometacarpal (CMC) OA of the thumb. Mean age 64 years.	Comfort Cool TM prefabricated neoprene splint (n = 59) vs. Hybrid custom- made splint (N = 59). Participants wore splint when symptomatic, during heavier manual tasks, and at night. Two 4 week treatment periods were separated by a 1 week washout period. Total duration of study was 9 weeks. Follow-up at 4, 5, and 9 weeks and 3 months.	Mean±SD mean difference Australian Canadian Hand Osteoarthritis Hand Index (AUSCAN): 3.7±11.13 in favor of Hybrid splint (p=0.02).	"The Hybrid and Comfort Cool TM splints had an equivalent therapeutic effect on hand function, grip strength, and lateral pinch strength."	Crossover equivalence trial. Data showed comparable results for hand function, grip strength and lateral pinch strength but the Hybrid splint was better at decreasing pain compared to Comfort Cool TM .

				Splint vs. Cont	rol	
Rannou 2009 RCT Sponsored by the Programme Hospitalier de Recherche Clinique National. No COI.	7.5	N = 112 (101 female/11 male) with base-of- thumb osteoarthritis. Mean age splint group 63.0 ± 7.9 years, control 63.5 ± 7.6 years.	Intervention group: custom- made neoprene splint (n = 57) vs. Control group: usual care (n = 55). Follow-up: 1, 6, and 12 months.	Intervention group had reduction in VAS pain score/ reduction in disability by Cochin Hand Function Scale score/patient- perceived disability at 12 months: - 22.2 vs7.9, -14.3 [CI: -23.4 to - 5.2]; $p = 0.002/$ -1.9 vs. 4.3; - 6.3 [CI: -10.9 to -1.7]; $p = 0.008/$ -11.6 vs. 1.5; -13.1 [CI: -21.8 to -4.4]; ($p = 0.003$). Intervention group experienced statistically significant improvements (61% vs. 38%, >10- mm [$p = 0.014$]; 56% vs.31% >15- mm [$p = 0.007$]; and 54% vs. 25% >20-mm [$p = 0.002$]).	"For patients with base-of- thumb osteoarthritis, wearing a splint had no effect on pain at 1 month but improved pain and disability at 12 months."	Data suggest wearing a splint for base of thumb OA had no effect on pain reduction at one month but at 12 months there was pain and function improvement.
Hermann 2014 RCT Sponsored by Norwegian Occupational Therapy Association, Norwegian Rheumatism Association, and the Norwegian Women's Public Health Association. No COI.	7.5	N = 59 (58 female/1 male) with hand osteoarthritis (HOA). Mean age 70.5 ± 6.7 years.	Orthosis group: soft thumb base orthosis and hand exercises focused on increasing joint mobility, grip strength, and stability of CMC joint 2 sessions per day (n = 30) vs. Control group: hand exercises only (n = 29). Study duration 2 months. Follow-up at 2 months.	There were no significant differences between groups.	"[A] soft orthosis seems to have an immediate pain- relieving effect when worn, but no general effect in terms of reduced pain, or improved hand strength or activity performance in participants with CMC-OA when not worn."	Data suggest a soft orthosis has immediate pain relieving benefits when worn but no benefit in terms of pain reduction, improved hand strength or activity when not worn.
Jerosch-Herold 2011 RCT Sponsored by Action Medical Research Charity and National Institute for Health	5.5	N = 154 undergoing fasciectomy of dermofasciectomy for Dupuytren's disease. Mean age hand therapy only 67.5±9.2 years, splint 67.2+10.0 years.	Hand therapy only $(n = 77)$ vs. hand therapy with night splinting worn for 6 months (n = 77). Follow-up for 12 months after surgery.	There were no significant differences between groups.	"Contrary to the widespread belief in the value of postop night splinting for up to 6 months after fasciectomy or dermofasciectomy we found no evidence of its short or long-term effect."	Data suggest comparable results from self-reported outcomes.

Research (NIHR). No COI.						
Cook 1995	4.0	N = 50 patients	Volar splint vs. soft bulky	Excellent results (14 days/1	"We conclude that splinting	Sparse details. Full open incision suggests splints not appropriate post-
		having undergone	dressing removed 1st post-op	month): unsplinted 9/25	the wrist following open	operatively.
RCT		CTR.	day. 1 month follow-up.	(36%)/12/25 (48%) vs. splinted	release of the flexor	
		Patient's age and		1/25 (4%)/2/25 (8%). More rapid	retinaculum is largely	
No mention of		gender are not		RTW in unsplinted (15 days vs. 24	detrimental, although it	
sponsorship of		disclosed.		days, $p = 0.01$). Return to full work	may have a role in	
COI.				in $17v27days$, p = 0.005.	preventing the rare but	
					significant complications of	
					bowstringing of the tendons	
					or entrapment of the	
					median nerve in scar tissue.	
					We recommend a home	
					physiotherapy programme	
					in which the wrist and	
					fingers are exercised	
					separately to avoid	
					simultaneous finger and	
					wrist flexion, which is the	
					position most prone to	
					cause bowstringing."	

Evidence for the Use of NSAIDs Post-operatively

There are 1 high-(639) and 9 moderate-quality(972, 1688-1695) RCTs incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: NSAIDs, Anti-Inflammatory Agents, Non-Steroidal, acetaminophen, Agents, Non-Steroidal, Postoperative, Period, post-operative, rehabilitation, upper, extremity;controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomized, systematic, systematic review, retrospective, and prospective studies. We found and reviewed 40 articles in PubMed, 0 in Scopus, 0 in CINAHL, 0 in Cochrane Library and 13502 in Google Scholar. We considered for inclusion 10 from PubMed, 0 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 0 from other sources. Of the 13542 articles considered for inclusion, 10 randomized trials and 0 systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Husby 2001 RCT No mention of	8.0	N = 42 (9) female/33 male) due to be operated on for DC or CTS.	Post-op naproxen (500mg BID) vs. Paracetamol (1000mg QID) vs. Placebo for 3 days immediate post- op CT release surgery.	Post-op CTS swelling as percentage of pre-op volume 3.5 ± 3.3 vs. 4.6 ± 3.2 vs. 3.8 ± 2.6 . For Dupuytren's contracture releases 5.6 ± 3.8 vs. 6.9 ± 3.7 vs. 8.2 ± 5.1 . Additional analgesics used 0, 2, and 8 in	"Naproxen might have a clinical relevant effect on swelling when used on minor surgery in the hand, unlike paracetamol. Naproxen might be a useful	Results suggest a beneficial effect that the studies were not powered to detect.
sponsorship or COI.		Mean age 61 years.	Second trial 35 with Dupuytren's contracture.	naproxen, paracetamol and placebo groups.	analgesic during the immediate postoperative phase."	
Sen 2006 RCT No mention of sponsorship or COI.	7.5	N = 45 (24 female/21 male) ASA I-II undergoing hand or forearm surgery. Mean age control 45 years, L-IVRA 42 years, L-IV 39 years.	Control group: IV saline 0.9% 2 ml + intravenous regional anesthesia (IVRA) with lidocaine 0.5% and saline (n = 15) vs. L-IVRA group: IV saline + IVRA lidocaine 0.5% with lornoxicam 8mg (n = 15) vs. L-IV group: intravenous lornoxicam 8mg + IVRA lidocaine 0.5% and saline (n = 15). Follow-up for 24 hours post-op.	Mean±SD intraoperative fentanyl (control vs. L-IVRA vs. L-IV): amount (μ g) 23.3±25.8 vs. 3.3±12.9 vs. 19.4±18.6 (p = 0.014); requirement time (min): 15.8±6 vs. 28±9 vs. 13.6±8 (p = 0.042). Mean VAS (control vs. L-IVRA vs. L-IV): tourniquet release 3.33 vs. 1.73 vs. 3.13 (p = 0.003); tourniquet release after 2 hour 2.6 vs. 2.0 vs. 2.93 (p = 0.031). Mean±SD time to first postoperative analgesic request, minutes (control vs. L-IVRA vs. L-IV): 28±20 vs. 229±85 vs. 95±24 (p = 0.0038). Mean±SD diclofenac mg (control vs. L- IVRA vs. L-IV): 85±26 vs. 15±31 vs. 67±36 (p <0.001). Mean±SD paracetamol consumption mg (control vs. L-IVRA vs. L-IV): 1400±207 vs. 200±253 vs. 1100±320 (p <0.0001).	"[A]ddition of lornoxicam to lidocaine in IVRA shortens sensory and motor block onset times, prolongs sensory and motor block recovery times, and improves tourniquet pain while it prolongs first analgesic requirement time, and decreases total amount of analgesic."	Pilot study. Data suggest adding lornoxicam to lidocaine for intravenous regional anesthesia shortens the onset of sensory and motor block, decreases tourniquet pain and improves post-op analgesia. However, data suggest recovery times were prolonged in lornoxicam plus lidocaine group.
Ashworth 2002 RCT	7.0	N = 47 (20) female/29 male) scheduled for inpatient	Systemic presurgery group: ketorolac 20mg intravenously in non- operative arm before	VAS score 24 hours after surgery: 12.2 mm higher in systemic postsurgery group vs. systemic presurgery group (p=0.037).	"[T]here seems no benefit to be gained by giving ketorolac as intravenous regional anaesthesia compared with the	Data suggest no benefit in the administration of ketorolac post surgery.
No mention of sponsorship or COI.		elective hand surgery. Mean age systemic presurgery 57 years, regional presurgery 54.7 years, systemic postsurgery 53.4 years.	surgery $(n = 15)$ vs. regional presurgery group: ketorolac 20mg intravenously to operative arm after tourniquet inflation $(n = 15)$ vs. systemic postsurgery group: ketorolac 20mg intravenously in non- operative arm after		usual method of giving it intravenously into the general circulation before the operation."	

			surgery (n = 15). Follow- up 1, 2, 4, 6, and 24 hours after surgery.			
Rivera 2008 RCT Sponsored by Bureau of Medicine and Survey at the Navy Department in Washington, DC, Clinical Investigation Program. No	7.0	N = 60 (20 female/35 male) undergoing hand surgery. Mean age ketorolac 39.5±13.6 years, placebo 37.58±12.2 years.	Bier block of 50mL of 0.5% lidocaine + 20mg ketorolac (n = 30) vs. Bier block of 50mL of 0.5% lidocaine + normal saline (n = 30). Follow-up 48 hours after discharge.	VAS post anesthesia care unit (PACU) ketorolac vs. control: 30 min 0.48 vs. 2.20 (p<0.05); 45 min 0.38 vs. 2.23 (p<0.05); 60 min 0.45 vs. 2.50 (p<0.05). Median time (minutes) to second request of postop analgesic (ketorolac vs. placebo): 1102 vs. 505 (p=0.048).	"Based on the results of this study we recommend that 20 mg ketorolac be considered in intravenous regional anesthesia."	Blinding is poorly described. Compared to placebo data suggests addition of ketorolac (20 mg) to lidocaine for controlling postoperative pain after non-traumatic hand and wrist surgery may be beneficial for reducing subsequent pain medication requests.
mention of COI. Sai 2001 RCT No mention of sponsorship or COI.	6.5	N = 120 (gender not specified) undergoing hand surgery with brachial plexus block. Mean age 43 years.	Ampiroxicam 27mg orally vs. alegioxa 100mg, orally vs. placebo 3 hours before surgery. Follow-up when each patient requested an analgesic suppository.	Median pain scores at time of first analgesic request (analgesic vs placebo): 1.0 vs. 4.0 (p <0.0001). Median pain scores at 24 hours after operation (analgesic vs. placebo): 0 vs. 2.0 (p <0.0001). Number of patients requiring analgesic suppositories (analgesic vs placebo): 6 vs 44 (p<0.0001).	"We suggest that preoperative administration of ampiroxicam improves pain control during the early post-operative phase."	Sparse methods. Data suggest administration of ampiroxicam significantly reduced the post-operative pain and need for increased pain medication.
Cornesse 2010 RCT No mention of sponsorship or COI.	6.0	N = 60 undergoing minor hand surgery (carpal tunnel release or synovial cyst resection) under intravenous regional anesthesia. Mean age 1 g 51±15 years, 2 g 55±18 years.	1 g intravenous paracetamol before surgery (n = 30) vs. 2 g intravenous paracetamol before surgery (n = 30). Discharged after 4 hours. Once at home, patients instructed to take 1 g of paracetamol orally every 6 hours. Follow-up for 24 hours after surgery.	Pain scores: lower in 2 g paracetamol intravenous group vs. 1 g paracetamol intravenous (p=0.04).	"[A]n intravenous loading dose of 2 g paracetamol provides better analgesia than 1 g in adult patients undergoing minor hand surgery."	Unclear if loading doses were blinded to treater. Data suggest increasing the loading dose of paracetamol from 1g to 2 g improves post-op analgesia after minor hand surgery.
Rawal 2001 RCT	6.0	N = 120 ASA I- II undergoing ambulatory hand surgery with IV regional	Group T: tramadol 100 mg orally every 6 hours (n = 40) vs. Group M: metamizol 1 g every 6 hours (n = 40) vs. Group	Mean ±SD number of study tablets (tramadol vs. metamizol vs. paracetamol) day 1/ day 2: 5.5±1.1/ 5.0±2.6 vs. 4.9±1.1/ 6.0±2.9 vs. 2.8±1.2/ 3.1±0.6 (p<0.05 metamizol vs. tramadol	"None of the study drugs provided adequate analgesia for all patients, as about 40% required rescue analgesia."	Data suggest tramadol most effective in pain relief of ambulatory hand surgery patients. It was associated with the greatest number and highest severity of adverse events, thus highest patient dissatisfaction largely related to severity of nausea and dizziness.

No mention of sponsorship or COI.		anesthesia. Mean age tramadol 42.1±14.1 years, metamizol 44.5±13.8 years, paracetamol 46.0±14.2 years.	P: paracetamol 1 g every 6 hours (n = 40) from discharge. Follow-up after 2 days.	on day of surgery; p<0.001 paracetamol vs. tramadol and metamizol on both days).		
Spagnoli 2011 RCT No mention of sponsorship or COI.	6.0	N = 114 with postoperative pain following hand and foot surgery under brachial plexus block. Mean age 56 years.	Group TP: tramadol/paracetamol 37.5/325mg (n = 57) vs. Group P: paracetamol monotherapy 1000 mg (n = 57) 2 tablets a day for 3 days. Follow-up 7 days after discharge.	Mean VAS (paracetamol vs. tramadol/paracetamol): post-op 0-6 hours 1.92 vs. 0.40 (p <0.005). Number requiring extra dose analgesic post-op (paracetamol vs. tramadol/paracetamol): 0-6 h 32 vs. 4 (p<0.005); 6-12 h 11 vs. 0 (p <0.005); 12-24 h 7 vs. 0 (p <0.01).	"The association of tramadol and paracetamol appears to have more efficacy when compared with paracetamol monotherapy for acute postoperative pain after hand and foot surgery."	Data suggest some benefit in use of tramadol and paracetamol combination compared to paracetamol therapy alone for the management of acute postoperative pain post hand and foot surgery.
Jankovic 2008 RCT No mention of sponsorship or COI.	5.5	N = 45 ASA physical status I- II undergoing ambulatory hand surgery. Mean age Group L 34±12 years, Group LK 33±12 years, Group LDK 35±13 years.	Group L: 3mg/kg 2% lidocaine for intravenous regional anesthesia (IVRA) (n = 15) vs. Group LK: 3mg/kg 2% lidocaine + 30 mg ketorolac for IVRA (n = 15) vs. Group LDK: 3 mg/kg 2% lidocaine + 8 mg dexamethasone + 30 mg ketorolac for IVRA (n =15). All groups received 0.9% NaCl added for total volume of 40mL. All patients allowed 10mg ketorolac every 6 hours as needed at home. Follow- up 24 hours after surgery.	Median postoperative VAS scores post anesthesia care unit admittance (PACU ad.) 120 min (Group L vs. Group KL vs. Group LDK): 3 vs. 3 vs. 2 (p<0.05, Group LDK vs. Group L). Mean±SD 24 hour total ketorolac tablet consumption (Group L vs. Group LK vs. Group LDK): 3.8±1.3 vs. 2.2±1.6 vs. 1.3±0.6 (p<0.05 Group LDK vs. Group L; p<0.05 Group LDK vs. Group LK).	"The addition of both ketorolac and dexamethasone to lidocaine IVRA provided improved tourniquet tolerance, prolonged analgesia in the postanesthesia care unit during the first 2 h after the medical pro c e d u re, and diminished the need for analgesic supplements during the first day after ambulatory hand surgery."	Sparse methodology. Data suggest IVRA of lidocaine, ketorolac, and dexamethasone provides effective perioperative analgesia for ambulatory hand surgery patients.
Reuben 1995 RCT No mention of sponsorship or COI.	5.0	N = 60 undergoing hand surgery (carpal tunnel release, excision of a ganglion cyst, or tenolysis). Mean age control 49 ± 17 years, IV-K 46 ± 21	Control group: 0.9% intravenous (IV) saline 2mL and intravenous regional anesthesia (IVRA) with saline added to it (n = 20) vs. Group IV-K: ketorolac 60 mg IV and saline added to IVRA solution (n = 20) vs. Group IVRA-K: saline IV	Median postoperative pain scores (control vs. IV-K vs. IVRA-K): VAS 30: 1.1 vs. 0.9 vs. 0.3 ($p < 0.0001$ IVRA- K vs. other groups); VAS 60: 1.0±1.6±0.7 ($p = 0.0131$ IVRA-K vs. other groups). Mean±SD 24 hour total medicine (control vs. IV-K vs. IVRA- K): 4.6±1.3 vs. 3.0±1.1 vs. 1.9±1.4 ($p=0.0003$ IVRA-K vs. other groups). Mean±SD time to first medicine	"[T]he addition of K to 0.5% lidocaine for IVRA provided better control of intraoperative tourniquet pain, improved analgesia in the PACU during the first postoperative hour, and diminished the heed for analgesic supplements during the first postoperative day."	Sparse methods. Data suggests addition of ketorolac to 0.5% lidocaine provided better control of intraoperative tourniquet pain, improved PACU pain relief during the first hour post-op and up to 24h post-op compared to either lidocaine alone or placebo.

years, IVRA-K	and ketorolac 60 mg	(control vs. IV-K vs. IVRA-K):		
50±19 years.	added to IVRA solution (n	281±2.44 vs. 356±255 vs. 653±501		
	= 20). All patients allowed	(p=0.0241 IVRA-K vs. other groups).		
	Tylenol No. 3 tablets			
	every 4 hours as needed			
	for pain at home. Follow-			
	up 24 hours.			

Evidence for the Use of Arnica Post-Operatively

There is 1 high-(772) and 1 moderate-quality(1696) RCT incorporated into this analysis.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Arnica, Montana, Postoperative Period, post-operative, rehabilitation, upper, extremity; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 2 articles in PubMed, 9 in Scopus, 19 in CINAHL, 6 in Cochrane Library and 144 in Google Scholar. We considered for inclusion 1 from PubMed, 0 from Scopus, 0 from CINAHL, 2 from Cochrane Library 0 from Google Scholar, and 0 from other sources. Of the 180 articles considered for inclusion, 2 randomized trials and 2 systematic studies met the inclusion criteria.

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Stevinson 2003 RCT Sponsored by Dr Susil Kumar and Jamila Mitra Charitable Trust (UK); homeopathic and placebo tablets supplied by A Nelson & Co Ltd. No mention of COI.	8.5	N = 62 (49 female and 13 male) CTR patients. Ages of 18 and 70 years.	Arnica 30C (n = 21) vs. Arnica 6C (n = 21) vs. Placebo TID for 7 days pre-op and 14 days post-op (n = 22).	No pain differences ($p = 0.79$) and bruising ($p = 0.45$) at Day 4. Swelling and analgesic use did not differ. Adverse events reported by 2 patients in arnica 6C group, 3 in placebo, 4 in arnica 30C. Results do not suggest homeopathic arnica has an advantage over placebo in reducing post-op pain, bruising and swelling in patients undergoing elective hand surgery.	"Since the experiences of patients who receive no benefit from Arnica are less likely to be reported, the myth becomes reinforced."	One surgeon operated. Data suggest no efficacy.
Jeffrey 2002 RCT Ian Wiggle and Weleda Ltd provided arnica and placebo	6.0	N = 32 Endo-scopic CTR patients Arnica group had 12 men:8women, and Placebo group had 6 men: 11 women.	Arnica D6 3 tablets TID plus Arnica 5% ointment TID vs. double placebo Follow-up was 2 weeks after surgery	Wrist circumferences and grip strengths both non- significant. Pain reduced in Arnica compared with placebo at 2 weeks ($p < 0.03$).	"The role of homeopathic and herbal agents for recovery after surgery merits further investigation."	Baseline data not given and 1 week data suggest trend. Possible inadequate randomization. Objective measures showed no differences.
preparations. No mention of COI.		Average male age 51, and female age is 55.				

Evidence for the Use of Cryotherapy/Cooling Blanket During Post-operative Rehabilitation

There is 1 moderate-quality RCT incorporated into this analysis.(1697)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: Cryotherapy OR Cooling Blanket / Post-operative rehabilitation and rehabilitation of patients with functional deficits: CTS and other disorders; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found, reviewed and considered for inclusion 17 articles in PubMed, 0 in Scopus, 2 in CINAHL, 0 in Cochrane Library, 3883 in Google Scholar, and 0 in other sources. One RCT met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	(0-11)					

Conflict of Interest (COI)						
Hochberg 2001	4.0	N = 72 (46 males/26 females) adults presenting Carpal Tunnel		Pain ratings (baseline/day 3): cooling blanket $(8.3\pm1.8/4.5\pm2.3)$ vs. ice	Use of a "(temperature-controlled cooling blanket) compared with traditional ice therapy, provides	Incisional length of 6cm large compared with most recent trials
RCT		Syndrome who were legible for single open surgical procedures;	ice pack for 3 days.	(8.3±1.3/7.3±2.5), p <0.001.	patients with greater comfort and lessens the need for narcotics."	which may have affected results and limits study generalizability to
No sponsorship or COI.			Follow-Up immediate			treatment of larger open CTR
		No specification on mean age of study sample.	following post-op and after three days.			incisions.

Evidence for Mobilization During Post-operative Rehabilitation

There are 13 moderate-quality RCTs(958, 1385, 1388, 1698-1707) (Wakefield 00) incorporated into this analysis. There are 4 low-quality RCTs(1708-1711) in Appendix 2.

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: exercise, physical therapy, occupational therapy, upper extremity, postoperative period, postoperative, rehabilitation, upper extremity; controlled clinical trial, controlled trials, randomized controlled trial, randomized, randomized, randomized, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1,005 articles in PubMed, 6,515 in Scopus, 53 in CINAHL, 499 in Cochrane Library, 50,100 in Google Scholar, and 0 from other sources. We considered for inclusion 5 from PubMed, 1 from Scopus, 0 from CINAHL, 0 from Cochrane Library, 0 from Google Scholar, and 13 from other sources. Of the 119 articles considered for inclusion, 17 randomized trials and 2 systematic studies met the inclusion criteria.

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments			
Study Type	(0-11)								
Conflict of									
Interest (COI)									
	Mobilization vs Immobilization Post-op								
Rath 2009	5.0	N = 50 (11	Immediate active motion protocol	Mean±SD PIP joint angles in	"The current study	Data suggest IAMP group yields earlier pain relief and quicker restoration of function.			
		female/39 male)	(IAMP) 2 days after tendon	open hand position: total digits	demonstrates that an early				
RCT		with supple claw	transfer for 3 weeks $(n = 25)$ vs.	at discharge IAMP 1±9° vs.	motion protocol results in				
		hand	immobilization after tendon	immobilization $5\pm9^{\circ}$ (p =	quicker restoration of				
Sponsored by the		deformities,	transfer for 3 weeks with therapy	0.005). Mean±SD PIP joint	function."				
LEPRA Society.		ulnar nerve	beginning 22 days after surgery (n	angles in the intrinsic plus					
No COI.		paralysis for >1	= 25). Follow-up monthly for 3	position: total digits at					
		year and	months after discharge and then at	discharge IAMP 10±10° vs.					
		completion of	3 month intervals for 1 year, then	immobilization 16±10° (p =					
		multi-drug	once a year.	0.00). Mean±SD zero pain					
		therapy for		level (VAS scores) achieved,					
		Hansen's		week: IAMP 3±1 vs.					
		disease		immobilization 6 ± 1 (p < 0.001).					
		undergoing							
		tendon transfer.							
		Maan and IAMD							
		Mean age IAMP							
		31±10 years,							

		immobilization group 28±10				
Giessler 2008 RCT No mention of sponsorship. No COI.	4.0	N = 21 (10 female/11 male) with a closed extensor pollicis longus (EPL) tendon rupture in zones T4 and T5 treated with tendon transfer. Mean age DY 51 years, AC 59 years.	Dynamic extension splinting (DY) starting 2 days postoperative with limited ROM of IP joints vs. early active (AC) protocol starting 2 days postoperative: early active thumb extension with limited flexion in a splint. Both groups wore a dynamic extension splint between exercises and saw hand therapist at least 3 times a week. Splints completely removed after 3 weeks. Follow-up 3, 4, 6, 8 weeks post-op.	Total ROM in IP joint at 3 weeks (splint removal): higher in DY group vs. AC group (p=0.027). Relative ROM of CMP and IP joints vs. contralateral thumb week 3: active ROM of IP joints DY group 72% of contralateral side vs. AC group 49% of contralateral side (p=0.005).	"Considering the small group sizes, both regimens (dynamic vs early active) achieved comparable clinical results. The early active protocol does not have a notably higher complication rate but fails to accelerate rehabilitation."	Small sample (N = 21). Data suggest comparable efficacy between groups although the ear active protocol reported a higher complication rate without rehabilitation rate acceleration.
	I		Physic	otherapy Post-op		
Souer 2011 RCT No sponsorship. COI, one more of the authors received payments or services, either directly or indirectly (i.e., via his or her institution), from a third party in support of an aspect of this work.	5.0	N = 94 with unstable distal radial fracture treated with open reduction and volar locking plate fixation and screws alone within 4 weeks of injury. No mention of gender distribution. Mean age occupational therapy 50.7 years, independent exercise 48.6 years.	Surgeon-directed independent exercises: wrist splint until full finger and forearm motion and then wean out wearing splint to regain wrist motion; performed exercises for finger flexion, forearm supination and pronation 3-4 times a day for at least 30 minutes (n = 48) vs. occupational therapy: supervised exercises to regain digit, wrist, and forearm motion and strengthen hand (n = 46). Follow-up at 6 weeks, 3 months and 6 months after surgery.	3 month outcomes (independent exercise vs. occupational therapy): grip strength (lb) 55 ± 22.6 vs. $45\pm$ 17.4 (p <0.05); grip strength (% of value on uninjured side) $81\pm$ 18.9 vs. 66 ± 16.0 (p<0.05); pinch strength (% of value on uninjured side) 90 ± 23.7 vs. 80 ± 22.7 (p<0.05); Gartland and Werley score (points) 2 ± 1.3 vs. 2 ± 2.2 (p <0.05). 6 month outcomes (independent exercise vs. occupational therapy): wrist flexion- extension arc (deg) 129 ± 22.6 vs. 118 ± 17.7 (p<0.05); Wrist flexion-extension arc (% of value on uninjured side) 88 ± 11.7 vs. 84 ± 7.3 (p <0.05); Wrist extension (deg) 62 ± 13.7 vs. 55 ± 10.2 (p <0.05); Ulnar deviation (deg) 40 ± 9.2 vs. 32 ± 12.1 (p <0.05); Ulnar deviation (% of value on uninjured side) 93 ± 19.4 vs.	"[T]his clinical trial supports the concept that patient education and independent exercises are, on the average, adequate for optimal recovery from a distal radial fracture treated with open reduction and volar plate fixation."	Data suggest formal, prescribed PT is not as good as independent exercises for improving ROM and/or disability post volar plate fixation surgery for distal radial fractures.

Krischak 2009 RCT No mention of sponsorship. No COI.	4.5	N = 46 (30 female/16 male) with distal radius fractures undergoing internal fixation with locking plates after open reduction. Mean age home exercise 53.7 ± 17.9 years, physical therapy 56.0 ± 11.1 years.	Physical therapy, 12 sessions lasting 20-30 minutes each, 6 weeks (n = 23) vs. unassisted home exercise program for 6 weeks, detailed instructions and demonstrations given after surgery (n = 23). All put in splint after surgery for 2 weeks. Splint removed for therapy and then back on afterward. Follow-up 1 week after surgery and after 6 weeks of treatment.	82±29.2 (p <0.05); Supination (deg) 90±0.9 vs. 84±13.1(p <0.05); Grip strength (% of value on uninjured side) 92±19.8 vs. 81±16.4 (p<0.05); Mayo wrist score (points) 83.4±12.7 vs. 79.0±9.9 (p <0.05). Mean±SD Patient Rated Wrist Evaluation (PRWE) score at 6 weeks: home exercise 18.5±15.9 vs. physical therapy 36.1±13.9 (p <0.001). Mean grip strength relative to opposing healthy side 6 weeks: home exercise 54% of starting base value vs. physical therapy 32% of starting base value (p=0.003). ROM of extension and flexion after 6 weeks of treatment: home exercise 79% of uninjured side vs. physical therapy 52% of uninjured side (p <0.001). Ulnar and radial abduction compared to uninjured side at 6 weeks: home exercise 70% vs. physical therapy 59% (p =	"[I]nstructions in a home exercise program using a booklet with guidance is a valid alternative to prescribed physical therapy."	Data suggest PT after volar plating of wrist fractures is effective for post-op rehab although data in study is self-reported in a training diary.
				0.013).	Occupational Therapy	
		N. 150 (110				
Pomerance 2007	7.0	N = 150 (110 female/40 male) with NCS	Therapy (2 week course, 6 sessions, nerve gliding, ROM, strengthening) ($n = 73$) vs. No	RTW at first post-op visit in $80/93$ (86.0%) commercial insurance vs. $15/40$ (37.5%)	"The current randomized study failed to show benefit in a 2-week course	Small incision. Higher costs and no demonstrable benefits from supervised therapy. Data suggest much lower prompt RTW in WC patients. Costs higher for therapy (\$600 Medicare and \$900 WC).
RCT		confirmed CTS underwent CTR.	therapy. No restrictions to motion and no splints either group. RTW	WC vs. 12/17 (70.6%) Medicare patients. Between	of hand therapy after carpal tunnel release using	
No sponsorship. No mention of COI.		Average age 46 years.	allowed at first post-op visit (N = 77).	group's post-op grip and pinch strengths not different. DASH scores (19±17/18±17) not different.	a short incision. The cost of supervised therapy for an uncomplicated carpal tunnel release seems unjustified."	
Provinciali 2000	5.5	N = 100 (82 female/18 male) EDS confirmed	Multimodal rehabilitative treatment vs. progressive home exercise program	"No difference in symptom occurrence between the two groups was detected after 1 and	"A rehabilitation approach after hand surgery is clinically relevant to	Study suggests no differences in outcomes.

RCT				3 months. One month after	accelerate recovery but	
		Average age of		surgery, only patients in the	neither modifies	
No mention of		54.69 years.		first group showed motor	functional recovery nor	
sponsorship or		5 1.05 years.		dexterity improvement	reduces symptom	
COI.				according to NHPT and JTT	occurrence."	
001.				scores. At the 3-month follow-	occurrence.	
				up, the two groups did not		
				differ but the group undergoing		
				rehabilitation showed a shorter		
				return-to-work interval."		
Mitsukane 2015	4.5	N = 28 (19	Experimental group: 30 repetitive	Mean±SD change in grip	"This study suggests that	Small sample, sparse methods. Data suggest grip strength increased in experimental group
Millioundillo 2015	1.5	female/9 male)	wrist extensions of injured wrist	strength (kg) post intervention	repetitive maximal wrist	immediately after repetitive wrist extension but not in control group. Pain decreased in
RCT		with unilateral	with maximal isometric	(experiment vs. control):	extension is useful in	experimental group vs. control group.
Rei		distal radial	contraction for 3 seconds followed	$16.4\pm9.9 \text{ (p=0.01) vs. } 15.3\pm8.2$	physical examinations to	experimental group vs. control group.
No mention of		fracture.	by 3 seconds of rest repeated 10	(p=0.26). Mean±SD change in	reveal the maximal grip	
sponsorship or		indetuie.	times for 1 minute with a minute	VAS (mm) post intervention	force of patients with	
COI.		Mean age	rest, sequence repeated 3 times	(experiment vs. control):	DRF, and it is effective as	
001.		63 ± 13.0 years.	during a 6 minute period $(n = 14)$	2.3 ± 5.1 (p=0.03) vs. 13.3±23.0	a warm-up training	
			vs. control group: no exercises, 6	(p=0.13).	procedure in preparation	
			minutes of rest ($n = 14$). Follow-up	(F).	for conventional grip	
			after intervention and 10 minutes		strength exercises."	
			after that.		č	
Rostami 2013	4.5	N = 23 (17	Mirror therapy (MT):	Mean±SD change total active	"Findings suggest that	Data suggest MT plus conventional rehab was than control group.
		female/6 male)	concentrating on ROM exercises	motion (TAM) pre to post/post	adding a regular and	
RCT		with active	on unaffected hand in mirror	to follow-up (MT vs. control):	scheduled programme of	
		ROM	while performing ROM exercises	154±32 vs 61±24 (p=0.001)/	MT to classic	
Sponsored by the		impairment of	with impaired hand not in mirror	NS. Mean±SD change DASH	rehabilitation techniques is	
Medical		hand after	30 minutes a day, 5 days a week	score pre to post/post to follow-	effective for early and	
Research		orthopaedic	for 3 weeks plus half hour of	up (MT vs. control): -34±7 vs	maximum improvement of	
Council in		injuries.	conventional rehab (tendon	$15\pm11 \text{ (p} = 0.001)/ -5\pm4 \text{ vs.}$ -	motor recovery and	
Ahvaz			gliding exercises, blocking	$10\pm 6 \ (p=0.02).$	functional abilities in the	
Jundishapur		Mean age 38	exercises, place-and-hold		patients with orthopaedic	
University of		years.	exercise, PNF techniques,		injuries."	
Medical			dynamic splinting, functional			
Sciences. No			activities, and ADLs) after each			
COI.			MT session ($n = 15$) vs. control			
			group: conventional rehabilitation			
			for 30 minutes plus 30 minutes			
			direct observation of affected			
			hand performing movements 5			
			days a week for 3 weeks $(n = 15)$.			
			Both groups performed a 15			
			minute home program, MT for			
		1	MT group and active range of	1		

Guzelkucuk 2007 RCT No sponsorship. No mention of COI.	4.0	N = 36 with functional loss due to hand injury. Bone, tendon, peripheral nerve injuries, with impaired hand function. No mention of gender	motion (AROM) for control group, twice daily. During 3 week follow-up, both groups attended a scheduled rehab program (hand therapy) 30 minutes a day, 3 days a week. Assessments at baseline and day after 3 week intervention ended. Follow-up 3 weeks after intervention ended. Controls: rehab program (physical therapy, passive, active assist, active ROM, strengthening, BID) vs. therapy plus therapeutic exercises (same exercises plus 1 session of therapeutic activities). Sessions 30 minutes, 5 days a week for 3 weeks. HEP after 3 weeks; 2 month follow-up.	Grip strength (baseline/post/follow-up): Control $(10\pm9/10\pm9/11\pm10)$ vs. therapeutic exercises $(7\pm5/13\pm6/23\pm14)$, p <0.001. Pinch strength, Jebsen tests also all p <0.001.	"Because of the complex anatomy, determination of the most appropriate treatment may not be easy in an injured hand. Our results showed that the therapeutic activities that mimick the ADL improve the functions of the hand more effectively."	Some sparse details. Heterogeneous disorders. Seen 1.5-6 months after injuries. More contact time in exp. group. Trend to longer time since injury in controls. Also suggests benefits of therapy with emphasis on functional exercise.
		distribution. Average age of 23±3 years.				
	1		L	Cross-	Education	
Magnus 2013 RCT Sponsored by Royal University Hospital Foundation Grant, doctoral funding from Natural Sciences and Engineering Research Council of Canada, the Dean's Scholarship from the University of	4.0	N = 51 females with unilateral distal radius fracture <2 weeks old. All >50 years of age. Mean age 63.0±10.0 years.	Standard rehabilitation: forearm casting; 6 visits to clinic at weeks 1, 3, 6, 9, 12, and 26 post- fracture; and adoption of 3 exercise protocols targeting the fractured side; active ROM of neck, shoulder, elbow, fingers, and thumb while in cast; cast removed – exercises focused on improving active and passive ROM of fractured wrist and hand; stretching and strengthening with encouragement to continue at home after 12 weeks, control (n = 24) vs. standard rehabilitation + strength training of nonfractured limb for 26 weeks, train (n = 27). Follow-up for 26 weeks.	Mean±SD handgrip strength of fractured arm 12 weeks postfracture (training vs. control): 17.3 \pm 7.4 kg vs. 11.8 \pm 5.8 kg (p = 0.017). Mean handgrip strength of nonfractured arm at 12 weeks postfracture (training vs. control): 30.7 \pm 6.5 vs. 24.9 \pm 4.4 (p = 0.017). Mean \pm SD ROM data (degrees) 12 weeks postfracture (training vs. control): flexion/extension 100.5 \pm 19.2 vs. 80.2 \pm 28.7 (p = 0.017).	"This intervention study found that strength training the nonfractured limb was associated with significantly improved strength and ROM in the fractured limb via cross- education in the early stages of rehabilitation."	All subjects were female. Data suggest at 12 weeks, strength training for non-fractured extremity after distal radius fracture was associated with improved strength and ROM.

Saskatchewan, and a Graduate Scholarship from the University of Saskatchewan. No COI.						
				Paraffin I	Bath Therapy	
Dilek 2013 RCT No sponsorship or COI.	6.0	N = 46 (40 female/6 male) with bilateral hand osteoarthritis. Mean age paraffin 58.87±9.47 years, control 59.95±8.71 years.	Group 1: dip-wrap paraffin bath therapy at 50°C 10 dips followed by 15 minutes in a plastic bag until paraffin cooled 5 times a week for 3 weeks for both hands (n = 29) vs. Group 2: control (n = 27). All patients received education about disease and joint protection techniques and allowed paracetamol. Follow-up at 3 and 12 weeks.	Median pain at rest: 3 weeks paraffin group 2.00 vs. control 4.00 ($p = 0.01$); 12 weeks 0.00 vs. 5.00 ($p < 0.001$). Median grip strength: right hand 12 weeks paraffin group 20.00 vs. control 13.33 ($p = 0.004$); left hand 12 weeks 18.00 vs. 12.00 ($p = 0.010$). Median pinch strength: right hand chuck pinch 12 weeks 5.33 vs. 3.66 ($p = 0.03$; right hand lateral pinch 12 weeks 6.00 vs. 4.33 ($p = 0.01$); left hand lateral pinch 4.83 vs. 3.66 ($p=0.01$); left hand lateral pinch 12 weeks 5.15 vs. 4.33 ($p=0.05$). Median painful joint: 12 weeks 3.00 vs. 10.00 ($p = 0.04$).	"Paraffin bath therapy seems to be effective both in reducing pain and tenderness and maintaining muscle strength in hand osteoarthritis."	Data suggest paraffin bath therapy had significant benefit in hand OA both for pain reduction and muscle strength retention suggesting paraffin may be a short term therapy option.
				Massa	ge Therapy	
Field 2011 RCT Sponsored by Johnson & Johnson Pediatric Institute and Massage Envy. No mention of COI.	4.0	N = 46 with hand pain. No mention of gender distribution. Mean age 50 years.	Massage therapy once a week for 15 minutes for 4 weeks and taught self-massage to be done once daily vs. standard treatment control. Assessments on the first and last days of the 4 week study	First day post: mean pain massage 2.4 vs. control 2.6 (p < 0.05); mean grip strength 7.7 vs. 6.3 (p < 0.05); mean anxiety 27.19 vs. 30.2 (p < 0.001); mean depression 1.9 vs. 3.9 (p < 0.01). Last day post: mean pain 1.3 vs. 2.8 (p < 0.01); mean grip strength 8.5 vs. 6.7 (p < 0.005); mean anxiety 28.4 vs. 29.7 (p < 0.01); mean depression 1.4 vs. 3.9 (p = < 0.05).	"The current study suggests that the combination of therapist and self-massage as a more intensive therapy is effective and would likely be more cost-effective for reducing pain and enhancing grip strength."	Data suggest massage therapy group experience less pain, greater grip strength and a more positive mood vs. control group causing less anxiety and better sleep.
					rapy/Mobilization	

Wakefield 2000	6.5	N = 96 (72	Taught and given standard sheet	Only flexion/extension at 26	"Our study has shown that	Data suggest home exercises for uncomplicated fractures are beneficial.
		female/9 male)	of home exercises by	weeks was significantly	home exercises are	
RCT		with fracture of	physiotherapist, referred for	different (p=0.001) in the two	adequate rehabilitation	
		distal radius,	course of physiotherapy	group comparison via	after uncomplicated	
No sponsorship		previously	(n=49)	ANOVA. No significant	fracture of the distal	
OR COI.		treated by		differences were observed in	radius, and routine referral	
		plaster	vs	parameters between groups.	for a course of	
		immobilization	Taught and given standard sheet		physiotherapy should be	
			of home exercises only	The physiotherapy group	discouraged. The role of	
		Mean age of 72		displayed significantly higher	physiotherapy in patients	
		years (55 – 90).	Follow up	flexion/extension improvement	at high risk of a poor	
			Week 6, Month 3, Month 6	at six months (p=0.044). There	outcome requires further	
				were no significant differences	investigation.	
				between each group at six		
				months.		

Evidence for use of Radiotherapy for Prevention of Progression of Dupuytren's Disease

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: radiotherapy, dupuytren contracture, dupuytrend disease, hand; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomily; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 4 articles in PubMed, 32 in Scopus, 1 in CINAHL, 0 in Cochrane Library, 2784 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, CINAHL, Cochrane Library, Google Scholar, and 0 from other sources. Of the 1 article considered for inclusion, 1 randomized trial and 0 systematic studies met the inclusion criteria.

Evidence for the use of Collagenase Injections for treatment of Dupuytren's disease

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: collagenase injections, dupuytren contracture, dupuytren disease, hand; controlled clinical trial, controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 5 articles in PubMed, 68 in Scopus, 0 in CINAHL, 2 in Cochrane Library, 1126 in Google Scholar, and 0 from other sources. We considered for inclusion 2 from PubMed, 9 from Scopus, 0 from CINAHL, Cochrane Library, Google Scholar, and 0 from other sources. Of the 11 articles considered for inclusion, 7 randomized trials and 3 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: collagenase injections, dupuytren contracture, dupuytren disease, and hand; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, random allocation, random*, randomized, randomly; systematic, retrospective, and prospective studies to find 5 articles. Of the 5 articles we considered for inclusion 1. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow-up:	Results:	Conclusion:	Comments:
				Co	ollagenase Inje	ctions vs. Placebo				
Badalamente 2002 (score=8.0)	Collagenase Injections	2 RCTs	Supported by grants from the U.S. Food and Drug Administration, the National Institutes of Health (General Clinical Research Center Grant, and the Advance Biofactures Corporation, Lynbrook, NY. No COI.	N = 36 with MP joint contractures.	Mean age: 65 years; 31 males, 5 females.	IIA trial: Single dose of Collagenase injection of 10,000 U (n = 18) Vs Placebo consisted of sterile normal saline containing 2 mmol/L calcium chloride (n = 18). IIB trial: Collagenase injection of 10,000 U, (n = 23) vs Collagenase injection of 5,000 U (n = 22) vs Collagenase injection of 2,500 U (n = 18) vs Placebo included sterile normal saline containing 2 mmol/L calcium chloride (n = 17).	Follow-up occured on days 7 and 14 and at months 1, 2, 3, 6, 9 and 12.	1 month after injection, 14/18 (77.8%) collagenase group had contracture correction to 0-5° vs. 2/18 (11.1%) placebo. Retreatment of 16 placebo patients who did not respond to 1st blinded injection had flexion contracture correction to 0-5° in 10 after a 1st open- label 10,000-U injection; in 2 after 2nd injection; in 1 after 3rd. 2nd trial data suggests 10,000 U dose superior.	"(C)ollagenase injection into the cord causing MP and/or PIP joint contractures in Dupuytren's disease is a safe and effective method in the majority of patients in restoring normal finger extension and thus improving range of finger motion."	Phase 2 trials. Suggests collagenase effective.
Hurst 2009 (score=7.5)	Collagenase Injections	RCT	Sponsored by Auxilium Pharmaceuticals and grant support from BioSpecifics	N = 308 with joint contractures of 20 degrees or more	Mean age: 62.7±9.5 years; 245 males, 63 females.	Treatment Group 0.58mg collagenase clostridium Was injected into affected cords	Follow-up at 1, 7, and 30 days post- injection.	Collagenase injected cords compared to placebo injections meeting primary endpoint (64.0% vs.	"Collagenase clostridium histolyticum significantly reduced contractures and	Cord I study. Data suggest that compared to placebo collagenase clostridium

			Technologies. COI, Dr. Hurst received consulting and advisory-board fees from Auxilium Pharm.; Dr. Badalamente, receiving consulting and advisory-board fees from Auxilium Pharm.; Dr. Kaplan, receiving consulting and advisory-board fees from Auxilium Pharm.ls; Drs. Rodzvilla and Smith, are employees of and holding stock options with Auxilium Pharmaceuticals; Drs. Meals, Hentz, and Hotchkiss,			via 0.25ml of sterile diluent (MCP joints) or 0.20ml sterile diluent (PIP joints). Maximum of 3 injections every 30 days. Treatment cycle included injection, finger extension, and 30 day follow- up (n = 204) vs Placebo Group 10 mM TRIS per 60 mM sucrose in diluent administered similarly to treatment group (n = 104).		6.8%, P<0.001). Collagenase joint ROM compared to placebo, 43.9 to 80.7 degrees vs. 45.3 to 49.5 degrees, (p <0.001).	improved the range of motion in joints affected by advanced Dupuytren's disease."	histolyticum significantly reduced contractures and increased ROM of joints in patients with Dupuytren's disease. Adverse effects (treatment related outcomes) significantly higher in collagenase group.
Badalamente 2007 (score=7.5)	Collagenase Injections	RCT	Hentz, and	N = 35 with fixed flexion deformity of 20° or greater of the MCP or PIP joints in at least 1 finger. Age ≥ 18 years	Mean age: 61 years; 28 males, 7 females.	Collagenase injection (10,000 U) maximum of 3 injections in the primary joint were (n = 23) Vs Placebo 10,000 U of collagenase was established as the minimum	Follow-up at 1, 7, 14, and 30 days.	21/23 (91%) collagenase vs. 0/12 (0%) achieved clinical success (p <0.001) with up to 3 injections in the primary joint for MCP and PIP contractures. Average number of injections 1.4.	"The collagenase injections safely and effectively corrected MCP and PIP contractures in patients with 1 or more DC-affected joints. Recurrence rates after treatment appear to be low."	Some details sparse. Data suggest efficacy.

Gilpin 2007 (score=7.0)	Collagenase Injections	RCT	Institutes of Health. Editorial support was provided by Auxilium Pharmaceuticals , Inc. Sponsored by Auxilium Pharmaceuticals. COI, D.G. and S.C. own shares in Auxilium. J.K. is on advisory board of Auxilium. N.J. is an employee of and owns stock options in Auxilium Pharmaceuticals.	N = 66 with contractures affecting metacarpopha langeal (MCP) or proximal interphalange al (PIP) joints	Mean age: 63.8 ± 9.0 years; 56 males, 10 females.	safe and effective dose (n = 12). Treatment group: 0.58mg collagenase clostridium histolyticum per injection. Injected directly into Dupuytren's affected cords. Maximum of 3 injections every 30 days. Treatment cycle included injection, finger extension, and 30 day follow- up (n = 45) vs Placebo group received Lyophilized Tris and sucrose in sterile diluent (n = 21).	Follow-up at 1, 7, and 30 days post- injection.	Significantly more primary joints in the treatment group had reduced contracture from 0° to 5° (44.4% vs. 4.8%; p < .001). Treatment MCP joint vs placebo MCP joint contracture reductions (13/20 vs. 1/11; p = 0.003)	"Collagenase clostridium histolyticum is a highly tolerated and effective non- surgical treatment for Dupuytren's disease. In addition to collagenase injections, regular finger extension exercises and night splinting may have additional benefits."	A randomized placebo controlled trial with 9 month open label phase (CORDII). Data suggest collagenase clostridium histolyticum when compared to placebo has benefit for treating Dupuytren's contractures and is well tolerated.
Mickelson 2014 (score=4.0)	Collagenase Injections	RCT	No sponsorship or COI.	N = 43 or 46 digits with MCP or PIP joint contracture, or both of at least 20°	Age range 43-85 years; 35 males, 8 females.	All received 0.58mg CCH a few millimeters apart at 3 contiguous locations along Dupuytren cord on day 1. Day 1 group MCP and	Follow-up day 1 or 7 and 30.	No significant difference in MCP flexion between day 1 and 7 groups in follow-ups. Contracture was significantly lower in the 7 day group (23° vs. 40°). PIP	CCH correction of Dupuytren contractures was shown when manipulation was performed on day 7 with no differences in correction, pain or	Baseline comparability has significant differences. Patients may have had different digits randomized differently. No

						PIP joint contractures measured and pain scores recorded (n = 22) vs Day 7 group MCP and PIP joint contractures measured and pain scores recorded (n = 24)		joints showed no significant differences between 1 and 7 day groups during follow-ups.	skin tears. This suggests that manipulation can be scheduled anytime within 7 days of injection.	placebo or sham arm.
McGrouther 2014 (score=4.0)	Collagenase Injections	RCT	Sponsored by Auxilium Pharmaceuticals Inc. Medical writing and editorial was funded by Pfizer Ltd. D.A.M. has acted as a professional advisor to Pfizer, A.J., S.B., R.A.G., and P.S. are employees of and own stock in Pfizer. B.C. is an employee of and owns stock in Auxilium Pharmaceuticals.	N = 58 with Dupuytren's contracture or DC.	Mean age: 61.4 (8.89) years, 40 males, 18 females.	Collagenase clostridium histolyticum or CCH injection treatment, one joint (n = 49) vs CCH Treatment Primary 2 Joints (n = 9).	Follow-up for 90 days.	Mean number of injections per patient for up to 2 affected joints was 1.84, mean injections per joint was 1.62. Of the 56, 66% reported that they were 'very satisfied' and 27% 'quiet satisfied', 4% 'neither', and 0% 'very dissatisfied'. Commonly reported adverse events; edema peripheral reported by 79%, contusion by 55%, pain in extremity by 41%, injection site hemorrhage by 29% and injection site pain by 29% of patients.	"Collagenase clostridium histolyticum injection is a minimally invasive procedure that can be performed on an outpatient basis."	Data from open label trial. Data suggest CDH has some efficacy for management of DC.
Witthaut 2011 (score=N/A)	Collagenase Injections	Post Hoc RCT	Sponsored by Pfizer Inc. Cord study sponsored by Auxillium Pharmaceuticals,	N = 308 with Dupuytren's disease and joint	Mean ± SD age for collagenase 62±10 and placebo	Maximum of 3 collagenase 0.58mg (N = 204) vs Placebo injections into	Follow-up on day 1 or 7 and 30.	Mean increase in ROM 36.7° in the collagenase-treated joints (p<0.001) and 4.0° in the placebo-	"Injectable collagenase significantly improves ROM and treatment	Post Hoc analyses of Cord I Study. Injectable collagenase

	Inc. Jorg Witthaut	contractures	63±9 years;	cord of affected	treated joints (not	satisfaction versus	clostridium
	is an investigator	≥20°.	245 males,	hand at 30-day	significant).	placebo. ROM	histolyticum
	for the		63 females.	intervals (n =		improvements are	compared to
	collagenase			104).		clinically relevant	placebo
	Clostridium					as well as	significantly
	histolyticum					statistically	improves ROM
	clinical trial					significant."	which are both
	programme. The						clinically and
	remaining authors						statistically
	are employees of						significant.
	Pfizer Inc.						
	Groton, CT,						
	USA.						

Evidence for the Use of 5-Flourouracil for Dupuytren's Disease

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: fluorouracil, 5 fluorouracil, dupuytren contracture, dupuytren disease, hand; controlled clinical trial, controlled trials, randomized controlled trials, randomized, randomized, randomized, randomized, randomily; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 0 articles in PubMed, 7 in Scopus, 0 in CINAHL, 0 in Cochrane Library, 1522 in Google Scholar, and 0 from other sources. We considered for inclusion 0 from PubMed, Scopus, CINAHL, Cochrane Library, 1 from Google Scholar, and 0 from other sources. Of the 1 article considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: intra-operative 5-fluorouracil, dupuytren contracture, dupuytren disease, and hand; controlled clinical trial, controlled trials, randomized controlled trial, randomized controlled trials, randomized, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 0 articles. Zero articles met the inclusion criteria.

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:	
	5-Fluorouracil vs. Placebo Intraoperative										
Bulstrode 2004 (score=5.0)	5- Fluorouracil Injections	RCT	Sponsored by the RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood, Middlesex. No mention of COI.	N = 15 patients with two-digit disease.	Mean age: 61 years; 15 males, 0 females.	Treatment rays, 5-Fluorourasil a 1 cm section of the Dupuytren's tissue was marked and excised, plus excision either 0.5 ml of 5- fluorouracil (25 mg/ml) or 0.5 ml Vs Control rays, Normal saline instilled in the excision.	Follow-up at 3, 6, 12 and 18 months.	Metacarpophalange al joint movement improved from 68° (range, 20-109°) to 85° (range, 32-133°) for control rays and 69° (range, 29-100°) to 79° (range, 64- 113°) for 5- fuorouracil treated rays at 3 months. MCP joint range of motion did not differ at 18 months.	"The follow-up data have not demonstrated a significant difference between the control 5- fuorourasil treated rays for either total active motion, or metacarpophalange al or proximal interphalangeal joint movement or loss of extension."	Small sample size. Data suggest 5-FU ineffective.	

Evidence for the use of NSAIDs and Acetaminophen for Post-Op Dupuytren's Disease

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: anti-inflammatory agents, nonsteroidal, dupuytren contracture, dupuytren disease, hand; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 1 articles in PubMed, 2 in Scopus, 0 in CINAHL, 1 in Cochrane Library, 440 in Google Scholar, and 0 from other sources. We considered for inclusion 1 from PubMed, 0 from Scopus, CINAHL, Cochrane Library, Google Scholar, and 0 from other sources. Of the 1 article considered for inclusion, 1 randomized trials and 0 systematic studies met the inclusion criteria.

Evidence for Dupuytren's Disease - Surgery

There are 2 high-(639, 1725) and 15 moderate-quality(1685, 1718-1720, 1723, 1724, 1727-1729, 1731, 1735-1739) (McGrouther 14; Kemler 12; van Rijssen 12; Kan 16) RCTs incorporated in this analysis. There is also one other study included.(1726)

A comprehensive literature search was conducted using PubMed, Scopus, CINAHL, Cochrane Library, and Google Scholar without date limits using the following terms: splints, dupuytren contracture, dupuytren disease, hand; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, random allocation, random*, randomized, randomization, randomly; systematic, systematic review, retrospective, and prospective studies. We found and reviewed 70 articles in PubMed, 285 in Scopus, 17 in CINAHL, 1 in Cochrane Library, 633 in Google Scholar, and 1 from other sources. We considered for inclusion 6 from PubMed, 1 from Scopus, 0 from CINAHL, Cochrane Library, Google Scholar, and 1 from other sources. Of the 8 articles considered for inclusion, 6 randomized trials and 2 systematic studies met the inclusion criteria.

We searched PubMed, CINAHL, EBSCO, Cochrane Review, and Google Scholar with no limits on publication dates and an updated search was conducted using PubMed for publication between 1/1/2014 to 2/15/2018 using the following terms: surgery, regional, selective fasciectomy, percutaneous needle fasciotomy, needle aponeurotomy, firebreak, full-thickness skin graft, extensive fasciectomy, dermo fasciectomy, dupuytren contracture, dupuytren disease, and hand; controlled clinical trial, controlled trials, randomized controlled trials, randomized controlled trials, randomized, randomization, randomly; systematic, retrospective, and prospective studies to find 14 articles. Of the 14 articles we considered for inclusion 1. Of the 1 considered for inclusion, 0 are randomized controlled trials and 1 systematic reviews.

Author/Year Study	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Type Conflict of Interest (COI)	(0-11)					
				Radiotherapy	•	
Seegenschmiedt 2001 RCT No mention of sponsorship or COI.	6.0	N = 129 (67 male and 62 female) with clinically evident and progressive early- stage DC. Mean age for Group A and B: $65 \pm 11 /$ 61 ± 14 years.	Group A, radiotherapy 10 x 3 Gy (total dose, 30 Gy) in 2 series (5 x 3 Gy) separated by 8 weeks (N = 63) vs Group B, 7 x 3 Gy (total dose, 21 Gy) in 1 series within 2 weeks (N = 66). Follow-up 3 and 12 months.	At 12 months, reduction of symptoms, nodules and cord observed in both treatment groups ($p < 0.01$). For subjective responses, 76 (59%) patients (Group A, 41; Group B, 35) stated "regression of DC symptoms" in 120 (61%) sites (A, 60; B, 60); range of regression equal for both groups: <25% regression for 74 of 120 (62%) sites (A, 35; B, 39), 25- 50% regression for 37 (31%) sites (A, 35; B, 19), 51-75% regression in 7 (6%) sites (A, 5;	"Both tested RT regimens have been well accepted and tolerated by patients. Acute toxicity was slightly more enhanced in the low-dose group (21 Gy) than in the mediumdose group (30 Gy), probably due to the dose-time factor"	No placebo group. RT therapy individualized. Data suggest RT may be effective due to reported regression, but that cannot be proved.

Table 1a. Quality Studies for the Treatment of Dupuytren's Disease

				(2%) sites (all in group A); 46 (36%) patients (A, 19; B, 27) had "stable condition" in 65 (33%) sites (A, 30; B, 35), whereas 7 (5%) patients (A, 3; B, 4) suffered "progression of DC symptoms" in 13 (7%) sites (A, 5; B, 8)."		
				Splints		
Jerosch-Herold 2011 RCT Sponsored by Action Medical Research Charity and the National Institute for Health Research (NIHR). No COI.	5.5	N = 154 (120 male and 34 female) undergoing fasciectomy of dermofasciectom y for Dupuytren's disease. Mean age hand therapy only 67.5 ± 9.2 years, splint 67.2 ± 10.0 years.	Hand therapy only within 2 weeks after surgery plus removal of sutures (N = 77) vs Hand therapy with night splinting worn for 6 months (N = 77). Follow-up for 12 months after surgery.	There were no statistically significant differences at 12 months between the two groups in DASH score (0.66, -2.79 to 4.11, $p = 0.703$), degrees of total active flexion of operated digits (-2.02, -7.89 to 3.85, $p = 0.493$), degrees of total active extension deficit of operated digits (5.11, 2.33 to - 12.55, $p =$ 0.172. The mean number of therapy sessions was 5.1 in the splint group and 5.6 in no-splint group.	"No differences were observed in self-reported upper limb disability or active range of motion between a group of patients who were all routinely splinted after surgery and a group of patients receiving hand therapy and only splinted if and when contractures occurred"	Data suggest comparable results from self-reported outcomes.
NEW Kemler 2012 RCT No sponsorship or COI.	4.5	N = 54 with proximal interphalangeal (PIP) joint flexion contractures of at least 30°. Mean age 63 (9) and 64 (11) for hand therapy alone group, 8 female and 46 male.	Splint plus hand therapy (N = 28) vs Hand therapy alone (N = 26). Follow-up for 3 months.	After 1 year, the splint-plus- hand therapy had mean reduction of 21° in flexion contracture vs 29° in the group receiving hand therapy alone, (p = 0.1). 18 or 64% reported not less than "much improve" vs 19 or 73% of the 26 hand therapy alone, (p = 0.5). At 6 months pain did not differ significantly between group, VAS score 1.9 (2.0) vs 2.1 (2.4), (p = 0.7).	"After operative release of a Dupuytren's contracture, a postoperative protocol using a splint and hand therapy was no better than hand therapy alone in minimizing postoperative flexion contractures."	Data suggest lack of benefit of adding a splint to hand therapy vs. hand therapy alone for treating Dupuytren's contracture.
			Post-Operati	ve NSAIDs and Paracetamol vs. Pl	lacebo	
Husby 2001	8.0	N = 35 (33 male and 2 female) Dupuytren's	Paracetamol1000mg 4 dimes daily (N = 12)	Postoperative Dupuytren's swelling as a percentage of preoperative volume: 5.6±3.8 vs.	"[N]aproxen might have a clinical relevant effect on swelling when used on minor surgery in the hand, unlike	Results suggest a beneficial effect of naproxen over paracetamol, which is superior
RCT		contracture (plus 42 CTS). Mean	VS	6.9±3.7 vs. 8.2±5.1. Additional analgesics used were 0, 2 and 8	paracetamol. Naproxen might be a	to placebo, which the studies were not powered to detect.

No mention of	ag	ge (range): 61	Post-op naproxen	in naproxen, paracetamol, and	useful analgesic during the immediate	
sponsorship or COI.	(2	29-81).	500mg BID twice	placebo groups.	postoperative phase."	
			daily			
			(N = 12)			
			VS			
			VS			
			Matching placebo for			
			three days			
			(N = 11)			
			Follow-up at 72 hours			
			after surgery.			

Author Year (Score):	Category:	Study type:	Conflict of Interest:	Sample size:	Age/Sex:	Comparison:	Follow- up:	Results:	Conclusion:	Comments:	
	Surgical Procedures										
van Rijssen 2006 (score=6.0)	Surgery (regional or selective fasciectom y); percutaneo us needle fasciotomy (needle aponeuroto my); "Firebreak" Full- thickness Skin Graft for Dupuytren' s Contracture surgery, Extensive Fasciectom y, Dermofasci ectomy Surgery	RCT	No sponsorship and no mention of COI.	N = 121 (94 male and 19 female) or 125 hands, with Dupuytren's disease	Mean age: 63 years; 94 males, 19 females Mean age:	Percutaneous needle fasciotomy (PNF) (n = 57) vs. Limited fasciotomy under either regional anesthesia or general anesthetist using tourniquet in all cases (n = 56)	Follow-up for at 1 and 6 weeks for the primary outcome perimeters	PNF: Largest mean TPED per ray contractures 1 week after PNF 30° (58% reduction), p = 0.001. Follow-up at 6 weeks, results better. Limited fasciotomy: mean TPED at 1 week 15° (73% reduction), p = 0.001. Largest reduction for PNF at MCP, but DIP for LF.	"In the short term and in cases with a TPED of 90° or less PNF is a good treatment alternative to LF for treatment of Dupuytren's disease."	No non- operative or placebo intervention. Suggests equal (in) efficacy.	
2012 (score=5.5)	(regional or selective fasciectom y); percutaneo us needle fasciotomy		sponsorship and no COI.	affected hands and minimal passive extension deficit of 30 degrees	62.93 years; 76 males, 17 females	fasciotomy (LF) (n = 41) vs. Percutaneous needle fasciotomy (PNF) (n = 52)	at 1 and 6 weeks, 6 months, and 1, 2, 3, 4 and 5 years.	in 31 patients treated with limited fasciotomy didn't develop recurrence or 76.8% vs 20.9%. Recurrence rate in the limited fasciotomy group was significantly	needle fasciotomy is the preferred treatment for elderly patients with Dupuytren's disease and for those willing to accept a possible early recurrence in	that at 5 years, the recurrence rate in the needle fasciotomy group was (84.9%) compared to the limited	

	(needle aponeuroto my); "Firebreak" Full- thickness Skin Graft for Dupuytren' s Contracture surgery, Extensive Fasciectom y, Dermofasci ectomy							smaller, $(p < 0.001;$ 95% CI, 1.597 - 2.628), and recurrence occurred significantly later after limited fasciotomy than after percutaneous needle fasciotomy, (p = 0.001). At the time of treatment, older age decreased the recurrence rate, (p = 0.005).	the context of the advantages, such as fast recovery, a low complication rate, and minimal invasiveness."	fasciotomy group (20.9%) and recurrence occurred earlier the needle fasciotomy group.
Kan 2016 (score=6.0)	Surgery (regional or selective fasciectom y); percutaneo us needle fasciotomy (needle aponeuroto my); "Firebreak" Full- thickness Skin Graft for Dupuytren' s Contracture surgery, Extensive Fasciectom	RCT	Sponsored by Fonds NutsOhra and Stichting Coolsingel. No mention of COI.	N = 80 with primary Dupuytren's contracture. Mean age 63 ± 9 for PALF and 63 ± 8 for LF group.	Mean age: 63 years; 62 males, 14 females	Procedure consisting of extensive percutaneous aponeurotomy and lipofilling (PALF) (n = 40) vs. Limited fasciectomy (n = 40)	Follow-up at 2 weeks, 3 weeks, 6 months and 1 year.	At 1 year, $15/85$ PALF treated joints or 18%, had some recurrence vs $5/58$ limited fasciectomy treated joints or 9%, (p = 0.107). The overall complication rate not significantly different between the groups (p = 0.402).	"PALF demonstrates a significantly shorter convalescence, similar operative contracture correction, lower incidence of long- term complications, and no significant difference regarding 1-year postoperative results compared with limited fasciectomy."	Data suggest PALF showed shorter recovery times, fewer complications, comparable results to standard fasciotomy group. However, at one year post procedure the PALF group had more recurrence (18% vs.9%)

	y, Dermofasci ectomy									
Ullah 2009 (score=6.0)	Surgery (regional or selective fasciectom y); percutaneo us needle fasciotomy (needle aponeuroto my); "Firebreak" Full- thickness Skin Graft for Dupuytren' s Contracture surgery, Extensive Fasciectom y, Dermofasci ectomy	RCT	No sponsorship. No mention of COI.	N = 79 with Dupuytren's contracture of the proximal interphalange al joint	Mean age: 62.9 years; 65 males, 14 females	Dermofasciecto my or "Firebreak" skin graft performed on one finger (n = 39) vs. Fasciectomy was performed on second finger (n = 40)	Follow up at 12, 24 and 36 months.	Mean range of movement of PIP 34.6° (1-80°) preoperatively, improved to 65° (2- 98°) at 3 years. Progressive recurrence of PIP contracture over 3years in 11 (12.2%); 5 had fasciotomy with Z- plasty; contracture recurred in 5.4 months vs. 8months for full-thickness skin graft (p = 0.6).	"[N]o difference in recurrence rates between the two methods of treatment at three years and were surprised at the low recurrence rate after fasciectomy and Z-lasty alone."	Suggests full thickness graft not more effective.
Citron 2005 (score=5.0)	Surgery (regional or selective fasciectom y); percutaneo us needle fasciotomy (needle aponeuroto my);	RCT	No mention of sponsorship or COI.	N = 100 with Dupuytren's disease in one ray only and any degree of resultant contracture	Mean age: 65 years; 63 males, 16 females (only had gender demographi cs on those with follow-up data)	Modified Brunner incision closed with multiple Y-V plasties (n = 62) vs. Z-plasty group had longitudinal incision, closed with Z-plasties (n = 38)	Follow-up for 2 years.	Mean post-op deformity on final review or at recurrence 25° in modified Bruner group vs. 24° in Z- plasty group (NS). Recurrence rate 33% modified Bruner vs. 18% Z- plasty group (NS).	"There is no evidence to suggest that the type of incision influences the time distribution of recurrent disease but this possibility cannot be discounted."	Data suggest no differences between the 2 procedures.

	"Firebreak" Full- thickness Skin Graft for Dupuytren' s Contracture surgery, Extensive Fasciectom y, Dermofasci ectomy									
Bhatia 2002 (score=4.5)	Surgery (regional or selective fasciectom y); percutaneo us needle fasciotomy (needle aponeuroto my); "Firebreak" Full- thickness Skin Graft for Dupuytren' s Contracture surgery, Extensive Fasciectom y, Dermofasci ectomy	RCT	No mention of sponsorship or COI.	N = 31 (28 male and 3 female) undergoing surgery for Dupuytren's disease	Mean age: 61 years; 28 males, 3 females	Staple group: staples via an automatic stapling device. Time spent closing recorded. Pain levels recorded during staple removal at 1 week follow-up (n = 13) vs. Suture group: received 4-0 monofilament polybuster sutures. Time spent closing recorded. Pain levels recorded during suture removal at 1 week follow-up (n = 18)	Follow-up at weeks 1 and 2 following surgery.	Mean skin closure time with sutures 51 seconds per cm and 25 seconds per cm with staples (p <0.001). The mean pain score for removal 2.4 for suture removal and 5.2 for staple removal, (p = 0.008).	"As staples can be inserted in half the time of conventional sutures we recommend their use for closure of extensive palmar wounds following long operative procedures."	Data suggest patient pain was higher for staple removal over suture removal but staples took less time to insert and no significant differences in wounds once staples or sutures removed.

Appendix Two – Medical Studies

(Low-quality Randomized Controlled Trials and Non-randomized Studies)

The following low-quality randomized controlled studies (RCTs) and other studies were reviewed by the Evidence-based Practice Hand, Wrist, and Forearm Panel to be all inclusive, but were not relied upon for purposes of the development of this document's guidance on treatments because they were not of high quality due to one or more errors (e.g., lack of defined methodology, incomplete database searches, selective use of the studies and inadequate or incorrect interpretation of the studies' results, etc.), which may render the conclusions invalid. ACOEM's Methodology requires that only moderate-to high-quality literature be used in making recommendations.(1740)

ERGONOMIC INTERVENTIONS

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Ripat 2006 RCT Sponsored by Manitoba Hydro. No mention of COI.	3.0	N = 68 with two or more symptoms of WRUED (Work Related Upper Extremity Disorders). Mean age 42.2 years.	Adapted Group- Microsoft Natural MultiMedia Keyboard adapted to reduce activation force required to depress keys (light touch) ($n = 43$) vs. Unadapted Group- Standard keyboard with no adaptations made ($n = 25$). Follow-up for 6 months.	No significant differences between two groups for Symptom Severity (SSS) and Functional Status Scales (FSS) between groups ($p < 0.05$). When data from groups combined, SSS and FSS-typing measures significant at both 12 and 24 week ($p < 0.0001$) at both time points.	"Positive results in reduction of symptom severity and improvement in functional status were identified for participants in both keyboard study groups, providing further evidence to support the use of ergonomic keyboards for individuals with WRUED. The vast majority of participants were satisfied with their study keyboard."	Both keyboard groups improved over time, however, there were no differences between groups. Some randomized to experimental group were "forced" to use the LT keyboard.
Hedge 1999 RCT Sponsored by Honeywell, Inc., Proformix, Inc., Global, Global Contrac and Teknion. No mention of COI.	2.5	N = 38 professionals who used a computer work average of 5.4 hours per day. Mean age 37.4.	DT Group- DT keyboard tray. User measurements taken to put keyboard at comfortable height. (n = 23) Vs. Control Group- conventional adjustable keyboard with or without a padded wrist rest $(n = 15)$. Measurements taken immediately following intervention.	No significant differences between pre- and post-test measurements in the control group for wrist extension and ulnar deviation (p >0.05). Significant difference between pre and post wrist extension in DT group; 17.6 vs. 12.1 (p <0.05). No significant difference for ulnar deviation. (p>0.05). In post-test upper posture index (UPI) there was a significant difference in favor of the DT group vs. control for number of subjects reporting a UPI < 4; 60% vs. 90% (p = 0.044).	"Overall, the wrist movement data, the RULA data and the self-reported musculoskeletal discomfort data all point to improvements within a short time after using the DT system."	Methodological details sparse.

Lincoln 2002 RCT Supported by grant from Robert Wood Johnson Foundation and Workers' Compensation Health Initiative grant 034366 and cosponsored by US Department of Labor. No mention of COI.	2.5	N = 101	Nurse case manager training in ICN vs. no ICM training.	"Trained nurses were more likely to recommend accommodations addressing workstation layout, computer-related improvements, furnishings, accessories, and lifting/carrying aids, whereas the untrained nurses were more likely to suggest light duty and lifting restrictions. This study indicates that the training was associated with a change in the practice behavior of case managers regarding the workplace accommodation process."	"More research is needed to identify barriers to implementation and develop more effective approaches to facilitate worksite accommodations in disabled workers with carpal tunnel syndrome and other persistent upper extremity disorders."	
Galinsky 2007 RCT No mention of sponsorship or COI	1.5	N = 51	All workers spent 4 weeks with conventional breaks (2 15- minute breaks a day) and 4 weeks with supplementary breaks (2 15-min breaks plus 4 5-minute breaks per day). One group performed brief stretching exercises during breaks; control group did no stretching during breaks.	Mean rate of data entry under supplementary rest break schedule significantly faster than rate under conventional rest break schedule (p <0.0002). No significant effects of stretching on discomfort or performance observed. Discomfort and eyestrain significantly lower with supplementary breaks; supplementary breaks attenuated accumulation of discomfort and eyestrain during work sessions.	"These results provide further converging evidence that supplementary breaks reliably minimize discomfort and eyestrain without impairing productivity."	Short-term study in temporary workers who may be unaccustomed to work. Compliance rates were low – 25 to 39%.

WORK RESTRICTIONS

Author/Year Study Type	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Conflict of Interest (COI)						
Ripat 2006	3.0	N = 68 with two or	Adapted Group- Microsoft	No significant differences between two groups for	"Positive results in reduction of symptom	Both keyboard groups improved
		more symptoms of	Natural MultiMedia	Symptom Severity (SSS) and Functional Status	severity and improvement in functional	over time, however, there were no
RCT		WRUED (Work	Keyboard adapted to reduce	Scales (FSS) between groups (p <0.05). When data	status were identified for participants in	differences between groups. Some
		Related Upper	activation force required to	from groups combined SSS and FSS-typing	both keyboard study groups, providing	randomized to experimental group
Sponsored by Manitoba		Extremity Disorders).	depress keys (light touch) (n	measures were significant at both 12 and 24 week	further evidence to support the use of	were "forced" to use the LT
Hydro. No mention of COI.		Mean age 42.2 years.	= 43) vs. Unadapted Group-	(p <0.0001) at both time points.	ergonomic keyboards for individuals	keyboard.
			Standard keyboard with no		with WRUED. The vast majority of	
			adaptations made. $(n = 25)$		participants were satisfied with their	
			Follow-up for 6 months.		study keyboard."	
Hedge 1999	2.5	N = 38 professional	DT Group- DT keyboard	No significant differences between pre- and post-	"Overall, the wrist movement data, the	Methodological details sparse.
		workers who used a	tray. User measurements	test measurements in control group for wrist	RULA data and the self-reported	
RCT		computer at work for	taken to put keyboard at	extension and ulnar deviation ($p > 0.05$). Significant	musculoskeletal discomfort data all point	
		an average of 5.4	comfortable height $(n = 23)$	difference between pre- and post-wrist extension in	to improvements within a short time after	
Sponsored by Honeywell,		hours per day. Mean	vs. Control Group	DT group; 17.6 vs. 12.1 (p <0.05). No significant	using the DT system."	
Inc., Proformix, Inc.,		age 37.4.	conventional adjustable	difference for ulnar deviation. (p >0.05). In post-		
Global, Global Contrac and			keyboard with/without	test upper posture index (UPI) there was a		

Teknion. No mention of		padded wrist rest. $(n = 15)$.	significant difference in favor of DT group vs.	
COI.		Measurements immediately	control for number of subjects reporting UPI <4;	
		following intervention.	60% vs. 90% (p = 0.044)	

RETURN-TO-WORK PROGRAMS

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
Feuerstein 1993 Non-randomized comparative study	N/A	N = 49	Eligible for multi- component rehab program (n = 34) vs. not eligible (n = 15)	Findings indicated "74% of the treatment group returned to work or were involved in state-supported vocational training in contrast to 40% of the control group (p <0.05)."	"These findings suggest the need to modify treatment components to facilitate an increased return- to-work rate. Areas that may prove useful include a greater emphasis ergonomic modifications at the workplace to reduce the risks of repetitiveness, force, awkward posture, and insufficient work/rest cycles, as well as efforts to modify work style directly in order to reduce the impact of ergonomic stressors on the ability to perform essential job tasks.	

CARPAL TUNNEL SYNDROME – DIAGNOSTICS

Electrodiagnostic Studies

Author/Year Study Type Conflict of Interest (COI)	Score	Study Design	Population/ Case Definition	Investigative Test	Gold Standard / Comparative Test	Results	Conclusion	Comments
Jackson 1989	3.5	Diagnostic	N =162 divided into groups: Group 1 (n = 38)	Electrodiagnostic studies including Palm median	as well as physical	Abnormality percentages of different tests Group 1, 2, 3, 4: Palm (m):	"Certainly supplemental studies can serve as a discriminating	Study suggests use of comparing median and radial distal sensory latencies in digit 1 and coparing median and ulnar distal sensory latencies in digit 4 when CTS referrals have normal nerve conduction studies.

			healthy volunteers. Group 2 (n = 40) with positive clinical testing but negative Electromyograph y (EMG) and Nerve Conduction Studies. Group 3 (n = 53) clinical confirmed CTS, positive NCS, Negative EMG. Group 4 (n = 30) clinically confirmed CTS, positive NCS and EMG.	nerve latency (Palm (m). Distal Sensory latency difference between median and radial nerve (DSL (m-r)). Palmar latency difference between median and ulnar nerve (Palm (m-u)). Distal Sensory latency difference (DSL (m-u)). Amplitude of sensory action potential ratios and the 2 nd and 5 th digit. (Amp).	was used to ensure the existence of Carpal Tunnel Syndrome, as well as eliminate patients with peripheral neuropathy.	2.6%, 16%, 96%, 94%. DSL (m-r): 0%, 44%, 89%, 100%. DSL (m-u): 5.3%, 44%, 100%, 100%. Palm (m-u) 5.3%, 30%, 98%, 94%. Amp: 0%, 2.3%, 33%, 61%. Group 2 abnormalities using a combination of tests: DSL (m-u) and DSL (m-r): 51%. DSL (m-u) DSL (m-r) and Palm (m-u) 51%.	instrument, distinguishing between individuals on a dimension of interest (NCS) when no gold standard is available for validating these measures."	
Zaher 2012	3.0	Diagnostic	N=52 with CTS. Follow-up at 12 weeks.	Electrodiagnostic Studies (n = 20)	MRI (n = 10) vs. Ultrasound (n = 22).	17/20 (85%) had electrodiagnostic findings of prolonged motor and sensory latencies of the median nerve, reduced sensory and motor conduction velocities, and median- ulnar sensory latency difference. 10/10 (100%) underwent MRI showed swelling of media nerve, increased signal intensity, and palmar bowing of transverse carpal ligament. 19/22 (86.3%) with ultrasounds showed enlargement of median nerve at proximal carpal tunnel with increased cross-sectional area over	"Ultrasound is superior to other investigation tools as it provides accurate and rapid diagnosis of CTS with the least cost."	Study enrolled only subjects with mild CTS. Study suggests ultrasound is superior to other diagnostic techniques for mild CTS due to its relatively low cost and raped results MRI and electrodiagnostic studies did have better diagnostic outcomes.

						12 mm2, and palmar bowing and thickening of flexor reticulum.		
Homann 1999	3.0	Diagnostic	N = 824 workers recruited from 6 different companies, with a mean job tenure 8.9±9.1	Electrodiagnostic testing of median- Ulnar sensory peak latency difference >0.5 ms, more severe was a difference of >0.8 ms.	Self-administered surveys and hand diagrams. Questionnaire asked about symptom severity, and persistence. Workers indicated pain, numbness, and areas of tingling on hand diagram.	Electrodiagnostic (EDX) positive results (n = 139, 16.9%), Physical Examination (PE) positive (n = 165, 20.1%), Wrist, Hand, and Finger Symptoms (WHF Sx) positive (n = 305, 37.0%). Correlation between PE and EDX (n = 36), between WHF Sx and PE (n = 90), EDX and WHF Sx (n = 55). Between all 3 tests (n = 23).	"The combination of results from electro- diagnostic testing and symptom survey procedures appears to provide the best criterion for defining CTS for epidemiologic investigations in which the intent is to evaluate either the impact of intervention or the exposure-response relationship."	Study reports poor correlation between electrodiagnostic findings, symptom surveys and symptom presentation from physical exams in diagnosing CTS.

Uncini 1989 2.5 Diagno	stic 43 with symptoms and signs of CTS and 33 controls. Group 1: (26 hands) mild abnormalities DPSNL >2.9 msec onset, 3.5 msec peak; group 2: (16 hands) normal or borderline median nerve results D2SNL <2.9 msec, onset or 3.5 msec peak.	N/ABoth groups had longer median latencies from digit 4 to wrist than digit 2 to wrist. D4 latencies more significant in group 1 (D4 latency onset: 3.7 ± 0.5 and D2: 3.3 ± 0.2) and group 2 $(3.0\pm0.4$ and 2.6 ± 0.2) than D2 latencies, suggesting D4 more sensitive than D2-Wr. Significant differences in paired nerves (adjusted for controls) of median D4 SNL - ulnar IV DSL vs. median DML (group 1: p <0.05 and group 2: p <0.05), and median D4 SNL - ulnar DV SNL (group 1: p <0.05 and group 2: p <0.05). Meant D4 technique most sensitive for disease detection.	"In conclusion, stimulating digit 4 and comparing latencies to median and ulnar nerves is a simple method that is more sensitive than other techniques in detecting CTS. Detection of the double peak potential recorded over the median nerve allows immediate diagnosis of CTS. Even when the double peak is not recognized, a median and ulnar D4 latency difference greater than 0.5 msec suggests CTS."	Study suggests stimulation of digit 4 is useful in identification of CTS. D4 latency is longer in CTS patients compared to other digits.
------------------------	---	--	---	--

Ultrasou	nd															
Author/Year Study Type Conflict of Interest (COI)	Score	Z	Area of Upper Extremity	Diagnoses	Type of Ultrasound	CT used	MRI Used	More than on rater	Blinding of rater	Myelography	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when	Results	Conclusion	Comments
Wiesler 2006 Diagnost ic	3.0	N=44 wrists (26 patient s), N=86 wrists (43 contro ls).	Wrist	Patients with symptoms, clinical exam findings, and nerve conduction study findings for CTS. Mean duration of symptoms 12 months (range 1.5-72 months). Mean age 56 years CTS, 36 years controls.	Philips HDI 5000 with 12/5- MHz linear- array transducer	-	-	-	-	-	-	-	-	Pearson correlation coefficient ultrasound vs. nerve conduction study (NCS): 0.37 (p = 0.013). Sensitivity and specificity: cutoff point of 11+ mm ² = sensitivity 91%, specificity 84%; PPV 74%; NPV 95%.	"[H]igh- resolution ultrasound is informative in the evaluation of CTS and shows enlargement of the median nerve at the distal wrist crease in symptomatic patients."	A 1:2 (CTS vs. normal). Suggests HRUS may be used to diagnose CTS and enlargement of the median nerve at the wrist crease in symptomatic patients is usually predictive for CTS.

Yesildag 2004 Diagnost	3.0	N=86 (148 wrists) , N=45	Wrist	CTS symptoms. Mean age CTS 49.8±8.7 years, controls	12 MHz linear array transducer	-	-	-	-	-	-	-	-	Mean \pm SD cross-sectional area by tracing method: CTS 14.9 \pm 4.7 vs. control 7.8 \pm 1.6 (p <0.001).	"The ultrasonographi c measurement of the median	2:1 matched study suggesting ultrasonographic of median nerve
ic		(76 wrists) contro ls		42.7±11.3 years.	(ATL 1500 HDI)									Mean±SD cross-sectional area by ellipsoid formula: CTS 14.2 \pm 4.5 vs. control 7.5 \pm 1.8 (p <0.001). Cutoff for sensitivity and specificity: 10.5mm ² for mean cross-sectional area; using tracing method – sensitivity (95% CI) 89.9 (85-94.8), specificity 94.7 (89.7-99.7), PPV 97 (94.3- 99.9), NPV 82.7 (74.8- 90.6); using indirect method – sensitivity 86.5 (81-92), specificity 93.4 (97.88-99), PPV 96.2 (92.9-99.4), NPV 78.1 (69.5-86.6).	nerve cross- sectional area is a sensitive, specific and useful non- invasive method for the diagnosis of carpal tunnel syndrome."	may be useful in CTS initial diagnosis of CTS made via EMG.

Zaher	3.0	52	W	CTS	Not	-	+	-	-	-	+	-	12	17/20 (85%) had	"Ultrasound is	Study enrolled
2012					described								we	electrodiagnostic findings	superior to	only subjects with
													ek	of prolonged motor and	other	mild CTS. Study
Diagnost													s	sensory latencies of	investigation	suggests
ic														median nerve, reduced	tools as it	ultrasound
														sensory and motor	provides	superior to other
														conduction velocities, and	accurate and	diagnostic
														median-ulnar sensory	rapid diagnosis	techniques for
														latency difference. 10/10	of CTS with	mild CTS due to
														(100%) underwent MRI	the least cost."	its relatively low
														showed swelling of media		cost and raped
														nerve, increased signal		results MRI and
														intensity, and palmar		electrodiagnostic
														bowing of transverse		studies did have
														carpal ligament. 19/22		better diagnostic
														(86.3%) with ultrasounds		outcomes.
														showed an enlargement of		
														median nerve at proximal		
														carpal tunnel with		
														increased cross-sectional		
														area over 12 mm2, and		
														palmar bowing and		
														thickening of flexor		
														reticulum.		

Magnetic Resonance Imaging and Diffusion Tensor Imaging

Author/Year Study Type Conflict of Interest (COI)	Score	Number	Area of Upper	Diagnoses	Type of MRI used	Type of CT used	T1 weighted images	T2 weighted images	X-ray	Myelography	More than one rater	Surgery Performed	Clinical outcomes assessed	Long term follow-up (mean when noted)	Results	Conclusion	Comments
Guggenberger 2012 Diagnostic	3.5	N = 15 patients and 45 healthy individuals	W	CTS	3.0 T MR imager	-	+	-	-	-	+	-	-	+	Factorial anisotropy or FA decreased and apparent diffusion coefficient or ADC increased when moving from proximal to distal locations, ($p < 0.001$). Significant difference between healthy volunteers and those with CTS, ($p < 0.001$ for both FA and ADC). FA threshold of 0.47 and ADC threshold of 1.054 X 1023 mm ² /sec might be used in diagnosis of CTS.	"Normative diffusion values for MR neurography of the median nerve with DTI depend on the anatomic location and age but not on sex."	1:3 matching of cases to controls suggests significant difference between controls compared to CTS groups for both FA and ADC that may be useful in diagnosing CTS. FA decreased and, AC increased when moving from proximal to distal and with age.
Horng 2012 Diagnostic	3.5	N = 50 with CTS and 45 healthy volunteers.	W	CTS	GE 1.5 T Signa Excite MRI system	_	+	-	_		-	-	-	-	4 subjects had abnormal NCS results. Pain scale (VAS) / and DASH questionnaire; CTS Patients and Healthy Volunteers: 59 ± 20 and 7 ± 15 , and $26\pm19/4\pm5$. Grasp strength (kg)/Palmar pinch strength (kg)/Lateral pinch strength (kg)/Monofilament sensory test: 15.7 ± 1.2 vs. 14.8 $\pm1.1/17.1\pm7.5$ vs $22.9\pm7.8/$ 2.7 ± 1.6 vs $3.8\pm1.4/4.1\pm2.3$ vs. $5.3\pm1.7/$ and 29.7 ± 3.5 vs 32.3 ± 3.1 .	"The accuracies of MRI and ultrasonography for diagnosing CTS were improved by measuring the bowing of the flexor retinaculum in the grasp position."	Study suggests ultrasonography comparable to MRI in diagnosing CTS only if both rest and grasp position are combined. Sample size small.

Bak 1997 Diagnostic	3.5	20 with suspected CTS	W	CTS	1.5 T Philips ACS- NT superco nductive MR unit.	-	+	-	-	 -	-	-	Electrophysiological examination suggested median nerve entrapment in 18 wrists. These then compared to remaining 22 electrophysiologically normal wrists. No significant differences between groups for swelling, flattening, bowing ratio and carpal tunnel index (p >0.05).	"Neither symptoms nor electrophysiologi cal findings in CTS were relat- I ed to specific MR parameters."	Small sample size. Study did not demonstrate a correlation between MR images to electrophysiological changes in CTS. No difference found between CTS group to normal group with respect to swelling ratio, flattening ratio, bowing ratio or carpus tunnel index.
Deryani 2003 Diagnostic	3.0	N = 55 wrist, of those N = 30 with CTS and N = 25 healthy subjects. The mean age for CTS / healthy subjects: 48.69 ± 2.12 / 50.20 \pm 8.21.	w	CTS	MRI	-	+	+	-	 -	+	-	Statistically significant differences between median nerve diameters (at psiform bone level: 8.47 ± 1.41 mm; and distal radio ulnar joint level: 4.04 ± 1.06 mm and 2.42 ± 0.95 mm), the diameter rations and flexor retinaculum bulging rations ($26.21 \pm 5.98\%$ and $7.27 \pm$ 4.53%), (p < 0.001). Hyperintensity was fond in 4 of 25 controls and isointensity in 21, (p < 0.001).	"[M]RI examination of structural changes that occur in the carpal tunnel, neighboring structures and the median nerve would be useful in the diagnosis of CTS, especially in case with suspected clinical and electrophysiologi cal diagnosis."	Small sample size. Study suggests MRI in tandem with electrophysiological evaluation to make CTS diagnosis.

Zaher 2012	3.0	52	W	CTS	MRI (n	-	-	+	-	 · +	+ -	12	17/20 (85%) had	"Ultrasound is	Study enrolled only subjects with mild CTS. Study suggests
					= 10)							wee	electrodiagnostic findings of	superior to other	ultrasound superior to other diagnostic techniques for mild CTS
Diagnostic					vs.							ks	prolonged motor and sensory	investigation	due to its relatively low cost and rapid results MRI and
					ultrasou								latencies of median nerve,	tools as it	electrodiagnostic studies did have better diagnostic outcomes.
					nd (n =								reduced sensory and motor	provides accurate	
					22) vs.								conduction velocities and	and rapid	
					Electrod								median-ulnar sensory	diagnosis of CTS	
					iagnosti								latency difference. 10/10	with the least	
					c								(100%) underwent MRI	cost."	
					Studies								showed swelling of media		
					(n = 20)								nerve, increased signal		
													intensity, and palmar bowing		
													of transverse carpal		
													ligament. 19/22 (86.3%)		
													with ultrasounds showed an		
													enlargement of the median		
													nerve at proximal carpal		
													tunnel with an increased		
													cross-sectional area over 12		
													mm ² , and palmar bowing		
													and thickening of flexor		
													reticulum.		

CARPAL TUNNEL SYNDROME – TREATMENT

Author/Ye	Sco	Sample Size	Comparison	Results	Conclusion	Comments
ar	re		Group			
Study	(0-					
Туре	11)					
Conflict of						
Interest						
(COI)						
						Exercise
Horng	3.5	N = 60 with	Group 1	Difference	"To improve	Baseline comparability differences in functional status scores of the three groups.
2011		CTS. Mean age	received	between before	the functional	
		50.5+9.4 years.	paraffin	and after	status and	
RCT			therapy, a	treatment:	quality-of-life	
			splint, and	Symptom severity	of CTS	
No			instructions	– Group 1: -	patients, the	
mention of			for tendon	0.7+0.8; Group 2:	combination of	
sponsorshi			gliding	-0.3+0.6; Group	tendon gliding	
p. No COI.			exercise (n =	3: -0.6+0.6; p =	exercises,	
			20) vs. Group	0.56; Functional	paraffin	
			2 received	status – Group 1:	therapy, and	

			paraffin therapy, a splint, and instructions for nerve gliding exercise (n = 20) vs. Group 3 received only paraffin therapy and a splint (n = 20). Follow- up at 2- months.	-0.4+0.5; Group 2: 0.1+0.5; Group 3: -0.2+0.7 p = 0.04; Pain scale – Group 1: - 19.7+24.6; Group 2: -10.5+18.0; Group 3: - 17.2+26.2; p = 0.44	splinting might be more effective than the combination of nerve gliding exercises, paraffin therapy, and splinting."	
Heebner 2008	2.0	N = 60 diagnosed with	Group 1 received	No statistical difference	"The results of this study	Methodological details sparse.
2000		CTS by	standard care	reported between	suggest that	
RCT		physician.	including	groups. P-values	persons with	
No		Mean age 52 years. Age	education, splinting, and	not provided. Compared to	CTS in a community	
mention of		range 32-75	tendon-	baseline, follow-	hospital do not	
sponsorshi		years.	gliding	up scores for	benefit from a	
p or COI.		5	exercises (n =	median nerve	one-time	
			28) vs. Group	provocation test,	nonsurgical	
			2 received the	DASH, and	intervention	
			same standard	CTSQ not	that includes	
			care along with active	significantly different (p-vales	splinting instruction and	
			neurodynami	ranged from 0.308	standard	
			c	to .966) in both	tendon-gliding	
			mobilization	groups. Values	exercises alone	
			exercises (N	not provided.	or splinting	
			= 32).		and tendon	
			Follow-up at 6 months.		gliding along with neural	
			o monuis.		mobilization	
					exercises."	
Tal-Akabi	2.0	N = 21 with	Neurodynami	Only the post-	"The study has	Small sample size (N=21). Inclusion criteria of ULTT2a was also a treatment arm, potentially providing a fatal study flaw. Methodological details
2000		CTS mean	с	intervention Pain	failed to show	sparse.
DOT		duration of	mobilization	Relief Scale	significant	
RCT		2.3+2.5 years	(ULTT2a) (n	(PRS)	differences in	
		from surgery waiting list.	= 7) vs. Carpal bone	demonstrated significant	the effectiveness	
		walting list.	Carpai bone	significant	enecuveness	

No		Mean age:	mobilization	difference	between	
mention of		47.1+14.8	(n = 7) vs. No	between the three	mobilization of	
sponsorshi		years.	treatment (n =	groups (p<0.01).	the median	
p or COI.		5	7). Follow-up	Mean PRS –	nerve and	
1			and	Neurodynamic:	carpal bone	
			intervention	3.14; Carpal	mobilization in	
			length are	Bone: 3.71;	the treatment	
			unclear.	Control: 0.	of patients	
					presenting	
					with carpal	
					tunnel	
					syndrome."	
Bardak	1.5	N = 111 (111	Group 1	Symptom total	"In conclusion,	Methodological details sparse. Largely female population.
2009		hands) with	standard	point change -	in cases of	
		CTS. Mean age	conservative	Group1: -7.4;	idiopathic	
RCT		49.14+9.6	treatment	Group 2: -10.5;	CTS,	
G 1		years.	(SCT) (n =	Group 3: -2.9.	conservative	
Sponsored			41) vs. Group	Significant	treatment is	
by Sanofi Aventis.			2 SCT plus tendon and	difference between Groups 1	clinically effective.	
Avenus. No			median nerve	and 3 and Groups	Adding tendon	
mention of			gliding	2 and 3 ($p < 0.001$).	and nerve	
COI.			exercises (n =	Functional status	gliding	
COI.			35) vs. Group	scale change –	exercises is	
			3 tendon and	Group 1: -6.7;	also beneficial	
			median nerve	Group 2: -6.7;	to the	
			gliding	Group 3: -3.8.	management	
			exercises (n =	Significant	of long-term	
			35). Follow-	difference	CTS. Tendon	
			up 2 and 11	between Groups 1	and nerve	
			months.	and 3 and Groups	gliding	
				2 and 3 (p	exercises alone	
				<0.001).	are inferior to	
					other	
					modalities."	
	2.5	N 22 6 1		NT	"(T)1	NSAIDs
Gurcay	3.5	N = 32 female,	Group A:	No significant	"[T]he two	Small sample size in each group. Neither treatment was superior to the other.
2009		housewife	local injection	difference found	treatment	
RCT		patients with clinically and	of 6mg betamethason	between the groups for Functional	methods resulted in	
KC1		EDS confirmed	e through 25-	Status Scale (FSS)	some	
No mention		mild or	guage needle	scores, Jebsen	functional	
of		moderate CTS.	near distal	Taylor Test (JTT)	gains in hand	
01		Mean age	wrist-flexion	scores, or	dexterity and	
	1	mean age	WIISt-IICAIUII	500105, 01	denterity and	

Image: Part of the second se	sponsorship or COI.		40.8±11.2 years.	crease (n = 18) vs. Group B: meloxicam 15 mg/day, PO, for 3 weeks (n = 14). Both groups advised to wear wrist splints in	electrophysiologic al findings at 3 months (p>0.05).	improvement in electrophysiol ogical data, but with neither of the methods demonstrating superiority."	
Stransky 19893.5N = 15 EDS confirmed200mg of Vitamin B, vs. placebo"Significant charges in nerve odvantage over conductions and EMGs did not concur when initial and follow-up data were clim carpat lumel syndrome.""Vitamin B, seems to have no advantage over correct were carpat lumel syndrome."No mention of sponsorshi p or COL2.5N = 65 with climical and electrodiagnostic fradings."Crow re compared. Climical findings.""ELMA cream was effective in reducing was effective patient in the od averse events and it may of COL.N = 65 with climical and electrodiagnostic fradings."Significant charges in nerve conductions and electrodiagnostic fradings.""ELMA cream was effective patient sociated adverse events and it may offer patientsWethodological details sparse.No mention of sponsorship of COL75 years.Significant cevide events injection of methylpredni solone acetate"ELMA cream received and in patient related adverse events and it may offer patients"Eldocaine PatchesNo mention of sponsorship of COLN = 65 with climical and ection of methylpredni solone acetateSignificant 				neutral 			
1989ConfirmedVitamin Bs vs. placebochanges in nerve conductions and occur when initia and follow-up therapy for data were compared.seems to have no advantage conservative conservative conservative syndrome."No 	Stronglar	25	N = 15 EDC	200mg of	"Significant	"Vitamin D	Vitamins
RCTNoVs. placeboconductions and EMGs did not occur when initial and follow-up data were compared. Clinical findings.no advantage over conservative thrapy for tore syndrome."p or COI.Vs. Placebovs. placeboconductions and EMGs did not occur when initial and follow-up data were compared. Clinical findings.no advantage over conservative thrapy for tore syndrome."Moghtaderi2.5N = 65 with clinical and clinical and clinical and clinical and n = 30 rs.Significant received in pain in both in pain in both in reducing groups. (p volt)"ELMA cream in associated with CTS and with CTS and off cr patientsWethodological details sparse.No mention of or COI.75 years.Group 1 received on finition ingiction of methylpredni (AES) reported in vith CTS and with CTS and w		3.5					
RCTIIIEMGs did not occur when initial and follow-up data were compared. synosorshi p or COI.IIEMGs did not occur when initial and follow-up data were compared. syndrome."p or COI.II<	1707		commed				
No mention of sponsorshi p or COI.Is Is I	RCT			1	EMGs did not	over	
mention of sponsorshi p or COI.Image: sponsorshi of COI. <thimage: sponsorshi<br=""></thimage:> of COI.Image:							
sponsorshi p or COI.kkcompared. Clinical findings did not correlate with electrodiagnostic findings."syndrome."Moghtaderi 20092.5N = 65 with clinical and electrodiagnosti clinical and electrodiagnosti of CNI.Group 1Significant methylpredi in padn in both in reducing with celetated adverse events with celetated in padn in the with celetated in reducing with celetated in reducing with celetated in reducing with celetated in reducing in reducing with celetated in reducing with celetated in reducing in reducing with celetated in reducing in reduc							
p or COI.Image: Second sec							
Image: Section of the section of th	p or COI.				Clinical findings	syndrome.	
Image: space s	r or con						
Image: Constraint of the constra					with		
Moghtaderi 20092.5N = 65 with clinical and electrodiagnostiGroup 1Significant changes reported in pain in both in reducing groups, (pMethodological details sparse.RCTc evidence of CTS. Aged 18- T5 years.(n = 30) vs. received one ingction of ingction of solone acetate90001.with CTS and offer patients of COI.Methodological details sparse.					electrodiagnostic		
Moghtaderi 20092.5N = 65 with clinical and electrodiagnosti c evidence of CTS. Aged 18- of sponsorship or COI.Group 1Significant changes reported in pain in both groups, (p pain associated was effective in reducing pain associated well tolerated and it may with CTS andMethodological details sparse.No mention of sponsorship or COI.75 years.Group 2 injection of solone acetate<0.001).					tindings."		
2009clinical and electrodiagnostireceivedchanges reportedwas effectiveRCTcevidence of c evidence of(n = 30) vs.groups, (ppain associatedNo mention of75 years.Group 2<0.001).	Moghtaderi	2.5	N = 65 with	Group 1	Significant	"EI MA cream	
RCTelectrodiagnosti c evidence of c evidence ofELMA creamin pain in bothin reducing pain associatedRCTc evidence of c evidence of(n = 30) vs.groups, (ppain associatedNo mention of75 years.received oneTreatment-relatedwith CTS andsponsorship or COI.injection ofadverse eventsand it maysolone acetate2 patients inoffer patientssolone acetate2 patients inwith CTS and		2.5					
RCTc evidence of CTS. Aged 18- of(n = 30) vs. Group 2groups, (p vith CTS and with CTS and well tolerated and it mayNo mention of sponsorship or COI.75 years.Group 2 received one injection of solone acetateTreatment-related adverse events offer patients with CTS and							
CTS. Aged 18- No mention ofCroup 2<0.001).with CTS and well toleratedNo mention of sponsorship or COI.75 years.received one injection of methylpredniTreatment-related adverse eventswell tolerated and it maysponsorship or COI.methylpredni solone acetate(AEs) reported in yeith CTS andoffer patients with CTS and	RCT		c evidence of	(n = 30) vs.	groups, (p	pain associated	
ofinjection ofadverse eventsand it maysponsorshipmethylpredni(AEs) reported inoffer patientsor COI.solone acetate2 patients inwith CTS an					<0.001).		
sponsorship or COI.methylpredni solone acetate(AEs) reported in offer patients with CTS an			75 years.				
or COI. solone acetate 2 patients in with CTS an							
	sponsorship or COI					offer patients	
40 mg at $ group (5.7\%) $ effective				40 mg at	group 1 (5.7%)	effective,	
				wrist ($n =$	5-00p 1 (3.770)	noninvasive	

DRAFT – For Public Comment

			r	r	n	
			35). Follow-	and 10 patients in	symptomatic	
			up for 4	group 2 (28.5%).	treatment."	
			weeks.			
Jensen	1.5	N = 40 with	Lidocaine	Statistically	"The results	Methodological details sparse.
2006		CTS. Age 18-	patch 5%	significant	support the	
		75.	daily $(n = 20)$	decreases in 10 of	validity of the	
RCT/Parall		15.	vs. Lidocaine	20 PQAS pain	PQAS items	
el-			1% single	descriptor ratings	for assessing	
group/Open			injection of	occurred with	the effects of	
label						
			0.5mL plus	both treatments,	pain treatment	
Sponsored			methylpredni	(p <0.0025); 8	on pain	
by grant			solone acetate	ratings showed no	qualities of	
from Endo			40mg at start	significant trends	carpal tunnel	
Pharmaceut			of study (n =	for decreasing	syndrome."	
icals, Inc			20). Follow-	before treatment		
(M.P.J.).			up for 4	to after treatment.		
M.P.J. and			weeks.	No significant		
S.R.N.				differences found		
received				between treatment		
research				conditions on any		
support				of the PQAS		
and/or				items.		
consulting						
fees.						
A.R.G.,						
N.O. and						
B.S.G. hold						
stock						
options in						
Endo Phar.						
						Magnets
						Combination Magnetic Field Therapy
	3.5	N = 36 at least	Combination	Magnet vs Sham	"In conclusion,	Limited study enrollment and small sample size. Dropouts led to uneven participation between groups.
2008		18 years of age	of	– NPS Total	there is little	
		with CTS.	simultaneous	Composite	doubt that	
RCT		Mean age: 62.3	static and	reduction: 42% vs	time-varying	
		years.	time-varying	24% (p = 0.04).	PEMF produce	
Sponsored		-	dynamic	VAS reduction:	neuro-	
by Nikken,			magnetic	39% vs 27% (not	biological	
Inc. No			field	significantly	effects, and	
COI.			stimulation	different). NPS 8	our novel data	
			(Biaxial	Total Descriptor	suggest that	
			Super Mini	reduction: 43% vs	this unique	

		[Mx ² R]) 4- hours/day (N = 17) vs. Sham device (N = 19). Follow-up at 2 months.	24% (p = 0.04). No difference between groups for Nerve Conduction.	physics-based device generating AC and DC magnetic fields simultaneously directed to the carpal tunnel is an attractive nonsurgical approach this is safe, and can achieve statistically significant short-, intermediate-, and long-term pain relief and mild changes in neuromodulati on."	
Arikan 2011 RCT No mention of sponsorship or COI.	3.5 N = 57 hand from 38 patients with idiopathic C Mean age: 4 years.	Magnetic Field Therapy S. 30	When compared, no significant change was observed between groups for either clinical parameters or electrophysiologic studies (p> 0.05).	"(W)e conclude that magnetic field and placebo magnetic field treatments in the patients with idiopathic carpal tunnel syndrome are effective to both clinical and electrophysiolo gical endpoints in short term, but not superior to each other."	Pulsed Magnetic Field Therapy Baseline comparability data suggest randomization failure and possible quasi randomization "every other".

Dakowicz 2011 RCT No mention of sponsorship or COI.	2.5	N = 38 with diagnosed idiopathic CTS confirmed by ENG. Mean age 50.8±10.3 years.	end of treatment. Follow-up 1 month post- treatment. Low-level laser therapy (LLLT) using Ga-As Physioter D- 50 for 5 minutes and 33 seconds (N = 18) vs. Pulsed magnetic therapy (PMF) with Magnetronic MF-10 for 15 minutes (N = 20). Two series of 10 sessions, with 2 week break between. Assessment after each series and at 6 months post- treatment.	No between- groups comparisons were made. In both groups, VAS improved after each series and at 6-months post- treatment (p <0.05).	"The presented study demonstrated that a clinical improvement in CTS patients was observed after LLL as well as PMF."	Sparse baseline comparability data. At 6 months, both groups showed comparable (in)efficacy
						Splinting
Bhatia 2000 RCT	3.5	N = 102	Plaster splint vs wool and crepe bandage.	"There were no reported problems with wound breakdown or other symptoms at the 2 week follow- up. Using the Mann-Whitney U test, there were no significant statistical differences in the	"This prospective randomized study has not supported the use of plaster. We believe that patients undergoing carpal tunnel release should be treated	States single blinded, but unclear how blinding was done.

	1			[pain scores or	postoperatively	
				number of tablets	with a bulky	
				ingested up top 3	wool and crepe	
				days	bandage."	
				postoperatively	bandage.	
				between the two		
				groups."		
Horng 2011	3.5	N=60 patients	Group 1:	Functional status	"To improve	Baseline comparability differences in functional status scores among the 3 groups.
Hollig 2011	5.5	with symptoms	paraffin	difference	the functional	Basenne comparability unterences in functional status scores among the 5 groups.
RCT		(pain,	therapy (in	before/after	status and	
KC1		numbness	hospital 2x a	treatment	quality-of-life	
No mention		within median	week,	(mean±SD):	in CTS	
of		nerve	administered	Group 1; -0.4 ± 0.5	patients, the	
sponsorship		distribution,	by none-dip	vs. Group 2;	combination of	
. No COI.		nocturnal pain),	method at	0.1 ± 0.5 vs. Group	tendon gliding	
		positive Phalen	55°C) plus	$3; -0.2\pm0.7 \text{ (p} =$	exercises,	
		sign or positive	splint (custom	0.04). NS	paraffin	
		Tinel sign, and	made neutral	between groups	therapy, and	
		electrophysiolo	volar wrist	for symptom	splinting might	
		gy evidence of	splint to be	severity score (p =	be more	
		CTS. Mean age	worn at night	0.56), pain scale	effective than	
		50.5±9.4 years.	for at least 8	(p = 0.44),	the	
		J	weeks) plus	Disability of the	combination of	
			tendon	Arm Shoulder,	nerve gliding	
			gliding	and Hand	exercises,	
			exercise three	(DASH)	paraffin	
			times daily	questionnaire (p =	therapy, and	
			holding each	0.29), World	splinting."	
			position for 7	Health		
			seconds and	Organization		
			then repeating	Quality of Life		
			the exercises	Questionnaire		
			5 times per	Brief Version		
			session	(WHOQOL-		
			(N=20) vs.	BREF) physical		
			Group 2:	domain (p =		
			paraffin	0.31), WHOQOL-		
			therapy plus	BREF		
			splint plus	psychologic		
			nerve gliding	domain (p =		
			exercise	0.53), WHOQOL-		
			(N=20) vs.	BREF social		
			Group 3:	domain (p =		
			paraffin	0.88), and		

	l		.1 1	NULCOOL DESS		
			therapy plus	WHOQOL-BREF		
			splint (N=20).	environmental		
			Follow up 2	domain (p =		
			months after	0.45).		
			treatment.			
Koca 2014	3.5	N=75 patients	Group I:	NS between	"[O]ur results	Small group sizes and short follow-up time.
		with idiopathic	splint	TENS and splint	indicate the	
RCT		CTS; presence	therapy,	therapy for	potential for	
		of paresthesia,	neutral	improvement in	the use of IFC	
No mention		pain, and/or	position wrist	clinical scores (p	as a new and	
of		vasomotor	splint with	>0.05). VAS	safe	
sponsorship		symptoms of	aluminum bar	(mean±SD) at 6	therapeutic	
or COI.		hand through	at night for 3	weeks: IFC	option for the	
		distribution of	weeks (n =	4.80±1.18 vs.	management	
		median nerve	25) vs. Group	splint 6.37±1.18	of CTS."	
		for longer than	II:	(p = 0.001); IFC		
		6 weeks;	transcutaneou	vs. TENS		
		positive	s electrical	6.68±1.42 (p		
		Phalen's	stimulation,	<0.001). Median		
		maneuver	TENS on the	nerve motor distal		
		and/or Tinel's	carpal	latency (mMDL)		
		sign and/or	ligament and	mean±SD at 6		
		carpal	palmar area	weeks: IFC		
		compression	of hand at	3.89±0.88 vs.		
		test. Mean age	pulse rate of	splint 4.06±0.61		
		Group I –	100 Hz	(p = 0.001); IFC		
		35.4±4.2 years,	frequency and	vs. TENS		
		Group II –	stimulation	4.06±0.88 (p =		
		34.2±5.2,	period of 80	0.003). Median		
		Group III	ms, 20 minute	sensory nerve		
		34.9±4.8 years.	sessions for	conduction		
			15 total	velocity		
			sessions (n =	(mSNCV)		
			25) vs.	mean±SD at 6		
			interferential	weeks: IFC		
			current, IFC	41.80±1.76 vs.		
			therapy at	splint 40.75±1.48		
			base	(p = 0.010); IFC		
			frequency of	vs. TENS		
			4,000 Hz with	41.38±1.78 (p =		
			a modulation	0.021). Symptom		
			frequency	severity		
			range of 20	(mean±SD) at 6		
			Hz,	weeks: IFC		

Gurcay 2012 RCT No mention of sponsorship or COI.	3.5	N=54 female housewives with mild-to- moderate CTS diagnosed with clinical and electrophysiolo gical evidence. Mean age 43.7 ± 8.4 years.	electrodes placed on 1/3 mid portion of volar area of forearm, palmar area of hand, and thenar area of hand, 20 minute sessions for 15 sessions (n = 25). Assessments at baseline and 3 weeks after completion of treatment. Group I: phonophoresi s with 0.1% betamethason e applied over carpal tunnel at frequency 1 MHz and intensity 1 W/cm ² for 10 minute sessions, 3 days a week for 3 weeks (n = 18) vs. Group II: iontophoresis with 0.1% betamethason e, 2 mA for 10 minutes a	2.70±1.03 vs. TENS 3.37±1.21 ($p = 0.015$). Functional capacity (mean±SD) at 6 weeks: IFC 1.90±1.21 vs. TENS 2.50±0.78 ($p = 0.039$). Boston Symptom Severity Scale (BSSS): significant at 3 months, phonophoresis vs. control in favor of phonophoresis ($p = 0.012$). NS between groups for grip strength ($p = 0.280$) and 9- hole peg test, NHPT ($p = 0.811$).	"[W]e observed no added benefit or increased motor skills or hand dexterity in the groups after treatments."	Sparse baseline data and comparable efficacy.
			betamethason e, 2 mA for			

Sevim 2004 Prospectiv e, randomize d, blinded trial	3.0	N = 120 EDX confirmed	III: wrist splint only, custom-made volar thermoplastic splint in neutral position worn at night only for 3 weeks (n = 18). Assessments at baseline, 3 months after treatment. Betamethason e injections 4cm proximal to the carpal tunnel vs. injections distal to carpal tunnel vs. just splinting vs. control	"Splinting provided symptomatic relief and improved sensory and motor nerve conduction velocities at the long-term follow- up when the splints were worn almost every night. Proximal and distal injections of steroids were ineffective on the basis of both	Steroid injections may be beneficial short-term in mild and moderate CTS. However, splinting provided long term symptomatic relief and improved sensory and motor nerve conduction.	
				basis of both clinical symptoms and electrophysiologic findings."		
Stralka 1998	3.0	N = 120	Splint vs. Splint with energized	"In the energized group, post- treatment	"HVPC appears to be an effective	Methods details sparse. Diagnoses not clear. Study would seem to be blinded; however, that is not described.
RCT			high voltage pulse unit	evaluation showed statistically significant decreases in the	method for minimizing the severity of repetitive	

Madjdinasa b 2008 RCT No mention of sponsorship or COI.	3.0	N = 48 idiopathic CTS patients. Mean age 42.19 years.	Splint group: neutral position splint at night and during the day if possible for 6 weeks (n = 24) vs. steroid group: oral prednisolone 20mg/day for 2 weeks (n = 24). Assessments at baseline	amount of stimulation required to stimulate the median nerve and the amount of hand edema and pain. The energized group also had improved repetitive task times. None of these improvements occurred in the non-energized group." No significant differences between groups for median nerve sensory, motor distal latency, and conduction velocity (p >0.05).	stress injuries of the wrist." "Both treatment methods (splint and oral steroids) are effective but they don't have any significant difference between two methods after six weeks follow up."	Sparse baseline data, short follow-up. At 6 weeks, comparable efficacy, but duration of treatment is different.
			and 6 week follow-up.			
Dincer 2009 RCT	2.5	N = 60 females with bilateral mild to moderate CTS	Splinting only (Sp), (N= 40) Vs. Splinting +	After profile analysis (MANOVA), results showed	"In conclusion, the results of this study demonstrate	Methodological details sparse
No mention of sponsorship		diagnosis made by electromyograph y and clinical	Ultrasound therapy, A total of 10 US treatment	that improvements in SpUS and SpLLL groups	the effectiveness of conservative treatments for	
. No COI.		examination.	sessions were	statistically	mild to	

 14 04	C 1		1	
Mean age: 34	performed	significantly	moderate CTS.	
years for Sp, 30	once a day,	better than those	Combining US	
years for SpUS,	5x a week for	seen in Sp group	or LLL therapy	
36 years for	2 weeks	(p = 0.0429 and p	with splinting	
SpLLL group.	(SpUS), (N=	= 0.0001). Also,	appeared to be	
	40) vs.	difference	more effective	
	Splinting plus	between SpUS	than splinting	
	low level	and SpLLL	alone in our	
	laser therapy	groups significant	study.	
	(SpLLL), (N=	(p = 0.03). Both	However, the	
	40). Follow	SpUS and SpLLL	combination of	
	up visits: in	groups had	LLL therapy	
	first month,	statistically	with splinting	
	and third	significantly	appeared to be	
	month, after	better	superior to	
	treatment.	improvement than	splinting plus	
	Patients were	Sp group at 3	US, especially	
	instructed to	months (p	for	
	wear the	< 0.0001 for both	improvements	
	splints at	groups) On the	in symptom	
	night for 3	other hand, no	severity, pain	
	mo.	significant	alleviation, and	
	Ultasound	differences	patient	
	therapy was	between SpUS	satisfaction.	
	administered	and SpLLL group	Further	
	to each other	profiles. VAS	research with	
	for 3 min per	pain scores	larger patient	
	session, on	improved in all	samples and	
	the area over	groups at 1 and 3	longer follow-	
	carpal tunnel	month vs.	up periods are	
	at a frequency	baseline. Both	required to	
	of 3 MHz and	SpUS and SpLLL	independently	
	an intensity	groups	confirm our	
	of 1.0W/ cm2	improvements	findings, and	
	in continuous	significantly	to determine	
	mode with a	better than Sp	the most	
	transducer 5	group	effective doses	
	cm2 in size	improvement over	and protocols	
	with gel.	time ($p = 0.0001$	for LLL and	
	with gei.	for both). SpLLL	US therapies."	
		group showed	05 merapies.	
		significantly		
		better		
		Denei		

DRAFT – For Public Comment

I		1	1	· · ·		
				improvement than		
				SpUS group.		
Burke	1.5	N = 59	Splints vs.	"The results	"All splints	Randomization unclear, study states blinded but that seems unlikely.
1994			optimal angle	indicate that the	were custom	
				neutral angle	made volar	
RCT				provided superior	cock-up style	
				symptom relief,	splints	
				and that the relief	constructed of	
				did not often	thermoplastic	
				improve between	splinting	
				2 weeks and 2	material."	
				months of wear."		
Pinar 2005	1.5	N = 26 females	Tendon	Grip strength	"Significant	Low sample size. Blinding unclear. Diagnostic criteria unclear, including NCS and 9 other criteria that seem unlikely fulfilled for all. No non-
		with NCS	gliding	TGE vs. splint	progress was	treatment comparison. No between group differences. Conclusion for ultrasound not clearly supported. If bilateral CTS (12/30), both treated the same
RCT		positive CTS	exercises (n =	plus reduced use	detected in	and double-counted in results, weakening conclusions.
			6) vs.	(pre/post):	both control	
No			thermoplastic	17.8±6.1/22.0±6.8	and	
mention of			volar splint	VS.	experimental	
sponsorshi			plus	20.4±4.7/21.7±4.3	groups during	
p or COI.			instructions to	(p <0.05) between	the	
			reduce	groups. Most	posttreatment	
			physical	results negative.	phase	
			activities for		compared with	
			10 weeks		the initial	
					phase	
					(P<0.05).	
					However,	
					when the 2	
					groups were	
					compared, the	
					experimental	
					group in which	
					nerve gliding	
					exercises were	
					added to	
					conservative	
					therapy	
					approaches	
					demonstrated	
					more rapid	
					pain reduction;	
					these patients	
					also showed	
					greater	

					functional improvement, especially in grip strength (P<0.05)."	
Khosrawi 2012 RCT Study funded by research chancellor of Isfahan University of Medical Sciences. No COI.	1.5	N = 72 with mild to moderate CTS confirmed using Tinel's and Phalen's tests and electrophysiolo gical testing; mean age: Acupuncture Group 41.7 ± 9.3 ; Control Group 41.1 ± 9.6	Acupuncture Group underwent treatment in eight sessions of 60 minute duration over 4 weeks and also night splinting (n = 32) vs. Control group was given vitamins B1, B6 and sham acupuncture. Also had night splinting (n = 32). Follow- Up at baseline 2 weeks and 4 weeks.	Global Symptom Score (GSS) acupuncture group vs. control group at Week 4: 14.6 ± 5.4 (p < 0.001) vs 22.5 ± 8.9 (p = 0.17). Nerve Conduction Velocity at 4 weeks, Acupuncture vs control: 37.6 ± 8.3 vs 33.2 ± 5.9 (p < 0.02)	"Our findings indicated that the acupuncture can improve the overall subjective symptoms of carpal tunnel syndrome and could be adopted in comprehensive care programs of these patients."	Acupuncture Methodological details sparse.
Ho 2014 RCT Study supported by the grant of the National Science Council, Chine Medical University	1.5	N = 26 confirmed CTS via electrodiagnosti c testing; mean age Acu Group: 49.5 ± 9.7 ; Electro-Acu Group: 50.1 ± 10.1	Acupuncture Group Given 24 sessions of 15 minute duration over 6 weeks (n = 15) vs. Electro- Acupuncture Group given same acupuncture points and sessions	Symptom severity scores baseline vs. 2 week follow-up. Electroacupunctur e decreased significantly (p <0.02). Distal Motor Amplitude acupuncture group, baseline to 4 weeks after treatment. 6.49±2.70 to 7.62±2.87 (p =	"Despite the limitations in this study, we found that safety depth acupuncture and electroacupunc ture could exert different positive therapeutic effects for patients with	Methodological details sparse.

TT · · ·			,		CTTC 1	
Hospital,			along with	0.02), Electro-	CTS. As	
and Taiwan			duration	Acu no significant	evidenced by	
Department			however	increase.	the	
of Health			stainless steel	Shortened median	improvement	
Clinical			needle	sensory latency,	of	
Trial and			negative	baseline-4 week	Symptomology	
Research			charged	follow-up. Acu	using	
Center of			inserted in	3.70±1.15 to	electroacupunc	
Excellence.			middle of	$3.22 \pm 1.02 (p =$	ture and	
			wrist while	0.04) vs electro-	improvements	
			positive was	Acu not	of grip	
			inserted in	statistically	strength,	
			forearm.	significant.	electrophysiolo	
			Follow-up at	Median Nerve F	gical findings,	
			baseline, 2	wave mean	and physical	
			weeks after	latency, baseline	provocation	
			treatment	to 4 weeks. Acu	sign of using	
			session and	group 29.11±3.38	acupuncture,	
			electrodiagno	to 28.27±3.76 (p	the findings of	
			stic testing	= 0.002) vs.	this study	
			done 4 weeks	electro-Acu no	provide	
			after	significant	references in	
			treatment.	difference. Grip	clinical	
			ci outilioliti	strength baseline	decision	
				to 4 weeks post	making when	
				treatment, Acu	selecting	
				23.3 ± 9.85 to	proper	
				27.88 ± 12.44 (p =	treatment	
				0.01) vs alectro-	programs for	
				Acu no significant	symptomatic	
				difference.	CTS patients."	
Cai 2009	0.5	N = 98 cases of	Acupuncture	Clinically cured	"Acupuncture	Methodological details sparse.
Cui 2007	0.5	CTS all history	group: warm	(clinical	plus Tuina	nourodorogiour douring spurso.
RCT		of strain or	needling	symptoms	manipulation	
		traumatic injury	tachniques	disappeared,	is a simple	
No		of wrist joint.	and Tuina	movement	therapy for	
Mention of		Mean age:	relaxing	restored, negative	carpal tunnel	
COI or		Warm Needling	manipulations	in Carpal canal	syndrome, but	
sponsorship		Group Range	. 10 30	irritating test. Acu	with	
sponsorsnip		32-67 years;	minute	group 49	remarkable	
·		Control Group	sessions (n =	(81.67%) vs	therapeutic	
		35-71 Years old	60) vs.	control 18	effects."	
		55-71 Tears Old	Control	(47.37% (p<0.01).	0110015.	
			Group Given	(+1.57% (p<0.01).		
			Group Groen	1		

		block therapy with 10mg			
		Triamcinolon e A and lidocaine			
		once every 3- 5 days,			
		Dibazol and Vitamin B1 were taken			
		orally 3 times daily until			
		trial over. (n $= 38$).			
		= 38). Follow-up only			
		mentioned only after 1			
		course of treatment. (no			
		specific time frame)			
I			I		Low-level Laser Therapy
Stasinopou 3.0	N = 25 with	Polarized	At 4 weeks, 2	"Nocturnal	Open trial with sparse methodological details. Small sample size and no placebo group.
Stasinopou 3.0 los 2005	unilateral	polychromati	(8%) had no	pain and	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005	unilateral idiopathic	polychromati c noncoherent	(8%) had no change in	pain and paraesthesia	Open trial with sparse methodological details. Small sample size and no placebo group.
	unilateral idiopathic carpal tunnel	polychromati c noncoherent light or	(8%) had no change in nocturnal pain, 6	pain and paraesthesia associated with	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT	unilateral idiopathic carpal tunnel syndrome, mild	polychromati c noncoherent light or Bioptron light	(8%) had no change in nocturnal pain, 6 (24%) were in	pain and paraesthesia associated with idiopathic	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No	unilateral idiopathic carpal tunnel syndrome, mild to moderate	polychromati c noncoherent light or Bioptron light administered	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less	pain and paraesthesia associated with idiopathic carpal tunnel	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain,	polychromati c noncoherent light or Bioptron light administered perpendicular	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12	pain and paraesthesia associated with idiopathic carpal tunnel syndrome	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area for 6 minutes	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months. The mean age was	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area for 6 minutes at operating distance 5-	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and 5 (20%) were pain-free. At 6	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months. The	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area for 6 minutes at operating distance 5- 10cm from	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and 5 (20%) were pain-free. At 6 months, 3 patients	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent light (Bioptron	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months. The mean age was	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area for 6 minutes at operating distance 5- 10cm from carpal tunnel	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and 5 (20%) were pain-free. At 6 months, 3 patients (12%) were	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent light (Bioptron light)	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months. The mean age was	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area for 6 minutes at operating distance 5- 10cm from carpal tunnel area, 3x	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and 5 (20%) were pain-free. At 6 months, 3 patients (12%) were slightly better in	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent light (Bioptron	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months. The mean age was	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area for 6 minutes at operating distance 5- 10cm from carpal tunnel area, 3x weekly for 4	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and 5 (20%) were pain-free. At 6 months, 3 patients (12%) were slightly better in regard to	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent light (Bioptron light)	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months. The mean age was	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area for 6 minutes at operating distance 5- 10cm from carpal tunnel area, 3x weekly for 4 and 6 weeks	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and 5 (20%) were pain-free. At 6 months, 3 patients (12%) were slightly better in regard to nocturnal pain, 13	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent light (Bioptron light)	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months. The mean age was	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area for 6 minutes at operating distance 5- 10cm from carpal tunnel area, 3x weekly for 4 and 6 weeks (n = 25).	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and 5 (20%) were pain-free. At 6 months, 3 patients (12%) were slightly better in regard to nocturnal pain, 13 (52%) were much	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent light (Bioptron light)	Open trial with sparse methodological details. Small sample size and no placebo group.
los 2005 RCT No mention of sponsorshi	unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months. The mean age was	polychromati c noncoherent light or Bioptron light administered perpendicular to carpal tunnel area for 6 minutes at operating distance 5- 10cm from carpal tunnel area, 3x weekly for 4 and 6 weeks	(8%) had no change in nocturnal pain, 6 (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and 5 (20%) were pain-free. At 6 months, 3 patients (12%) were slightly better in regard to nocturnal pain, 13	pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent light (Bioptron light)	Open trial with sparse methodological details. Small sample size and no placebo group.

			participants' global assessments of nocturnal pain and paraesthesia, respectively, at 4 weeks and 6 months. Follow-up at 4 weeks, and 6 months.	(36%) were pain- free.		Manipulation and Mobilization
Pratelli 2015 RCT No mention of sponsorship or COI.	2.5	N = 70 symptomatic hands clinically diagnosed and electromyograp hically proven CTS. Mean age 54.2 (38-74)	Group 1 (n = 35) treated with Fascial manipulation (FM) 45 minute session 3x a week for 3 weeks vs. Group 2 (n = 35) Low Level Laser Therapy 5x a day for 10 minute sessions. Follow-up 10 days before treatment, and 1 week and 3 months after treatment.	BTCQ symptomatic and functional and Visual Analogue Scale scores baseline – first follow up, group 1: 3.027, 3.097, and 6.00 vs 1.362, 1.40, 0.80 (p <0.0001). Baseline vs second follow up 3.027, 3.097, and 6.00 vs 1.27, 1.31, 0.714 (p <0.0001). Group 2 BTCQ symptomatic and functional as well as Visual Analogue Scale baseline vs follow up 1: 3.52, 2.90, 5.51 vs 2.66, 2.58, 5.00 (p <0.001). Worsening of symptoms in group 2 from follow up 1 to 2.	"FM appears to be an appropriate treatment not only for musculoskelet al dysfunction but also for common nerve entrapments as in carpal tunnel syndrome. The method is effective and non-invasive. It gives excellent results for the relief of local symptoms and for restoring functionality with benefits that remain at three month follow up.	Methodological details sparse.
Heebner 2008	2.0	N = 61 with CTS confirmed	Group 1 (n = 28) standard	No statistical significance	"The results of this study	Methodological details sparse. High dropout rate.

	1			1	-	
		using Nerve	care provided	between the	suggest that	
RCT		Conduction	by hospital	Disabilities of the	persons with	
		Velocity	(night	Arm Shoulder and	CTS in a	
No mention		testing; mean	splinting,	Hand scores and	community	
of		age 52 (32-75)	tendon	CTSW symptom	hospital do	
sponsorship			gliding	severity scale	not benefit	
or COI.			exercises) vs.	(SSS). CTSQ	from a	
			Group 2 ($n =$	functional scale	one-time	
			32) same as	(FSS) group 1 vs	nonsurgical	
			group 1 but	group 2, 2.2 vs 2.9	intervention	
			addition of	(p=0.016).	that includes	
			neurodynami	4	splinting	
			с		instruction	
			mobilization		and standard	
			exercise		tendon-	
			median nerve		gliding	
			bias. Follow-		exercises	
			up baseline, 1		alone or	
			and 6 months		splinting and	
			after initial		tendon gliding	
			treatment.		along with	
					neural	
					mobilization	
					exercises."	
Bialosky	1.5	N = 40 females;	Group $1(n =$	No statistically	"Participants	Included both healthy subjects and those with CTS. Methods poorly described. Few meaningful results.
2011	1.5	mean age for	20) with	significant change	with signs and	
-011		individuals	clinically	in outcome	symptoms of	
RCT		with CTS:	diagnosed	measures	CTS differed	
		40.75±10.38,	CTS	associated with	from healthy	
Study		38.25 ± 12.32	(Tinnel's,	Neurodynamic	age- and sex-	
supported		for healthy	Phalen's,	Intervention.	matched	
by grant		individuals.	Carpal	Baseline	controls in	
from			Compression	relationship	suprathreshol	
National			Tests) vs.	between clinical	d measures of	
Institutes of			Group 2 ($n =$	pain and pain	pain	
Health			20) age	sensitivity w/ signs	sensitivity	
National			matched and	and symptoms of	suggesting a	
Center for			no sign of	CTS: MP flexor	central	
Compleme			CTS. Follow-	retinaculum after	mechanism of	
ntary and			up 2x a week	sensation 0.88 (p	pain.	
Alternative			for 3 weeks.	<0.01). Change in	Immediate	
Medicine.				usual pain over 3	change in	
				weeks in MP	mechanical	
				flexor retinaculum	pain	
1						

				after temporal summation -0.57 (p = 0.05) and after	sensitivity and after sensation and 3-week	
				sensation -0.55 (p	change in	
				= 0.01).	temporal	
					summation	
					were	
					associated	
					with	
					improvements in clinical	
					pain intensity	
					suggesting	
					prognostic	
					factors and a	
					potential	
					mechanism	
					for	
					improvement	
					respectively"	
	T		1		T	Massage
Moraska	3.5	N = 27 with	General	Grip strength: TM	"The results	No meaningful differences between treatment groups. Small sample size (N=27).
2008		CTS for at least	massage	showed	from this	
DCT		6 months.	(GM, n = 13)	significantly	study suggest	
RCT			focused on reducing	greater strength increase compared	that massage therapy may	
Sponsored			muscular	increase compared		
					be a useful	
by Massage				to GM, p=0.04.;	be a useful part of a	
by Massage			tension and	improvement for	part of a	
by Massage Therapy			tension and enhancing	improvement for TM first seen after	part of a conservative	
by Massage			tension and	improvement for TM first seen after 7 th massage and maintained	part of a conservative care treatment	
by Massage Therapy Foundation (Evanston, IL) No			tension and enhancing circulation to	improvement for TM first seen after 7 th massage and maintained following 11 th	part of a conservative care treatment regimen, although	
by Massage Therapy Foundation (Evanston, IL) No mention of			tension and enhancing circulation to back, neck, and both upper	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at	part of a conservative care treatment regimen, although additional	
by Massage Therapy Foundation (Evanston, IL) No			tension and enhancing circulation to back, neck, and both upper extremities v.	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at least4 weeks after	part of a conservative care treatment regimen, although additional research	
by Massage Therapy Foundation (Evanston, IL) No mention of			tension and enhancing circulation to back, neck, and both upper extremities v. targeted	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at least4 weeks after last treatment,	part of a conservative care treatment regimen, although additional research support is	
by Massage Therapy Foundation (Evanston, IL) No mention of			tension and enhancing circulation to back, neck, and both upper extremities v. targeted massage	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at least4 weeks after last treatment, p<0.01 for all time	part of a conservative care treatment regimen, although additional research	
by Massage Therapy Foundation (Evanston, IL) No mention of			tension and enhancing circulation to back, neck, and both upper extremities v. targeted massage (TM, n = 14)	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at least4 weeks after last treatment,	part of a conservative care treatment regimen, although additional research support is	
by Massage Therapy Foundation (Evanston, IL) No mention of			tension and enhancing circulation to back, neck, and both upper extremities v. targeted massage (TM, n = 14) aimed at	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at least4 weeks after last treatment, p<0.01 for all time	part of a conservative care treatment regimen, although additional research support is	
by Massage Therapy Foundation (Evanston, IL) No mention of			tension and enhancing circulation to back, neck, and both upper extremities v. targeted massage (TM, n = 14) aimed at probable sites	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at least4 weeks after last treatment, p<0.01 for all time	part of a conservative care treatment regimen, although additional research support is	
by Massage Therapy Foundation (Evanston, IL) No mention of			tension and enhancing circulation to back, neck, and both upper extremities v. targeted massage (TM, n = 14) aimed at probable sites of nerve	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at least4 weeks after last treatment, p<0.01 for all time	part of a conservative care treatment regimen, although additional research support is	
by Massage Therapy Foundation (Evanston, IL) No mention of			tension and enhancing circulation to back, neck, and both upper extremities v. targeted massage (TM, n = 14) aimed at probable sites of nerve entrapment	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at least4 weeks after last treatment, p<0.01 for all time	part of a conservative care treatment regimen, although additional research support is	
by Massage Therapy Foundation (Evanston, IL) No mention of			tension and enhancing circulation to back, neck, and both upper extremities v. targeted massage (TM, n = 14) aimed at probable sites of nerve	improvement for TM first seen after 7 th massage and maintained following 11 th massage and for at least4 weeks after last treatment, p<0.01 for all time	part of a conservative care treatment regimen, although additional research support is	

Moraska 2010 RCT	3.5	Same as Moraska 2008	extremity. 12 30 minute structured massage treatments over 6 weeks. Same as above (Moraska 2008)	Same as above (Moraska 2008)	Same as above (Moraska 2008)	Same population as pilot report of Moraska 2008. Therapeutic Touch
Blankfield 2001 RCT Sponsored by grant from Ohio Academy of Family Physicians and General Clinical Research Center grant from NIH. No mention of COI.	1.5	N = 21 with electro diagnostically confirmed CTS. Mean age 57.4 for therapeutic touch treatment group, 55.2 for sham treatment.	Therapeutic touch (TT) group (n = 11) vs. sham (n = 10), 1x a week for 6 weeks. Follow-up period not mentioned.	Mean motor distal latencies (baseline/follow- up): TT (5.4±0.9/5.2±1.1m s) vs. sham (6.1±1.8/5.9±1.0m sec), p >0.15. Pain/ relaxation scores NS.	"[T]T was no better than placebo in influencing median motor nerve distal latencies, pain scores, and relaxation scores."	Suggests lack of benefit. Small sample size. Methodological details sparse. Data concerning for possible randomization failure.
						Ultrasound Ultrasound vs. Placebo
Armagan 2014 RCT	3.5	N = 46 with CTS. Mean age: group 1: 45.20 years, group 2: 43.31	First group received 0 W/cm2 ultrasound treatment (placebo) (n =	Significant improvements in all groups as per post-treatment Functional Status Scale score (p	"The results of this study suggest that splinting therapy combined	Methodological details sparse. No differences seen between groups.

				1		
No		years; group 3:	15) Vs.	<0.05 all groups),	with placebo	
mention of		44.53 years.	second	Symptom Severity	and pulsed or	
sponsorshi			received	Scale score (first	continuous	
p. No COI.			1.0W/cm2	group: p <0.05,	ultrasound	
			continuous	second group: p	have similar	
			ultrasound	<0.01, third group:	effects on	
			treatment (n =	p <0.001) and	clinical	
			16) Vs. third	Visual Analogue	improvement.	
			received 1.0	Scale score (first	Patients	
			W/cm2 1:4	and third groups:	treated with	
			pulsed	P<0.01, second	continuous	
			ultrasound	group: p <0.001).	and pulsed	
			treatment (n =	Sensory	ultrasound	
			15).	conduction	showed	
			Administered	velocities	electrophysiol	
			for 5 days a	improved in 2 nd	ogical	
			week for a	and 3rd groups (p	improvement;	
			total of 15	<0.01). Distal	however, the	
			sessions. All	latency in 2nd	results were	
			patients also	finger showed	not superior	
			wore night	improvement only	to those of the	
			splints during	in 3 rd group (p	placebo."	
			treatment	<0.01) and action	F	
			period.	potential latency in		
			Follow up:	palm improved		
			not	only in 2^{nd} group		
			mentioned.	(p <0.05)		
Oztas 1998	2.5	N = 18 females	Group A:	Night	"Ultrasound	Single blind (patient). Suggests ultrasound not effective. Small sample size of 18 women. Methodological details sparse.
OZtas 1770	2.5	with CTS in 30	continuous	pain/paresthesia	therapy in	Single bind (patent). Suggests unasound not encenve. Sinan sample size of 16 women. Methodological details sparse.
RCT		hands. Mean	ultrasound	before	CTS was	
KC1		age: Group A:	therapy with	treatment/after	comparable to	
No mention		53.2 years;	intensity of	treatment: Group A:	placebo	
of		Group B: 51.3	1.5 W/cm2 (n	$2.30\pm.68/1.40\pm.52;$	ultrasound in	
sponsorship		years; Group C:	= 10) Vs.	Group B: 260±.70/	providing	
. No COI.		49.0 years.	= 10) vs. Group B: US	1.70±.82; Group C:	symptomatic	
. NO COI.		49.0 years.	therapy with	1.70±.82; Group C: 2.60±.69/1.40±.97.	relief, and the	
			intensity of	$2.60\pm.69/1.40\pm.97$. Mean distal latency:	probability of	
			0.8 w/cm2 (n = 10) Vs.	Group A:	a negative	
				5.85±1.87/6.00±	effect on	
			Group C: US	1.95; Group B:	motor nerve	
			therapy with	5.90±1.29/	conduction	
			intensity of	6.10±1.46; Group	needs to be	
			0.0 W/cm2 (n)	C:	considered."	
			= 10). 5			

			minutes, 5 days a week for 2 weeks.	5.60±1.61/5.36±1.4 8.		
						Ultrasound vs. Other Treatments or in Combination(s)
Duymaz 2012 RCT No sponsorship or COI.	3.5	N = 58 unemployed with CTS confirmed by provocation tests and EMG and symptoms of numbness, tingling, weakness, and pain in hands for at least 3 months but not more than 1 year. Mean age 51.85±7.29 years.	Group I: iontophoresis with dexamethaso ne 0.4% at a current 2 mA for 20 minutes (n = 20) vs. Group S: iontophoresis sham using water at current 2 mA for 20 minutes (n = 18) vs. Group U: underwater ultrasound 5 minutes per session using direct current at an intensity of 0.8 W/cm ² , 3 applications once a day 5x a week for 3 weeks (n = 20). All received: training on performing tendon and nerve gliding exercises to be completed for 3 sets of 10 everyday; ergonomic	Mean±SD VAS on movement difference between pre and post treatment values Group I vs. Group U: 2.75±1.71 vs. 0.66±1.13 vs. 1.30±1.83 (p<0.001). Mean±SD VAS at rest difference between pre and post treatment values Group I vs. Group S vs. Group U: 2.55±1.76 vs. 0.50±0.78 vs. 1.20±1.73 (p <0.001).	"Our study results suggest that dexamethason e iontophoresis administration combined with tendon gliding exercises, splint and activity modification is reliable and effective in the treatment of patients with mild CTS."	Only differences observed are for VAS 2 point discrimination test and monofilament test.

	1	1		1		
			training for			
			daily living			
			activities; and			
			neutral wrist			
			splinting at			
			night.			
			Follow-up			
			after 3			
			months.			
Dincer	2.5	N = 60 females	Splinting only	After profile	"In	Methodological details sparse.
2009		with bilateral	(Sp), (n = 40)	analysis	conclusion,	
		mild to	vs. splinting +	(MANOVA),	the results of	
RCT		moderate CTS	Ultrasound	results showed	this study	
		diagnosis made	therapy, Total	improvements in	demonstrate	
No mention		by	10 US	SpUS and SpLLL	the	
of		electromyograph	treatment	groups were	effectiveness	
sponsorship		y and clinical	sessions	statistically	of	
. No COI.		examination.	performed	significantly better	conservative	
.110 COL		Mean age 34	once a day, 5x	than those in Sp	treatments for	
		years for Sp, 30	a week, for 2	group ($p = 0.0429$	mild to	
		years for SpUS,	weeks	and $p = 0.0001$,	moderate	
		36 years for	(SpUS), (n =	respectively).	CTS.	
		SpLLL group.	(3p03), (11 - 40) vs.	Also, difference	Combining	
		Spelle group.	Splinting plus	between SpUS and	US or LLL	
			low level laser	SpLLL groups	therapy with	
			therapy	significant (p =	splinting	
			(SpLLL), (n =	0.03). Both SpUS	appeared to	
			(Splll), (II = 40) Follow	and SpLLL groups	be more	
				had statistically	effective than	
			up: 1st and			
			3rd month	significantly better	splinting	
			after	improvement than	alone in our	
			treatment.	Sp group at 3	study.	
			Patients to	months $(p = 1)$	However, the	
			wear splints at	<0.0001 for both	combination	
			night for 3	groups) On other	of LLL	
			months.	hand, no	therapy with	
			Ultasound	significant	splinting	
			therapy	differences	appeared to	
			administered	between SpUS and	be superior to	
			to each other	SpLLL group	splinting plus	
			for 3 minutes	profiles. VAS pain	US, especially	
			per session on	scores improved in	for	
			area over	all groups at 1 and	improvements	
			carpal tunnel	3 month compared	in symptom	

		-				
			at 3 MHz and intensity of 1.0W/ cm2 in continuous	to baseline. Both SpUS and SpLLL groups' improvements	severity, pain alleviation, and patient satisfaction.	
			mode with	significantly better	Further	
			transducer 5	than Sp group's	research with	
			cm2 in size	improvement over	larger patient	
			with gel.	time ($p = 0.0001$	samples and	
			with get.	for both). Also,	longer follow-	
				SpLLL group	up periods are	
				showed	required to	
				significantly better	independently	
				improvement than	confirm our	
				did SpUS group.	findings, and	
				ulu spos gloup.	to determine	
					the most	
					effective	
					doses and	
					protocols for	
					LLL and US	
					therapies."	
						Iontophoresis/Phonophoresis
Aygul	3.5	N = 31 (56	Local steroid	Injection group	"Steroid	
Aygul 2005	3.5	N = 31 (56 hands)	Local steroid injection 1ml	Injection group had a steady	"Steroid injection in	Random in abstract, but nowhere in methods.
Aygul 2005	3.5		Local steroid injection 1ml dexamethaso	had a steady	"Steroid injection in CTS is more	
Aygul 2005 RCT	3.5		injection 1ml		injection in	
2005	3.5		injection 1ml dexamethaso	had a steady significant	injection in CTS is more	
2005	3.5		injection 1ml dexamethaso ne sodium	had a steady significant improvement for	injection in CTS is more effective than	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs.	had a steady significant improvement for all parameters	injection in CTS is more effective than iontophoresis	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the	injection in CTS is more effective than iontophoresis and phonophoresis treatment in	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit.	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1%	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1% dexamethaso	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant improvements in	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to moderate	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1% dexamethaso ne sodium	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant improvements in the D4M-D4U	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to moderate idiopathic	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1% dexamethaso ne sodium phosphate vs.	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant improvements in the D4M-D4U and mTLI.	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to moderate idiopathic CTS, and that	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1% dexamethaso ne sodium phosphate vs. phonophoresi	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant improvements in the D4M-D4U and mTLI. Phonophoresis	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to moderate idiopathic CTS, and that the most	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1% dexamethaso ne sodium phosphate vs. phonophoresi s frequency	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant improvements in the D4M-D4U and mTLI. Phonophoresis group had	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to moderate idiopathic CTS, and that the most sensitive	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1% dexamethaso ne sodium phosphate vs. phonophoresis s frequency of 3 MHz and	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant improvements in the D4M-D4U and mTLI. Phonophoresis group had significant	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to moderate idiopathic CTS, and that the most sensitive neurophysiolo	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1% dexamethaso ne sodium phosphate vs. phonophoresi s frequency of 3 MHz and intensity of	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant improvements in the D4M-D4U and mTLI. Phonophoresis group had significant improvement of	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to moderate idiopathic CTS, and that the most sensitive neurophysiolo gic parameters	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1% dexamethaso ne sodium phosphate vs. phonophoresis s frequency of 3 MHz and intensity of 1.0 W/cm2,	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant improvements in the D4M-D4U and mTLI. Phonophoresis group had significant improvement of D4D-D4U and	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to moderate idiopathic CTS, and that the most sensitive neurophysiolo gic parameters at follow-up	
2005	3.5		injection 1ml dexamethaso ne sodium phosphate vs. iontophoresis treatment with 1-4mA galvanic current and mixture of 0.1% dexamethaso ne sodium phosphate vs. phonophoresi s frequency of 3 MHz and intensity of	had a steady significant improvement for all parameters except SNAPa, mTLI, and mMNCV at the first follow-up visit. Iontophoresis had significant improvements in the D4M-D4U and mTLI. Phonophoresis group had significant improvement of	injection in CTS is more effective than iontophoresis and phonophoresis treatment in the short- to medium-term in patients with mild to moderate idiopathic CTS, and that the most sensitive neurophysiolo gic parameters	

No mention of sponsoship or COI. area of CT at Mean age 143.7:8.4 (range 24-57) years. area of CT at montion i NMEz and an prop UII (p < kore intervent wist of DOI). compared to baseline (TOI). no superiority was determined among the treatment groups with hise-hole pet test notor skills and hand desterity." V A FUNCATION AND AND AND AND AND SUPERATION AND	Gurcay 2012 RCT	3.5	N = 52 with CTS analyzed based on clinical and electrophysiolo	5cm2, including mixture of 0.1% dexamethaso ne sodium phosphate Group I, phonophoresi s, 0.1% betamethason e applied over	At 3 months (T1), Boston Symptom Severity Scale (BSSS) improved in group I (p <	D2M-D5U, which are objective parameters indicating the outcome of CTS treatment." "Symptom severity improved in all groups after treatment, but	Sparse baseline data and comparable efficacy.
Note: Spin (n) Wcm2, pus io baseline (TD), io all groups with respect to motor skills and hand betamethason 1 1.8) vs. (NHPT) in all or otor skills and hand betamethason 0.1% groups (1, 1) and betamethason and hand deterity." e iontor skills and hand deterity." iontophoresis improved, (p > 0.05). A electrode significant dotsge of 2 difference minutes/day. minutes/day. for 10 between groups minutes/day. for 10.9 between groups minutes/day. for 25.8, F = plus wrist 4.599, (p = splint (n = 0.015). No 18 ys. Group itiditical fill to control, difference resplint alone 0.280. value 0.280.	sponsorship		43.7±8.4 (range	1 MHz and an	group III (p <	determined	
Aggul 3.5 N = 31 (56) Local steroid Injection group "Steroid Carpal Tunnel Injections Aggul 3.5 N = 31 (56) Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.	or COI.		24-57) years.				
Aggul 3.5 N = 31 (56) Local steroid Injection groups "Steroid Random in abstract, but nowhere in methods.				wrist splint (n	Grip strength, and	groups with	
Aygul 3.5 N = 31 (56 Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.							
Aygul 3.5 N=31 (56 Local steroid III at 3 month vs baseline dexterity." Aygul 3.5 N=31 (56 Local steroid III at 3 month vs baseline dexterity." Baseline baseline baseline baseline baseline III at 3 month vs baseline baseline baseline baseline Image: Statistical difference 0.05. A significant difference Maintus: day, for BSSS, F = plus wrist 4.599, (p = splint (n = No. Stroug statistical III or control, difference instructed to between groups statistical III or control, difference instructed to between groups statistical III or control, difference instructed to between groups subservice see wrist for grip strength splint alone at T0 and T1, X2 n = 18), = 2.546, (p = z splint alone at T0 and T1, X2 splint alone Norths. Steroid Random in abstract, but nowhere in methods. Random in abstract, but nowhere in methods.							
Aygul 3.5 N = 31 (56) Local steroid Improved, (p > (0.5), A (0.5)				betamethason	III at 3 month vs		
Aygul 3.5 N = 31 (56 Local steroid Injection group "Steroid Assage 3.5 N = 31 (56 Local steroid Injection group "Steroid				-			
Aygul 3.5 N = 31 (56 Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.							
Aggul 3.5 N = 31 (56) Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.				electrode at	significant		
Aygul 3.5 N = 31 (56 Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.							
Aygul 3.5 N = 31 (56 Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.							
Aygul 3.5 N=31 (56) Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.							
Aygul 3.5 N = 31 (56 Local steroid Injection group "Stariad" Image: Non-Stariation of the stariation of th				splint (n =	0.015). No		
Aygul 3.5 N = 31 (56) Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.				18) vs. Group	statistical		
k use wrist splint alone (n = 18). for grip strength at T0 and T1, X2 (n = 18). at T0 and T1, X2 = 2.546, (p = 0.280). v v 0.280). v smonths. v v V V V Aygul 3.5 N = 31 (56) Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.							
splint alone at T0 and T1, X2 (n = 18). = 2.546, (p = Follow-up at 0.280). 3 months. 0.280).							
Image: Normal State State Image: Normal State Image:							
Image: style 3 months. Image: style Jame Jame Carpal Tunnel Injections Aygul 3.5 N = 31 (56 Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.				(n = 18).	= 2.546, (p =		
Carpal Tunnel Injections Aygul 3.5 N = 31 (56 Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.					0.280).		
Aygul 3.5 N = 31 (56 Local steroid Injection group "Steroid Random in abstract, but nowhere in methods.				3 months.	 		Cornel Tunnel Injections
	Avgul	3.5	N = 31 (56)	Local staroid	Injection group	"Steroid	
	2005	5.5	N = 51 (50) hands)	injection 1ml	had a steady	injection in	

	r					
			dexamethaso	significant	CTS is more	
RCT			ne sodium	improvement for	effective than	
			phosphate vs	all parameters	iontophoresis	
			iontophoresis	except SNAPa,	and	
			treatment	mTLI, and	phonophoresis	
			with 1-4 mA	mMNCV at the	treatment in	
			galvanic	first follow-up	the short- to	
			current and	visit.	medium-term	
			mixture 0.1%	Iontophoresis had	in patients with	
			dexamethaso	significant	mild to	
			ne sodium	improvements in	moderate	
			phosphate vs	the D4M-D4U	idiopathic	
			Phonophoresi	and mTLI.	CTS, and that	
			s frequency 3	Phonophoresis	the most	
			MHz and an	group had	sensitive	
			intensity 1.0	significant	neurophysiolo	
			W/cm2, with	improvement of	gic parameters	
			transducer of	D4D-D4U and	at follow-up	
			5 cm^2 ,	mMDL found 2	were D4D-	
			including	months after	D4U and	
			mixture of	treatment.	D2M-D5U,	
			0.1%	treatment.	which are	
			dexamethaso		objective	
			ne sodium		parameters	
			phosphate		indicating the	
			phosphate		outcome of	
					CTS	
					treatment."	
Comment	3.5	N = 52 with	Course I	At 3 months (T1),		
Gurcay	3.5		Group I,			Sparse baseline data and comparable efficacy.
2012		CTS analyzed	phonophoresi	Boston Symptom	severity	
DOT		based on	s, 0.1%	Severity Scale	improved in all	
RCT		clinical and	betamethason	(BSSS) improved	groups after	
N-		electrophysiolo	e applied over	in group I (p	treatment, but	
No		gical criteria.	CT at	<0.001), group II	no superiority	
mention of		Mean age 43.7	frequency 1	(p = 0.001), group	was	
sponsorshi		\pm 8.4 (range	MHz and	III (p <0.001) vs.	determined	
p or COI.		24-57) years.	intensity 1	baseline (T0).	among the	
			W/cm2, plus	Grip strength, and	treatment	
			wrist splint (n	9-hole peg test	groups with	
			= 18) vs.	(NHPT) in	respect to	
			Group II,	groups; I, II and	motor skills	
			0.1%	III at 3 month vs.	and hand	
			betamethason	baseline improved	dexterity."	
	1		e	(p >0.05).		

Seok 2013	3.5	N = 36 with	iontophoresis from positive electrode at 2 mA for 10 minutes/day, plus wrist splint (n = 18) vs. Group III or control, instructed to use wrist splint alone (n = 18). Follow-up at 3 months.	Significant difference between groups for BSSS, $F =$ 4.599, (p = 0.015). No statistical difference between groups for grip strength at T0 and T1, X2 = 2.546, (p = 0.280).	"ESWT can be	Methodological details sparse.
RCT No mention of sponsorshi p. No COI.		CTS with positive Tinel sign or Phalen test, and numbness and tingling at least two of first, second and third digit. At least 19 years of age.	l shock wave therapy or ESWT group one session with 1000 shocks at a frequency of 360 shocks per minute (n = 15) vs. Local corticosteroid or CS injection group received 1 milliliter of triamcinolone acetonide 40mg (n = 16). Follow- up at 3 months.	7.06 \pm 1.89 in ESWT group vs 6.87 \pm 1.26 in CS injection group. VAS score improvement at 1 month/3 months; 4.56 \pm 0.81 in ESWT vs 4.13 \pm 1.50 CS group/4.18 \pm 1.05 vs 3.31 \pm 1.82. Symptom severity score at 1 month; 20.13 \pm 6.24, (p <0.05) and at 3 months; 19.73 \pm 4.48 vs 18.25 \pm 3.71 CS group, (p <0.05). Significant difference between ESWT and CS groups found only at median sensory distal latency 1	as useful as CS injection for relieving symptoms of carpal tunnel syndrome."	Subjective improvements in both treatments but no differences between groups.

				4		
				months after		
G .	2.0	N 100 FDV		treatment.	Q. 1	
Sevim 2004	3.0	N = 120 EDX confirmed	Betamethason	"Splinting provided	Steroid injections may	
2004		confirmed	e injections 4cm proximal		be beneficial	
Prospectiv			to carpal	symptomatic relief and	short-term in	
-				improved sensory	mild and	
e randomize			tunnel vs. injections	and motor nerve	moderate CTS.	
d and			distal to	conduction	However,	
blinded			carpal tunnel	velocities at the	splinting	
trials			vs. just	long-term follow-	provided long	
ulais			splinting vs	up when the	term	
			control	splints were worn	symptomatic	
			control	almost every	relief and	
				night. Proximal	improved	
				and distal	sensory and	
				injections of	motor nerve	
				steroids were	conduction.	
				ineffective on the	Conduction	
				basis of both		
				clinical symptoms		
				and		
				electrophysiologic		
				findings."		
Kamanli	2.5	N = 19 with	Proximal	BCTS / VAS-pain	"[S]teroid	Small sample size, all bilateral CTS patients. Conflicting information on splinting: "All patients used hand-wrist splint during 3 weeks after injection"
2011		bilateral CTS.	approach	(0-10) / and HAQ	injection from	and "Co-interventions such as splinting were withheld for the duration of the study"
		Mean age for	steroid	at baseline and 3	distal approach	
RCT		groups PIG and	injection	months: 66.7 ± 12	(palmar) into	
		DIG: 42±10	group (PIG),	and 31.6 ± 8.2 at	the carpal	
No		and 52±13.	with	3 months vs 51.7	tunnel on	
mention of			triamcinolone	\pm 14.7 and 34.9 \pm	patients with	
sponsorshi			aestonide 20	16 in DIG	CTS is very	
p or COI.			mg (n = 10)	group/8.5 ±1.1	comfortable,	
			vs. Distal	and 3.3 ± 2 vs 8.3	easy, effective	
			approach	\pm 1.7 and 3.9 \pm 22	and alterative."	
			steroid	/ and 0.97 \pm 0.38		
			injection	and 0.43 ± 0.22 vs		
			group (DIG),	0.63 ± 0.53 and		
			with	$0.29 \pm 0.14.$		
			triamcinolone			
			aestonide			
			20 mg (n = 9).			
			Follow-up for			
			3 months.	l		

Stepić 2008 RCT No mention of sponsorshi p or COI.	1.5	N = 40 with CTS. The mean age of 51.6 years.	Group 1: surgical decompressio n of median nerve by open release of carpal tunnel (n = 20) vs. Group 1: perineural injection 1ml betamethason immediately after surgical decompressio n (n = 20). Follow-up 7, 30, and 90 days.	90 days after surgical procedure, both groups showed statistically significant better results in second group ($t = -2.116$; p = 0.043). Final measurements did not show statistically important difference between treatment methods applied, SCS1 = 45.347 msec in first group vs SCS2 = 47.673 msec in second group.	"Intraoperative application of the corticosteroid injection during the surgical decompression results in faster regaining of conduction speed of the median nerve."	Methodological details sparse.
Worseg 1996 Two consecutiv e case series	4.0	N = 126 EDS confirmed	64 surgeries treated endoscopicall y vs. 62 surgeries by open release of carpal ligament.	"No significant differences between the groups were obtained regarding postoperative symptom severity."	"The new device provides a reliable tool for single portal carpal tunnel release, although the risk of inadvertent damage to the neurovascular structures always remains a possibility with the endoscopic carpal tunnel technique."	Labeled as prospective clinical study. Not an RCT. Two consecutive case series compared.

Demirci 2002 RCT	4.0	N = 90 EDS confirmed	Intracarpal betamethason e 6.4mg injections at Weeks 0 and 2 vs. open CTR	Boston questionnaire symptoms scale (0/3/6 months): open $(3.4\pm0.7/1.3\pm0.3/1.3\pm0.3)$ vs. steroid $(3.3\pm0.7/1.3\pm0.3)$	Conservative steroid treatment provides short term improvement compared to surgery. It is	Study does not describe a randomization process. Thus, although scored low-moderate quality, study is classed as low quality. Data suggest symptoms reduced with both treatments at 6 months, but modestly favor CTR at that point.
				$1.5\pm 0.5/1.7\pm 0.8$), NS months 0-3 and p = 0.003 at 6 months.	relatively easy to apply, has a lower cost and comparable results short term and may be considered before surgery	
Nitz 1080	35	N - 60	Open surgery	"Three weeks after	is done.	
Nitz 1989 RCT	3.5	N = 60	Open surgery vs. surgery with tourniquet	"Three weeks after the operation 77% of the patients in the tourniquet group had denervation in other than thenar muscles. Only one patient in the control (no tourniquet) group had similar electromyographic abnormalities after surgery. Tourniquet time and pressure did not vary significantly between those	"These findings indicate that upper extremity tourniquet application results in subclinical, temporary changes in the muscles of the forearm, probably on the basis of nerve changes and denervation."	
				patients with or without postoperative forearm denervation. Mean operative time for the tourniquet and		

				control groups was nearly identical."		
Brüser 1999 RCT	3.5	N = 80 with CTS	Short (2.5cm) vs. long (4.5cm) incision	Baseline differences including longer symptoms in short incision group (48.1 vs. 33.8 months).	"The long incision resulted in a significant 10% loss of strength only at week three, otherwise no significant difference was found between the results of the two groups."	Some patients apparently had neurolysis and some epineurolysis, which was unstructured.
Mackenzie 2000 RCT	3.5	N = 26	Open surgery vs. endoscopic methods	Grip strengths (baseline/weeks 1/2/4): endoscopic (43/29/42/44) vs. open (39/21/29/30) (p <0.01 at 2 and 4 weeks).	"Endoscopic carpal tunnel release provides faster recovery of strength than short-incision open carpal tunnel release and improves early postoperative comfort and function to a small degree."	
Borisch 2003 RCT	3.5	N = 273 EDS confirmed	Open CTR with vs. without epineurotomy	Paraesthesias present in 93% of epineurotomy group at baseline; declined to 17%	"Study showed no significant difference in the recovery of sensory	Dropout rates were high.

				at 3 months vs. controls' 89% which declined to 8%. EDX changes not significant.	conduction velocity and distal motor latency after open decompression of the median nerve or open decompression combined with epineurotomy. Thus epineurotomy does not	
Finsen	3.5	N = 74 (82	Mobilized	Post-op VAS pain	appear to have any effect on neurophysiolo gical median nerve recovery after open carpal tunnel decompression ."	No advantage to splinting after carpal tunnel release surgery.
1999 RCT No mention of sponsorship or COI.		wrists) on whom open carpal tunnel release performed. Mean age 48 in mobilized group; 51 in immobilized group.	Group: light dressing and told to move wrist and fingers as comfort allowed. (n = 45) vs. Immobilized Group: well- padded plaster of Paris splint with wrist in slight dorsiflexion. (n = 37). Follow-up at 2 and 6	scores indicated patients in both groups benefited from post-op treatments. But no significant differences in mean VAS pain score at any time point for mobilized vs. immobilized; Pre- op 56mm vs. 51mm; 2 weeks 6mm vs. 5mm; 6 weeks 6mm vs. 2mm; 6 months 3mm vs. 2mm.	immobilization confers no advantage with regard to regress of the original complaints postoperatively . Nor did immobilization reduce the frequency of common complications, such as scar or pillar pain."	

			weeks, and 6 months.			
Hansen 2009 RCT No mention of sponsorship or COI.	3.5	N= 47 (54 hands) diagnosed with idiopathic CTS who required release of carpal tunnel. Mean age 48 years.	Novafil Group- Interrupted non- absorbable sutures. 5/0 monofilament polybutester (n = 26 hands) vs. Caprosyn Group- Continuous absorbable subcuticular 4/0 monofilament polyglytone sutures. (n = 28 hands). Follow-up assessed daily in patient's journal until sutures removed 10- 14 days after surgery. Pain monitored through this period. Cosmetic appearance measured at 3 months.	VAS pain score significantly lower in Caprosyn group vs. Novafil group at post-op day 1 ($p = 0.04$) and post-op day 2 ($p = 0.02$). However, difference in VAS pain score not significant at any other time point. Caprosyn group showed better cosmetic result with 25/28 hands showing nice appearance when being evaluated by surgeon vs. 18/26 in Novafil group. However, this difference not significant ($p = 0.14$).	"There was a significant reduction in pain scores on days 1 and 2 in the patients treated with an absorbable continuous subcuticular suture, and no difference in inflammation or infection. There was no difference in the cosmetic appearance between the two groups after three months."	Sparse methodological details. At 3 months, comparable results.
Cellocco 2005	3.5	N = 185 affected by	Group A: Mini-open	Group A returned to work	"Our study suggests that	Short follow up period (19 months) favored transverse procedure, but at 30 months the differences between groups decreased. Group A experienced shorter recovery rate and less pain & numbness.
		mild to	blind	significantly	the mini-open	
RCT		moderate	technique	quicker in mean	blind CT	
		median nerve	using	days than group	release can be	

No sponsorship or COI.		compression. 222 carpal tunnel release procedures performed on 185. Mean age 59 years.	Knifelight (n = 82, 99 procedures) Vs. Group B- limited open technique (n = 103, 123 procedures). Follow-up at 19 and 30 months following surgery.	B; 16.6 days vs. 25.4 days (p <0.001). Mean score for first section of Boston Carpal Tunnel Questionnaire (BCTi) significant at 19 months for group A vs. B; 1.46 vs. 2.04 (p <0.001). Second section scores BCTi also significant at 19 months; 2.02 vs. 2.53 (p <0.001). No significant differences between groups at 30 month follow- up.	a safe procedure, even when performed using a small transverse wrist incision."	
Heidarian 2013 RCT	3.5	N = 59 with indication for carpal tunnel release. Mean age 47.6 years.	Open Group: Open carpal tunnel release surgery (n = 30) vs.	Knifelight group vs. open group showed significantly shorter operation	"In conclusion according to the results of this study, compared to	Sparse methodological details. Short follow-up time (3 weeks). Knifelight "appears" to decrease surgical time, scar length and time to resume normal activities, but pain ratings for both groups were comparable.
No sponsorship or COI.			Knifelight Group: (n = 29). Follow-	time; 8.5 min vs. 21 min (p <0.001),	the open release method,	
			up immediately after surgery and 3 weeks	significantly shorter mean scar length (mm); 14.8mm vs.	Knifelight technique could significantly	
			and 6 months.	40.7mm (p <0.001). Knifelight also	decrease the mean duration of surgery,	
				significantly quicker return to daily activity vs.	incision length and time to return to	
				Open; 34.4 days vs. 51.9 days (p = 0.015). VAS pain score at 3 weeks	work."	

				not significant between groups (p = 0.24).		
Ucar 2012 RCT No mention of sponsorship or COI.	3.0	N = 90 with CTS syndrome. Mean age 46.75 years.	G1 Group- Distal approach. A 2 cm vertical incision on the ulnar side of the thenar crease beginning at the distal wrist crease. (n = 45) Vs. G2 Group- Proximal approach. A 2 cm vertical incision made on the ulnar side of the palmaris longus tendon, beginning proximal to wrist crease. (n = 45) Follow-up at one month. Final follow up mean 30.4 months in G1 and 31.0 months in	Boston Carpal Tunnel questionnaire scores used for assessment. Both groups increased significantly in Symptom and Functional scales from baseline from pre-op to 1 month follow up ($p < 0.001$) and from 1 month follow-up to final follow-up ($p < 0.001$). Functional and Symptom scores not significant between groups at any follow-up period ($p > 0.05$). G2 showed significantly shorter mean operation time vs. G1; 10.7 min vs. 18.6 min ($p < 0.001$). G2 also significantly less scar tissue pain vs. G1; 6.7% vs.	"Finally, the absence of relapse and good clinical results make both surgical techniques used in this study suitable. For this reason, we consider that the selection of the mini- surgical technique used should depend on the experience and skill of the surgeon."	Sparse methodology and short follow-up time (1 month). Mean surgical time and scar tissue pain were less in group 2 (the 2 cm proximal incision group).
Kang 2008	3.0	N = 72 with diagnosed CTS.	G2. Arthroscopic Excision	24.4% (p = 0.02). Main outcome ganglion	"Although other patient-	High drop out rate. At 12 months, recurrence rates between these two procedures are comparable and arthroscopy is not superior to open procedure.
RCT		Mean age 34.8 years.	Excision Group- 2 stab incisions at standard 3-4	ganglion recurrence. At 2nd follow-up, arthroscopic	other patient- preferred benefits such as improved	

- N.T			145 1		11	
No			and 4-5 portal	group 1 ganglion	earlier return	
sponsorship			sites $(n = 41)$	recurrence vs. 0 in	of motion may	
or COI.			vs. Open	open group (p =	still exist, the	
			Excision	0.381). Not	results of our	
			Group-	significant at final	study suggest	
			Transverse	follow up. One	that the	
			skin incision	post-op	technique of	
			2 to 3cm in	complication in	arthroscopic	
			length (n =	arthroscopic	surgery does	
			31). First	group vs. open	not achieve	
			follow-up 5-7	group, but not	superior rates	
			days. Second	significant (p =	of ganglion	
			4-8 weeks,	0.381).	recurrence."	
			final follow-			
			up at 12			
			months.			
Tian 2007	2.5	N = 62 (70	Endoscopic	No significant	"The	Sparse methodology.
		hands) with	Group- One-	difference	endoscopic	
RCT		CTS. Mean age	portal	between	carpal tunnel	
		52 years.	endoscopic	endoscopic and	release is a	
No mention			release (n =	open groups for 2-	reliable	
of			32, 34 hands)	point	method in the	
sponsorship			Vs. Open	discrimination	treatment of	
or COI.			Group- Open	score at 3 months;	idiopathic	
			carpal tunnel	5.3 vs. 5.9 (p	carpal tunnel	
			release. (n =	>0.05). Rate of	syndrome. It	
			30, 36 hands).	scar tenderness	has the	
			Follow-up	significantly lower	advantages of	
			assessments	in Endoscopic	slight scar	
			taken at 3	group vs. Open	tenderness,	
			months and	Group; 36.0% vs.	less operation	
			final follow-	65.0% (p <0.05).	time, less in-	
			up ranged	Mean operation	hospital stay,	
			from 18 to 48	time significantly	early	
1			months.	lower in	functional	
				Endoscopic Group	recovery,	
1				vs. Open Group;	safety and high	
				12 vs. 38 minutes	satisfaction	
1				(p <0.01).	compared with	
1					open	
					methods."	
						Anesthesia during Surgery

G	25	N 20	T 1	T 1' / 1 C	66T 1 A 1	
Sorensen	3.5	N = 38	Local	Immediately after	"[L]A is	Follow up time of 24 hours
2013		requiring	anesthesia	surgery and 2	generally a	Methodological details sparse
DOT		endoscopic	group	hours post-op,	safe and	
RCT		carpal tunnel	receiving	significant	effective	
NT.		release verified	10ml (4mL	differences in	method for	
No		using	given in	mean (SD) VAS	ECTR after	
sponsorship		neurophysiolog	proximal	hand pain	installing the	
or COI.		ical testing;	direction	reported between	LA in the	
		Mean (range)	under	LA and IVRA	subcutaneous	
		age 49 (31-76)	subcutaneous	group: End of	tissue and	
		for LA group	fascia, 4mL	surgery: $0.2 (0.6)$	under the	
		and 52 (36-69) for IVRA	subcutaneousl	vs. 1.4 (1.8), (p	subcutaneous	
			y in palm and 2mL	<0.05), 2 hours	fascia (in a proximal	
		group.	subcutaneousl	post-op: 0.2 (0.5) vs. 1.4 (1.8), (p	direction)	
			y in the distal	<0.05). During	alone, without	
			wrist crease)	drug	installation of	
			Ropivacaine	administration	LA into the	
			(n = 19) vs.	and immediately	carpal	
			Intravenous	after surgery,	tunnelLA	
			regional	significant	was more	
			anesthesia	differences in	effective than	
			group	mean (SD) VAS	IVRA at	
			receiving 1%	arm pain reported	reducing	
			Mepivacaine	between LA and	patient-	
			(n = 19).	IVRA groups:	experienced	
			Assess at	During	overall pain at	
			baseline,	administration:	the end of the	
			during	2.1 (2.6) vs. 4.3	operation and	
			surgery,	(1.7), (p <0.05),	pain in the	
			immediately	End of surgery:	hand 2 hours	
			after surgery,	0.6 (0.9) vs. 2.4	later.	
			2 hours and	(2.3), (p <0.05).	Furthermore,	
			24 hours		patients	
			post-op.		required less	
			_		additional	
					analgesia after	
					surgery with	
					LA than those	
					treated under	
					IVRA."	

1 0010	2.5	NL 05 (50	D'1/1 1	T : ^	44 77731	
Lee 2013	2.5	N = 25 (50)	Right handed	In comparison of	"[T]he results	Methodological details sparse. Small sample size (N=25)
		hands) with	injection (n =	mean (±SD)	proved the	
RCT		bilateral carpal	25 hands) vs.	unadjusted VAS	buffered	
Double-		tunnel	Left handed	scores and	lidocaine could	
blind		syndrome;	injection (n =	adjusted VAS	reduce the pain	
		Mean (±SD)	25 hands). All	scores for	experienced	
Sponsored		age 57 (±10)	participants	buffered and non-	during local	
by the		for all	received	buffered	anesthetic	
Seoul		participants.	allocated	lidocaine, there	injection	
National		1	hand	were significant	before carpal	
University			treatment	differences:	tunnel	
Hospital			upon	Buffered	release."	
research			randomizatio	lidocaine		
fund. No			n, followed	unadjusted- 4.60		
COI.			by treatment	(± 1.50) , adjusted-		
COI.			on opposite	(± 1.30) , adjusted - 4.63 (± 1.32), vs.		
			hand 6-12	Nonbuffered		
			weeks later.	lidocaine		
				unadjusted- 6.48		
			Assessment at			
			baseline and	(± 1.53) , adjusted-		
			after each	6.61 (±1.68), (p		
			injection.	<0.001) and (p		
			0.50	<0.001).		
Braithwaite	2.5	N = 23	0.5%	During procedure,	"The use of	There was no control group. Participant arms were only randomized.
1993		requiring carpal	Bupivacaine	participants	adrenaline-	Methodological details sparse
		tunnel release;	injection	demonstrated	containing	
Randomize		Participant ages	alongside	higher mean (SD)	local	
d trial (?)		not reported.	1:200,000	VAS pain scores	anaesthetic	
			adrenaline	with tourniquet	provides a	
No mention			without	compared to	satisfactory	
of			tourniquet (n	adrenaline limb:	operative field,	
sponsorship			= 23 arms) vs.	4.7 (2.8) vs. 2.3	avoids the	
or COI.			0.5%	(1.7), (p <0.01).	discomfort of a	
			Bupivacaine	Participants'	tourniquet and	
			alone and	symptom diaries	allows bilateral	
			pneumatic	had no difference	simultaneous	
			tourniquet (n	in paresthesia,	carpal tunnel	
			= 23 arms).	post-op pain or	release to be	
			All received	bruising when	accomplished	
			both	comparing	without the	
1	1		treatments,	adrenaline and	need for	
			but on	tourniquet limbs	general	

			Assessments at baseline, post-op and 14 days.		(22) 42	
Ozer 2005	2.5	N = 40	Alkalinised	At 1, 3, 6, 12	"Buffered	Follow up of 12 hours.
RCT		requiring surgical	group received 10ml	hours post-op,	prilocaine provides a	Methodological details sparse.
KUI		decompression	prilocaine	alkalinised group exhibited	longer pain-	
No mention		of carpal	hydrochloride	significantly	free period for	
of		tunnel. Mean	2% buffered	lower mean (SD)	patients	
sponsorship		age 48.2 (30-	with 1ml	VAS scores vs.	following	
or COI.		64) alkalinised	sodium	non-alkalinised: 1	surgical	
		group; 52.8	bicarbonate	hour- 0 vs 0.5	decompression	
		(42-67) non- alkalinised	8.4% (n = 20) vs. non-	(0.52), (p = 0.02), 3 hours- 0.12	of the median nerve. It is	
		group.	alkalinised	(0.35) vs. 1.75	easy, safe, and	
		group.	group	(1.05), (p =	cost-effective	
			receiving	0.001), 6 hours-	and it appears	
			10ml	1.12 (0.35) vs.	that the routine	
			prilocaine	2.16 (1.33), (p =	use of	
			hydrochloride	0.036), and 12	alkalinised	
			2% (n = 20).	hours- 2.12 (0.83)	prilocaine	
			Assessment baseline,	vs. 2.75 (0.75), (p = 0.06).	solution in patients	
			hourly for 6	- 0.00).	undergoing	
			hours post-op		carpal tunnel	
			and 12 hours.		surgery may	
					improve the	
					comfort and	
					prolong the	
					duration of	
Watts 2004	1.5	N = 64	Buffered	Although both	analgesia." "[T]he pain of	Methodological details sparse.
walls 2004	1.5	n = 64 undergoing	lidocaine	groups reported	injection is not	memodological details sparse.
RCT		local anesthesia	group	pain	actually a	
'		for open carpal	receiving 5ml	improvement,	major problem	
No mention		tunnel	of 2% plain	here were no	for most	
of		decompression;	lidocaine plus	statistically	patients	
sponsorship		Mean (range)	0.5ml sodium	significant results	undergoing	
or COI.		age 57 (28-89)	bicarbonate	reported between	carpal tunnel	
1		years for both	8.6% (n = 32) Vs. Plain	groups for mean VAS pain scores,	decompression and there is no	
1		groups.	lidocaine	v AS pain scores,	benefit in	

	, i			1.1.1	• • ,•	
			group	verbal pain scores	injecting	
			receiving 5ml	or anxiety scores.	buffered	
			of 2% plain		lidocaine. The	
			lidocaine plus 0.5 ml of		pain scores for	
					both groups	
			sodium		were low and	
			chloride 0.9%		most patients	
			(n = 32).		reported that	
			Assessments		they were "not	
			at baseline		at all'' anxious	
			and post-op.		about having a	
					similar	
					injection again	
					in the future.	
					We did	
					however note a	
					correlation between	
					increased pain	
					score and	
					increased	
					anxiety about future	
					injections."	
Watts 2005	1.5	N = 86	27-gauge	Participants	"[P]atients	Methodological details sparse.
walls 2005	1.5	undergoing	dental needle	receiving	reported less	Methodological details sparse.
RCT		local anesthesia	group (n =	injection via 27-	anxiety about	
KC1		for open carpal	46) vs. 23-	gauge dental	future	
No mention		tunnel	gauge needle	needle had	injections	
of		decompression;	group (n =	significantly	when the pain	
sponsorship		Mean (range)	40). Both	lower mean	of the injection	
or COI.		age 56 (30-83)	groups	(SEM) VAS pain	was reduced."	
01 COI.		for both groups.	received	scores vs.	mus reduced.	
		tor bour groups.	4.4ml of 2%	standard 23-gauge		
			xylocaine	needle: $22(2.4)$		
			with	vs 33 (3.8), (p		
			adrenaline	<0.02). Not		
			1:80,000 with	significant when		
			pre-filled	analyzing verbal		
			2.2ml vials.	response scale.		
			Assessments	Participants also		
			at baseline	self-reported less		
			and post-op.	mean (SEM)		
			me post op.	anxiety with 27-		

				gauge needle vs.		
				23-gauge: 7 (1.4)		
				vs. 15 (3.4), (p		
				<0.05).		
Yiannakop	1.5	N = 64	Group A;	Mean (SD)	"We have	Methodological details sparse.
oulos	1.5	requiring carpal	Lidocaine 1%	infiltration pain	found that	inelieuological actuals sparse.
2004		tunnel	mixed with	scores were	buffering	
2001		decompression	normal saline	significantly	lidocaine with	
RCT		verified by	group (n =	lower in Groups	bicarbonate	
ROI		electrodiagnosti	20) Vs.	B& C compared	and warming	
No		c and clinical	Group B;	to Group A: A-	the anesthetic	
sponsorship		evidence	10ml	21(11) & 42 (12),	solution helps	
or COI.		alongside local	alkalinized	B- 25 (12) & 19	to reduce pain	
		anesthesia;	lidocaine 1%	(7) vs. C- 21 (4)	on infiltration	
		Mean (SD) age	at room	& 10 (4),	in patients	
		61 (8) years for	temperature	(p<0.001). Group	undergoing	
		all participants.	$(22^{\circ}C) (n =$	C also had	carpal tunnel	
			22) Vs.	significantly	decompression	
			Group C; 10	lower values	."	
			ml alkalinized	compared to		
			lidocaine	Group B,		
			warmed in	(p<0.001).		
			40°C water			
			bath for 30			
			minutes (n =			
			22) All			
			groups			
			received			
			allocated			
			treatment into			
			palmar skin.			
			Assessments			
			at baseline			
			and post-op.			

				Carpal Tun	nel Injectio	ns		
Karaahmet 2017 (Score=3.0)								Methodological details sparse.
				Glucocorticost	eroid vs. Su	gery		
Saboor 2015 (Score=2.0)	Injection/Decompression	RCT						Methodological details sparse. No difference.
				Splinting vs. S	teroid vs. Su	rgery		
So 2018 (Score=3.0)	Splint/Steroid	RCT						Methodological details sparse. Only significant difference was for patient satisfaction.
			Carpal	Tunnel Release	vs Non-su	gical Therapy		
De Kleermaeker, 2017 (score=3.0)								Methodological details sparse. Non- surgical treatments not defined and may have been usual care biased. Data suggest surgical intervention may be better than nonsurgical splint or injection for EDS normal median sensory issues consistent with CTS.
				Endoscopic v	s. Open Re	lease		
Michelotti, 2014 (score=3.5)							Methodological details sparse, small sample size. No meaningful differences between surgical approaches.
Zhang, 2015 (score=3.5)								Excluded all patients who could not complete follow up. No reporting of dropout. No adjustment for multiple comparisons.

Rab 2006 (score=2.5)										Small sample size, methodological details sparse.
Malhotra 2007 (score=2.5)										Methodological details sparse.
	Incisional and Other Intraoperative Techniques									
Castro-Menéndez 2016 (score=3.0)										Methodological details sparse. No statistically significant differences between groups.
	Anesthesia during Surgery									
Sørensen 2012 (score=3.0)										Methodological details sparse.

MALLET FINGER

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
				Splinting		
Gruber 2014	3.5	N = 51 with fractured or	Full-time custom-made thermoplastic splint group $(n = 25)$ vs. No splint	No significant differences reported between splint and control groups for	"[T]here is not much benefit to additional night splinting after completing the standard	Data suggests night splinting did not improve mallet finger outcomes in
RCT		unfractured mallet finger. Mean	control group (n = 26). Follow up at 4 weeks.	average final extensor lag, disability or treatment satisfaction.	splinting protocol for mallet finger. The extra cost and time associated with obtaining a	terms of extensor lag, disability or treatment satisfaction.
No mention of sponsorship. No COI.		(±SD) age 49 (±14) for splint group and 51			custom-made removable splint should be balanced with the patient's preferences. It is possible that a subset of patients might	
		(±14) for control group.			benefit from night splinting, although we did not find any such trends in our data. Patients	
					should be aware that effective treatment of a mallet finger results in a slight extensor lag in	

					most patients and a substantial probability of a lag of 20 degrees or greater."	
Garberman 1994 RCT	2.5	N = 75 excluded large fractures	Stack splint vs. Dorsally placed aluminum-foam splint. Splinted continuously for 6-10 weeks, then nightly for 4 weeks.	Splint treatment success (with no more than 10° extensor lag) in 17 of 21 (81.0%) in early group and 15 of 19 (78.9%) in delayed splint group. Fractures and type of splint immaterial.	"Splinting was as effective in the delayed treatment population as it was in the early treatment population."	Study design unclear as described as both retrospective and randomized. Dropout rate also unclear.
Kinninmonth 1986 RCT	2.5	N = 44	Perforated vs. stack splint. Splinted at least 6 weeks.	Successes were 79% Stack vs. 84% perforated splint.	"The perforated mallet finger splint can produce consistently good results even in those patients who would not tolerate a conventional splint. The fact that it is unnecessary to remove it for hygiene purposes is to its advantage."	High success rates, but methods sparse.

	Surgery								
Gruber 2014 (score=3.5)									Data suggests night splinting did not improve mallet finger outcomes in terms of extensor lag, disability or treatment satisfaction.
Batibay 2017 (score=2.5)									Small sample size. Methodological details sparse.

FLEXOR TENDON ENTRAPMENT (TENOSYNOVITIS AND TRIGGER DIGIT)

	Injections								
Shinomiya 2016 (score=3.0)								Methodological details sparse	

Gutierrez 2015 (score=2.5)						Methodological details sparse
Ammitzboll-Danielson 2016 (score=2.5)						Methodological details sparse
			Surgery			
Kloeters 2016 (score=2.5)						Methodological details sparse.

EXTENSOR COMPARTMENT TENOSYNOVITIS

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
				Glucocorticosteroid Injections		
Sawaizumi 2007	3.0	N = 36	Intra-sheath triamcinolone injection (1ml TC and 1ml of	The 1-point injection excellent in 9 hands (50%), and 2-point	Accurate injection of triamcinolone into sheath of both extensor pollicis brevis and abductor pollicis longus	Selection for treatment based on consecutive cases rather than
RCT			1% lidocaine hydrochloride)	injection excellent in 15 hands (75%); p <0.001).	tendon considered very effective for deQuervain's disease.	randomization.
Avci 2002	3.0	N = 19 wrists (18 females) with de	Glucocortico-steroid injection (methylpredni-	Complete relief in 100% of injection group vs. 0% splint	"Splinting does not provide satisfactory pain relief."	Population was pregnant or lactating. Small sample size. Sparse details.
RCT with pseudo-		Quervain's	solone 10mg plus 0.5mL	group, though pain reportedly		Randomization was every other. Data
randomization		positive Finkel-	0.5% bupivacaine vs. thumb	relieved while wearing splint.		suggest injection superior to splinting.
		stein's. All	spica splint. Follow-up until	Recurrences in one injected		
		pregnant or	asymptomatic and had	patient.		
		lactating.	stopped nursing (mean 12 months).			
Kosuwon 1996	2.0	N = 140 with de	Steroid injection (dose and	Satisfactory results in 74%	"There is no difference in the results of treatment in this	Abstract only. Sparse details. Results
		Quervain's.	medication not specified)	splinted vs. 75% unsplinted (NS).	condition whether the patients were immobilized in a	suggest no difference in outcomes
RCT		Duration of	with vs. without wrist	Lost days in splinted group mean	splint or not. However, the days lost from work in the	whether wrist immobilized after
		symptoms	immobilization	28 vs. 11, p<0.05.	group of non immobilization is less than the group of	injection or not.
		unstated.			immobilization."	
Witt 1991	1.5	N = 95 (99 wrists)	One mL injection of 1%	54% satisfactory. 30 wrists	"Injection of one milliliter of a 1 per cent lidocaine	Not randomized trial. Primary purpose
		with de	lidocaine plus methylpredni-	required surgical release. 22/30	solution and one milliliter of a suspension containing forty	was to assess steroid flare. 73% of
Prospective Cohort/Case		Quervain's.	solone acetate 40mg.	(73%) of operated wrists had	milligrams of methylprednisolone acetate. Twelve patients	treatment failures had separate
Series				separate EPB compartment.	(twelve wrists) were lost to follow-up. Of the remaining	compartment for extensor pollicis

	Symptom duration	Minimum 12 months follow-	eighty-seven wrists, fifty-four (62 per- cent) had a	brevis. Baseline symptom duration not
	unstated	up.	satisfactory outcome at a mean of eighteen months	predictive.
			(minimum follow-up, twelve months). The duration of	
			symptoms before treatment did not affect the outcome."	

	MRI									
Handidy 2009 (score=2.5)					Data suggests US is of value to validate clinical diagnosis of DeQuervain's tenosynovitis but MRI may be beneficial in confirming cases not confirmed by US and detects other soft tissue changes but is more costly than US.					

RADIAL NERVE ENTRAPMENT

	Electrodiagnostic Testing									
Verhaar 1991 (score=3.5)										Data suggest patients with radial tunnel syndrome do not have evidence of compression in the posterior interosseous nerve
Spindler 1990 (score=3.0)										Small sample size (N=30) Data suggest value in stimulating the musclulocutaneuous nerve at the elbow when evaluating RNE.

NON-SPECIFIC HAND, WRIST, AND FOREARM PAIN Electrodiagnostic Studies

Author/Year Study Type Conflict of Interest (COI)	Score	Study Design	Population/ Case Definition	Investigative Test	Gold Standard / Comparative Test	Results	Conclusion	Comments
Calder 2009	3.5	Diagnostic	N = 46 (22 asymptomatic	Surface electromyographic	Comparing controls with	Age significantly different among groups; control subjects	"The NSAP group presented with	Controls significantly younger than study
Diagnostic			control subjects, 8 at-risk subjects, and 16 subjects with non-specific arm pain. Mean age 38.1 years.	(SEMG) activity	patients and patients at risk.	significantly younger (p <0.05). Mean spike amplitude (MSA) significantly increased by 039 mV across all levels of % maximum contraction in patients with NSAP, showing 325% increase (p <0.05). At-risk group showed significant increase of 0.43 mV (430%) from 10% to 70% of MVC (p <0.05). In healthy controls MSA increased 1.1 mV (550%) from 10 to 70% of MVC (p <0.05).	differences in how the spike shape measures change with increasing contraction level that may be indicative of myogenic changes, a result that is consistent with previous quantitative EMG findings."	group which may influence results. Spike shape differences in EMG testing may provide valuable information in evaluating neuromuscular disorders.

SCAPHOID FRACTURES

O'Carroll	3.5	30	Wrist	Scaphoid	99m Tc	-	-	-	-	-	-	-	6 weeks	6 of 30 patients had	"Bone scanning,	Data suggest
1982				fracture.	Methylene									scaphoid fractures.	however, detected	scintigraphy
				Mean	Diphosphonate									All 6 with scaphoid	all scaphoid	accurately
Diagnostic				age 32	and large field									fractures gave	fractures but had a	diagnosed all
				years.	of view									positive bone scan	relatively high	true fractures
					Gamma									but 5 additional	false positive rate."	and accurately
					camera.									patients without	_	detected those
														fractures gave		without fracture.
														positive bone scans.		

		MRI			
Kumar 2005 (score=3.5)					ize. Data suggest MRI re to detect occult res
Imaeda 1992 (score=3.5)				visualization of useful for diag	IRI depicts increased wrist anatomy which is nosing and assessing the of scaphoid fracture.
Sharifi 2015 (score=3.5)				combination w	ain measurement in th MRI for suspected is not useful in patients diographs.
Gaebler 1996 (score=2.5)					Data suggest MRI is osing scaphoid fracture.
Senevirathna 2013 (score=2.5)				after an acute v visualization of	erforming MRI 2 weeks vrist injury is useful in f multiple wrist injuries issue and many other vrist fractures.
Schmitt 2011 (score=2.5)				beneficial in vi the three bone	pple. Data suggest MRI sualization of anatomy of marrow zones in Preiser's ompared to radiographs.

	Fixation vs Bone Graft									
Jeon 2009 (score=3.5)										Data suggest comparable efficacy.

DISTAL PHALANX FRACTURES AND SUBUNGUAL HEMATOMA

	Antibiotic Prophylaxis										
Sloan 1987 (score=3.5)										Small sample size. Data suggest MRI may be effective to detect occult scaphoid fractures	

METACARPAL FRACTURES

Functional Therapies vs. Casting or Splinting

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments
			Im	mobilization		
Hansen 1998 RCT No mention of sponsorship or COI.	3.5	N = 105 with fracture of neck of ring or little metacarpal bone	Dorso-ulnar plaster-of-Paris from proximal interphalangeal joint to elbow (n = 35) vs. functional brace around wrist (n = 35) vs. elastic bandage (n = 35). Study duration 4 weeks. Follow-up at 3 months.	VAS during 4 weeks treatment: plaster-of-Paris 1.5 vs. functional brace 1.8 vs. elastic bandage 2.7 (p <0.05). Median restriction of MCPJ movement at 4 weeks: plaster-of-Paris 20° vs. functional brace 0° vs. elastic bandage 10° (p <0.05). Median restriction of MCPJ movement at 3 months: plaster-of-Paris 0° vs. functional brace 0° vs. elastic bandage 10° (p <0.05).	"Patients treated with a functional brace mobilized as fast as patients treated with elastic bandage and faster than patients treated with plaster-of- Paris."	Data suggest comparable efficacy between use of functional brace vs. elastic bandage vs. plaster-of-Paris for fractures of ring and little metacarpal neck with slightly faster mobilization with functional brace. Patient satisfaction was similar in all groups. Fracture severity was not specified.

Strub 2010	3.0	N = 40 with	Group A: closed reduction with K-	NS between groups at 1	"[We] could not demonstrate	Small sample quasi
		30°-70°	wires and intramedullary splinting,	year follow-up for flexion	any statistically significant	randomization. Data suggest
Pseudo-RCT		palmar	palmar 2 finger splint for 5 days	at metacarpophalangeal	differences in the conservative	surgically treated group were
		displacement	followed by functional mobilization	joint ($p = 0.69$), extension	and surgical treatment of	more satisfied and had better
No mention of		of little finger	in metacarpal brace for 5 weeks,	at metacarpophalangeal	displaced boxer's fractures in	aesthetic outcomes than non-
sponsorship.		metacarpal	wires removed after 3 months vs.	joint ($p = 0.08$) and grip	terms of range of motion at the	surgically treated groups but
No COI.		neck fracture.	Group B: conservative treatment	strength ($p = 0.22$).	MCP joint or grip strength."	no significant differences
		Mean age	without reduction and immobilized			found between ROM or grip
		Group A 28	in a palmar 2 finger splint for 5 days			strength in 2 groups
		years, Group	followed by 5 weeks of functional			suggesting intramedullary
		B 32 years.	mobilization and no hand therapy.			splinting offers an aesthetic
			Follow-up at 2 and 6 weeks, and 3,			advantage without functional
			6, and 12 months.			improvements.
Sørensen 1993	3.0	N = 133 with	Galveston metacarpal functional	Percent reduced mobility	"We found that the benefits did	High drop out in carpal-
		fractures	brace $(n = 65)$ vs. dorsal/ulnar	4 weeks after injury after	not outweigh the risks of the	brace group (58%) compared
RCT		(140) of 2 nd -	plaster cast $(n = 68)$ for 4 weeks.	cast removal: metacarpal	functional fracture bracing, and	to plaster-of-Paris (19%).
		5th	Assessment at 1 week, 4 weeks, and	brace 4% vs. cast 31% (p	we cannot recommend the test	Therefore, comparisons of
No mention of		metacarpal	3 months after injury.	<0.01).	version of the Galveston	the two treatment groups not
sponsorship or		bones. Age			metacarpal brace."	possible. At 3 months the
COI.		range 10+.				patients completing study
						reported equal mobility.

		Fixation			
Cepni 2016 (score=1.5)					All patients had to have a master's degree or be a student, all males randomization questionable. Methodological details sparse.

DISTAL FOREARM FRACTURES

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments					
Study Type	(0-11)										
	Physical Therapy Or Occupational Therapy										
Lagerström Scand J	3.5	N = 33	Functional reliability measures of injured vs.	Findings include 3 or more trials	"Measurement methods and the present	Thrust of study is reliability of grip					
Rehabil Med			uninjured arms post immobilization.	per session required to measure	findings may serve as guidance in	strengths.					
1999;31:49-54				MVC. Intersession reliability lowest							
				first 2 months; equal at 2 years.	if the uninjured side is used as reference."						
Clinical trial				Healthy uninjured side can be							
				reliable reference for injured side.							
Pasila 1974	3.0	N = 135	No physiotherapy with written and oral	No statistically significant	"A surgeon can effectively supervise the	Heterogeneous methodology problems					
			instructions to perform movements from doctor	differences were found between	physical therapy of radial fracture patients	weaken study conclusions.					
RCT				two groups regarding subjective	by using additional printed instructions.						

			vs. physiotherapy with written instructions by physiotherapist	well-being and time lapse between injury and return to work. Patients in PT arm attended physiotherapy on average 4 times.	Transferring the patient immediately to a physiotherapist's care did not affect the final result, but created extra administrative work and increased the number of visits made by the patient by approximately four."	
Oskarsson 1997 Case series	N/A	N = 110	Written and oral physician instructions vs. same plus physiotherapy upon patient's request.	No significant differences in matched pairs for wrist function (maximal grip score, wrist movement score); 93% of patients attending physiotherapy believed it effective.	"Following the typical distal radius fracture, only patients with severe stiffness and those who for any reason cannot execute their self- training program should be referred to a physiotherapist."	Authors suggest PT acts as a placebo, and other less expensive placebos may be effective.
			Casting/I	Functional Bracing		
Van Der Linden 1981 RCT	3.5	N = 250 (39 male/211 female)	Group 1: circular plaster cast, palmer flexion combined with pronation and ulnar deviation. Group 2: dorsal splint, neutral hand position, ulnar deviation preserved. Group 3: Circular plaster cast, neutral hand position, ulnar deviation preserved. Group 4: Dorsal splint, neutral hand position, without ulnar deviation. Group 5: Circular plaster cast, neutral hand position, without ulnar deviation.	Mean values for restriction of range of movement (in degrees) compared with uninjured side: Dorsiflexion Group 1 12.7; Group 2 17.4; Group 3 15.4; Group 4 12.4; Group 5 14.3.	"The technique of immobilization was found to be of subordinate importance for the final results, which are determined by the original displacement and the success of reduction."	Study suggests anatomic results are dependent on success of reduction.
			Immok	oilization/Fixation		
Wik 2009	3.5	N = 72 females with low-energy trauma, displaced Colles'	Reduction and a complete plaster cast (n = 34) vs. Reduction and a dorsal plaster splint (n = 38). Immobilization for 5 weeks with follow-up	Mean dorsal angulation 10 days after reduction: slightly better in the dorsal plaster splint group, (p	"[S]urgeons caring for such cases may choose the immobilization method for the first 10 days following reduction according	Data suggest comparable efficacy between 2 groups suggesting personal preference for type of immobilization
RCT No mention of industry sponsorship. No COI.		fractures initially considered for closed reduction and immobilization in plaster cast. Age >50.	at 1 and 10 days and 5 weeks after reduction.	= 0.04). Radial length at 5 weeks was better in the complete plaster group, ($p = 0.02$).	to their individual preferences and those of the injured person."	method.

	Casting/Bracing										
Gupta 2011 (score=3.5)										Data suggest comparable efficiacy between groups (unstable distal radius fractures treated either with closed reduction plus cast vs. closed reduction and external fixation lead to same functional and anatomical outcomes.	

			Surgery		
Goehre 2014 (score=3.5)	Palmar Fixation Plate/K- Wire				Methodological details sparse small sample size. Only older patients enrolled.
Gradl 2013 (score=3.5)	External Fixation/Volar Plating				Most patients were A3 fractures with few C2 and even fewer C1 and C3 fractures, virtually no baseline information. Methodological details sparse.
Roh 2015 (score=3.0)	Volar Plate/External Fixation				Only C2 and C3 fracture patients included. No baseline measures of outcomes. Meaningly more complications among external fixation groups (29%) as compared to surgical plating group (17%).
Aita 2014 (score=3.0)					Methodological details sparse.
Safdari 2015 (score=3.0)					Methodological details sparse. Several incongruous statements make us question any results from this study.
Williksen 2015 (score=3.0)	Volar Locking Plate/Pins				Methodological details sparse between groups.
Fakoor 2015 (score=2.5)	Internal/External Fixation				Methodological details sparse.
Athar 2018 (score=2.5)					Methodological details sparse.

Open Reduction/Internal Methodological details sparse. Fixation Image: Comparison of the sparse of the
Image: Constraint of the second se

GANGLION CYSTS

	X-rays									
Sakamoto 2013 (score=3.5)									Data suggest plain radiographs and clinical information are important in making an accurate diagnosis of intraosseous ganglia.	
				Aspiration (Wit	hout Other l	ntervention)				
Varley 1997 (score=3.5)									Data suggest similar efficacy between groups with addition of steroid adding no benefit and may increase skin depigmentation and fat atrophy.	
			Aspi	ration and Surgica	al Excision an	d Steroid Injecti	ion			
Balazs 2015 (score=3.0)									Data suggest persistent pain post open dorsal wrist ganglion excision in active duty military personnel is common and these persons should be counselled on the risk of residual pain post procedure.	

Author/Year Study Type Conflict of Interest (COI)	Score (0-11)	Sample Size	Comparison Group	Results	Conclusion	Comments				
Aspirations										
Khan 2011	3.5	N = 36 with	Group 1 (N=18) Patients treated with an open	Success Rate, group 1 vs group 2: 17 (94.4%) vs 11 (61.1%) (p = 0.041). Rate of	"Although the aspirations, triamcinolone acetonide	Small sample size. Data suggest surgical excision				
Randomized		dorsal	surgical excision. Vs.	Recurrence, Group 1 vs Group 2: 1 (5.6%)	injection plus wrist	superior to aspiration plus				
Control Trial		wrist	Group 2 (N=18) Patients	vs 7 (39.9%) (p = 0.041). No	immobilization is one of the	triamcinolone plus wrist				
		ganglion;	treated using aspiration		alternative methods, surgery	immobilization for treatment				

]	No sponsorship	mean Age	with 18G needle,	complications in any of study groups	was the most successful form	of dorsal wrist ganglion
	or COI.	31 (17-45)	followed by injection of	during study period.	of treatment when considering	(94.4% vs 61.1%)
			triamcinolone acetonide.		the cure rate of dorsal wrist	
			Follow-up at baseline, 1,		ganglion, though we analyzed	
			2, 6 weeks, and 6		only a small group; our results	
			months.		can only be an indicator."	

HAND ARM VIBRATION SYNDROME (HAVS)

		Diag	nostic Testin	g						
Bogadi-Šare 1994 (score=3.5)						Data suggest there is considerable variation to cold provocation in terms of the vascular response which impedes the defining of normal vs. abnormal reactions No single test could distinguish cases from controls.				
Lindsell 1999 (score=3.0)						Data suggest some vascularand neurological signs occur independently but some signs like blanching and numbness and tingeling may be related as they are highly correlated				
Kurozawa 1991 (score=2.5)						Data suggest skin temperature measurements pre and post immersion in cold water for 10 minutes cannot be used to estimate the severity of vibration induced white finger.				
Lawson 1997 (score=2.5)						Data suggests multiple tests are required to make an accurate diagnosis of HAVS.				
	Serologic Testing or Connective Tissue Disorders Testing									
Kennedy 1999 (score=3.0)						Very small sample (n=11). Data suggesting patients with HAVS had higher S-ICAM-1 levels than controls.				

LACERATION MANAGEMENT

Author/Year Study Type Conflict of Interest (COI)	Score (0- 11)	Sample S	Size Comparison Group	Results	Conclusion	Comments	
				Wound Repair			
Mouzas 1975 RCT	3.5	N = 104	Dexon suture vs. silk suture vs. polyethylene suture vs. nylon suture	One wound in each Dexon, polyethylene, and nylon groups was frankly injected, 4 wounds sutured with silk injected. By 7-10 days 77.3% (17/22) of Dexon wound, 68.2% (15/22) of polyethylene wound and 73.9% (17/23) of nylon wound.	"Dexon was seen to possess certain advantages in that it caused as little tissue reaction as the other sutures but did not have to be removed subsequently."	Not clear if an RCT as randomization and allocation not described. No blinding.	
Sutton 1985 RCT	3.5	N = 76	4/0 Ethilon interrupted mattress sutures vs. Steristrips applied on tincture of benzoin for closure of wounds.	"Sutures appeared to be associated with increased necrosis of the wound and slower healing than adhesive tapes, particularly when used for flap lacerationsThe mean healing time for the 23 patients whose flap lacerations were closed with tapes was 39 days; 20 of these patients were neither admitted to hospital nor received grafts."	"This study shows that for most pretibial lacerations conservative management on an outpatient basis is all that is necessary, and that adhesive tapes are to be preferred for the primary closure of such wounds."	Lack of study details. May not be applicable to upper extremity lacerations.	
Bernard 2001 RCT	3.5	N = 42	2-octyl cyanoacrylate vs. standard suture for the closure of excisional wounds	No differences in early complications between groups. Suture group scored higher on VAS (63.3mm for suture vs. 47.8mm for tissue adhesive); difference statistically significant ($p = 0.02$). Suture group had higher median score on Hollander Wound Scale, but not statistically significant ($p = 0.09$).	"The cosmetic outcome of cutaneous excisional surgery wounds closed with standard suturing was found to be superior to that of wounds closed with octyl cyanoacrylate."	Study not random-selection based on patient choice. Study population children and adolescents, but may be appropriate for excision wounds in general, all wounds treated with subcutaneous sutures.	
MacGregor 1989 RCT	3.5	N = 100	Staple vs. suture closure with local anesthetic for patients with lacerations.	Scores awarded for ease and satisfaction of closure by doctor at insertion were similar. Significantly more patients awarded staples full marks at insertion for method acceptability, although they were same at removal.	"[T]he use of staples to close traumatic skin lacerations compares favorably with the traditional method of suturing."	Sparse study details. Lack of analytical details.	

HUMAN AND ANIMAL BITES AND ASSOCIATED LACERATIONS

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments					
Study Type	(0-11)										
	Dog Bites										
Elenbaas 1982 RCT	3.5	N = 63	Oxacillin x 5 days vs. placebo.	No significant difference in infection rates between two groups; 2 infections vs. 0 in antibiotic group. Both developed in hand.	"Good wound toilet and attention to adequate follow-up wound care will result in a minimal incidence of infection in dog bite injuries. Antibiotic prophylaxis does not further reduce this incidence."	High dropout rate (17/63). Study details sparse, including allocation and blinding methods.					
				Bite Laceration Repair							

Maimaris 1988	3.5	N = 169	Sutures vs. no sutures of dog-	Overall infection rate 7.7%. No significant difference in	"Dog bite lacerations should receive	Sparse study details. No blinding.
			bite lacerations.	infection rate between sutured and non-sutured lacerations.	thorough surgical treatment and can	Randomization and allocation details not
RCT				Significant difference in infection rate of hand vs. rest of	be safely sutured at presentation.	provided.
				body (p <0.01).	However, special care should be	
					given to hand wounds and patients	
					with delayed presentation."	

HAND/FINGER OSTEOARTHROSIS

Author/Year Study Type	Score (0- 11)	Sample Size	Comparison Group	Results	Conclusion	Comments
			SPLINTING A	AND EXERCISE		
			Splint	vs. Splint		
Berggren 2001 RCT	2.5	N = 33 wait-listed for CMC joint replacement	Three groups: 1) technical accessories, 2) semi-stabile textile splint, and 3) non- stabilizing leather splint. All received advice on ADLs.	Patients' need for operation over 7 years were 3, 4, and 3 respectively over 7 months and 2 additional patients during rest of 7 years (1 each in each splint group).	"We therefore recommend that patients with arthritis of the carpometacarpal joint of the thumb are offered a similar progamme in addition to access to accessories and splints preoperatively."	Methodological details sparse; 7- year follow-up a strength. No differences between the groups results in suggestions of either equal in/efficacy.
	1			tandard Exercise	1	
Rønningen 2008 Controlled clinical trial	3.5	N = 60 hospitalized RA patients	Intensive (daily HEP, greater number of repetitions) vs. standard exercise program for 12 weeks.	At 14 weeks, grip strength favored intensive group (p = 0.04).	"[C]ompared with a traditional programme, an intensive hand exercise programme is well tolerated and more effective in improving hand function in patients with RA."	Non-randomized, as first 30 assigned standard treatment and next 30 intensive. Suggests superiority of more intensive exercise regimen for severely affected RA.
				AIDs		
	T			vs. Amtolmetin		
Niccoli 2002 RCT	3.5	N = 90 hand, hip or knee OA	Amtolmetin 600mg BID for 3 days then 600mg a day for 11 days vs. Diclofenac 50mg TID vs. Rofecoxib 25mg QD for 2 weeks total treatment.	Diclofenac reduced creatinine clearance. Rofecoxib gained body weight, systolic blood pressure, diastolic blood pressure and serum sodium with decrease in daily urine volume. No significant changes in parameters with AMG. Diclofenac more efficacious than other 2 drugs (p <0.001).	"Diclofenac mainly impaired blood renal flow and the glomerular filtration rate, while rofecoxib negatively influenced the renal sodium-water exchange. AMG demonstrated a renal sparing effect, although the exact mechanism is unclear."	Sparse study details; 2-week trial. Data suggest diclofenac superior.
				ALTERNATIVE THERAPIES		
Verbruggen 2002	3.5	N = 46	Chondroit Chondroitin polysulphate 50mg	in vs. Placebo Baseline differences in destructive IP joint	"The data recorded during these	Pilot study. Some details sparse.
2 RCTs			IM twice weekly for 8 weeks every 4 months (46) or chondroitin sulphate 500mg TID (34) vs. placebo for 3 years	OA with CPS 23.9% vs. placebo 47.8%. CS 35.3% vs. placebo CS 35.9% at baseline. However, data presented compared with aggregate placebo group,	pilot studies should help investigators to design future long- term clinical experiments."	Baseline differences in erosive changes suggest randomization failure for CPS study. Main publication purpose for system to

				precluding analysis of CS study alone. DIPs for CS study at 3 years 2.6 vs. 3.5 placebo ($p = 0.155$). PIPs CS 2.3 vs. 2.8, $p = 0.373$. MCPs CS 0.4 vs. 0.5, $p = 0.70$.		assess progression of OA. High dropout rates, especially in the IM injection study.
Rovetta 2002 RCT	3.0	N = 24 DIP and/or PIP joint OA	Chondroitin sulfate 800mg a day plus naproxen 500mg a day vs. naproxen only for 2 years.	Chondroitin plus naproxen group had increase of 1 joint with erosive OA at 1 year and none at 2 years, vs. naproxen group with 6 patients, 7 joints (p <0.05).	"Chondroitin sulfate failed to stop the usual time-associated progression in the number of finger joints presenting erosions in EOA of the hands. It was, however, associated with a lower increase in the number of finger joints with erosions detected after 2 years of radiological observation."	Small sample size. Sparse details. Results suggest delayed development of new erosive changes.
			Yoga vs.	No Therapy		
Garfinkel 1994 RCT	3.0	N = 26 DIP or PIP joint OA	Yoga (supervised 1x a week for 8 weeks) vs. no program. After 10 weeks, controls offered to cross over (2 did not) and remaining subjects randomized. Six remained in controls.	Tenderness improved in yoga (2.20 ± 1.32) vs. 0.4 ± 0.94 , p = 0.001). Range of motion increased (p = 0.002). Improvements in grip strengths did not differ (yoga 4.21±4.69/control 3.36±5.89, p = 0.69).	"This yoga derived program was effective in providing relief in hand OA."	Small sample sizes and some details sparse. Non-interventional control likely biases in favor of intervention.
			Multiple Mo	dalities vs. None		
Mathieux 2009	3.0	N = 60 early RA	Multidisciplinary (n = 6) team- led program. Video,	Health Assessment Questionnaire scores: OT (0.19±0.19) vs. controls (0.35±v0.32),	"[A]n early extended information programme improved hand	Multiple modalities and lack of structure preclude assessment of
RCT			"comprehensive OT," motor training, skill training, joint protection, counseling, advice, assistive devices, splints, education, psychosocial support. Treatment for 3 months.	p <0.001. Dominant hand grip strengths: OT (53.9 \pm 24.2 kPa) vs. controls (37.3 \pm 22.9), p = 0.021.	function in patients with early RA."	value of a given modality. RA patients. Presumptive marked differences in contact time (not quantified, but appear marked) bias towards intervention.

Splint vs No Splint

POST-OPERATIV	E REHAB	ILITATION AN	D REHABILITATION OF P	ATIENTS WITH FUNCTIONAL DE	FICITS: CTS AND OTHER DIS	SORDERS

Author/Year	Score	Sample Size	Comparison Group	Results	Conclusion	Comments
Study Type	(0-11)					

Adams 2014 (score=3.0) Weiss 2000 (score=3.0)						Abstract only. Small sample.Data suggest thumb splints showed not be used for thumb OA. Included 8 participants who had additional problems (carpal tunnel syndrome, scaphotrapezial trapezoid arthritis, and de Quervain tendonitis). Data suggest splinting for first carpometacarpal joint may reduce pain but functional outcomes changes such as improved pinch strength did not occur.
		Exo.	cise vs Shan	2		
				1		
Boustedt 2009 (score=2.5)						Data suggest combination splinting and exercise program combined with a joint protection program improves pain, stiffness and quality of life compared to a joint protection program alone.

			РО	ST-OPERATIVE SPLINTING		
Rocchi 2014 RCT No mention of sponsorship. No COI.	3.5	N = 30 with acute complete tear of ulnar collateral ligament (UCL) of thumb treated with surgery. Mean age 39 years.	Standard spica splint for 4 weeks with motion limited to IP joints (n =15) vs. Modified spica splint with freedom to move MCP joint for 4 weeks with motion on both the IP and MCP joints (n = 15). All patients provided flexion-extension exercises. Follow-up at 1, 2, 6, and 12 months.	No significant differences between groups (no p- values reported for study outcomes).	"This study suggests that the surgical repair of the skier's thumb lesion, combined with the immediate restoring of active MCP ROM protected by a modified spica splint is effective and safe and allows a faster return to manual activities compared to traditional method of postoperative splinting."	Small sample but data suggest the early motion management group had less pain at 2 months compared to controls and all functional measures became similar at 12 months. The lost work time is shortened in the early-motion group by 12 days.
Finsen 1999 RCT	3.5	N = 74 with NCS under-going open CTR	All bulky dressing for 2 days, then: 1) very light dressing and move wrist and fingers "as much as comfort allowed, but avoid heavy lifting for the first" 6 post-op weeks vs. plaster of Paris splint for 2 weeks and rigid orthosis for 2 more weeks.	"Physiotherapy was usually not prescribed," apparently as an uncontrolled confounder. VAS pain and discomfort scores (pre/2 weeks/6 weeks/6 months): Immobilized (56/6/6/3) vs. mobilized (51/5/2/2).	Authors conclude that "4 weeks of postoperative immobilization confers no detectable benefit."	Sparse data. Pseudorandomization on Norwegian social security number. NCS not required. Data suggest immobilization not indicated. No advantage to splinting after carpal tunnel relsease surgery.
Bury 1995 RCT	3.0	N = 40 open CTR patients with 43 carpal tunnel releases evaluated	2 weeks of post-op wrist splinting vs. a bulky dressing only	No statistically significant differences between two groups using subjective parameters of patient satisfaction with toutcome and objective parameters of grip and lateral pinch strength, complication rates, and digital and wrist range of motion. No clinical evidence of bowstringing could be noted in either group of patients.	"We found no beneficial effect from postoperative splinting after open carpal tunnel release when compared to a bulky dressing alone."	
Martins 2006 RCT	3.0	N = 52 EDS con- firmed	Post-op immobilization vs. no immobilization for open CTR patients	Average of SSS was 33.38 ± 7.33 in group A and 31.77 ± 7.56 in group B. Post-op, SSS average 11.38 ± 4.57 in group A, and 12.33 ± 4.77 in group B (p = 0.059).	"Wrist immobilization in the immediate post-operative period have no advantages when compared with no immobilization in the end result of carpal tunnel release."	
			POST-	OPERATIVE REHABILITATION		
A.1 (1000	1.0	N. 100 11 CED		Follow-up After CTR		
Atherton 1999 RCT	4.0	N = 100 with CTR	Follow-up with general practitioner vs. hand clinic with 2-week follow- up.	More wound infections diagnosed in general practice setting (14% vs. 0%). Authors believe "most were given antibiotics, perhaps unnecessarily."	"The waiting time for assessment and suture removal was shorter at the GP surgery than in the outpatient department but significantly more patients were diagnosed as having wound infections."	Sparse details; 1 page report. Randomization unclear. No data on risks for infection. CTR procedure not described. Limitations result low-quality study despite 4.0 grading.
	1		<u>.</u>	Physiotherapy Post-Op	1	

Naik 2007 RCT No mention of sponsorship or COI.	2.5	N = 30 with Colles' fracture who underwent external fixation and removed after 2 months. Age not reported.	Maitland mobilization technique: moist heat 15 minutes followed by Maitland manipulations (Grade 1 and 2) for 1 st week of treatment then Grade 3 and 4 2nd week. ($n = 15$) vs. Mulligan mobilization technique: most heat for 15 minutes, Mulligan manipulations in pain free glides ($n =$ 15). No mention of follow-up time.	Mean±SD pain relief (Maitland vs. Mulligan): 3.93±1.09 vs. 4.73±1.03 (p = 0.029). Mean±SD ROM (Maitland vs. Mulligan): active ROM 12.060±6.37 vs. 7.730±2.37 (p = 0.020); passive ROM 14.460±8.67 vs. 9.660±2.89 (p=0.05). Mean±SD scores for functional tasks (Maitland vs. Mulligan): 3.2±0.86 vs. 4.4±1.05 (p = 0.002).	"Mulligan's mobilization technique could be used effectively when the pain predominates while Maitland's mobilization technique could be effectively used to restore mobility when pain is not the major concern to patients with colles' fracture."	Small sample (N = 30). Sparse methodology. Data suggest Mulligan's better for pain relief.
			Physics	al Therapy/Occupational Therapy		
Rasotto 2015 RCT Sponsored by Italian Workers' Compensation Authority (INAIL). COI, Rassotto received a grant from INAIL.	3.5	N = 68 assembly line workers; no exercise contra-indications. Mean age 41.10±7.69 years.	Intervention group (IG): 2 exercise sessions per week for 9 months; each session 30 minutes of warm-up exercises, then tailored program (3 series of 5 exercises each), and cool- down ($n = 34$) vs. control group (CG): continue to perform normal daily activities ($n = 34$). Follow-up at 5 months and within 2 weeks from end of study.	Mean±SD difference in pain rating baseline to end of study (IG vs. CG): neck -1.29±2.72 vs. 0.39±2.51 (p = 0.0164); shoulder -0.94±1.09 vs. 0.17±2.02 (p=0.0224); wrist -1.40±1.87 vs 0.39±0.93 (p = 0.0007).	"This personalized approach suggests a greater effect than a non-personalized standard protocol; however any potential longer term value of customized exercise program deserves further investigation."	Very high dropout and non- compliance in exercise arm. Individualized treatment. Data suggest strength training may reduce neck and wrist pain among those relatively few who remained compliant. Data subject to non-interventional control bias.
Taylor 1994 RCT No mention of sponsorship or COI.	3.5	N = 30 following removal of plaster after Colles' fracture. Mean age 62.6±8.8 years.	Experimental group: 5 minutes Maitland passive joint mobilization; superficial heat; active exercises; home advice to use affected wrist/hand for all daily activities vs. control group: sham mobilization (soft tissue massage), superficial heat, active exercises, home advice treated 2x a week. Included in study until discharged from physiotherapy.	N no significant differences between groups.	"This clinical trial found that the inclusion of passive joint mobilisation into a physiotherapy treatment regime was no more effective than soft tissue massage at increasing the range of active wrist extension in Colles' fracture patients following removal of plaster."	Pilot study with small sample size. Data suggest comparable efficacy between passive joint mobilization and soft tissue massage.

Appendix Three - References

References

- 1. Karl JW, Olson PR, Rosenwasser MP. The Epidemiology of Upper Extremity Fractures in the United States, 2009. J Orthop Trauma. 2015;29(8):e242-4.
- 2. U.S. Department of Labor, Bureau of Labor Statistics. Nonfatal Occupational Injuries and Illnesses Requiring Days Away from Work, 2013. Available at: http://www.bls.gov/news.release/archives/osh2_12162014.pdf. 2013.
- 3. Shanahan EM, Jezukaitis P. Work related upper limb disorders. *Aust Fam Physician*. 2006;35(12):946-50.
- 4. Buckle PW, Devereux JJ. The nature of work-related neck and upper limb musculoskeletal disorders. *Appl Ergon*. 2002;33(3):207-17.
- 5. Wilson d'Almeida K, Godard C, Leclerc A, Lahon G. Sickness absence for upper limb disorders in a French company. Occup Med (Lond). 2008;58(7):506-8.
- 6. Aroori S, Spence RA. Carpal tunnel syndrome. *Ulster Med J*. 2008;77(1):6-17.
- 7. Dieleman JP, Kerklaan J, Huygen FJ, Bouma PA, Sturkenboom MC. Incidence rates and treatment of neuropathic pain conditions in the general population. *Pain*. 2008;137(3):681-8.
- 8. El Miedany Y, Ashour S, Youssef S, Mehanna A, Meky FA. Clinical diagnosis of carpal tunnel syndrome: old tests-new concepts. *Joint Bone Spine*. 2008;75(4):451-7.
- 9. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. *Arthritis Rheum*. 2008;58(1):26-35.
- 10. Rempel D, Evanoff B, Amadio PC, et al. Consensus criteria for the classification of carpal tunnel syndrome in epidemiologic studies. *Am J Public Health*. 1998;88(10):1447-51.
- 11. Wilder-Smith EP, Ng ES, Chan YH, Therimadasamy AK. Sensory distribution indicates severity of median nerve damage in carpal tunnel syndrome. *Clin Neurophysiol*. 2008;119(7):1619-25.
- 12. Nathan PA, Keniston RC, Lockwood RS, Meadows KD. Tobacco, caffeine, alcohol, and carpal tunnel syndrome in American industry. A cross-sectional study of 1464 workers. *J Occup Environ Med*. 1996;38(3):290-8.
- 13. Stevens JC, Sun S, Beard CM, O'Fallon WM, Kurland LT. Carpal tunnel syndrome in Rochester, Minnesota, 1961 to 1980. *Neurology*. 1988;38(1):134-8.
- 14. Bednar MS, Arnoczky SP, Weiland AJ. The microvasculature of the triangular fibrocartilage complex: its clinical significance. *J Hand Surg Am.* 1991;16(6):1101-5.
- 15. Thiru RG, Ferlic DC, Clayton ML, McClure DC. Arterial anatomy of the triangular fibrocartilage of the wrist and its surgical significance. *J Hand Surg Am.* 1986;11(2):258-63.
- 16. Mikic ZD. Age changes in the triangular fibrocartilage of the wrist joint. J Anat. 1978;126(Pt 2):367-84.
- 17. Cody M, Nakamura D, Small K, Yoshioka H. MR imaging of the Triangular Fibrocartilage Complex. Magn Reson Imaging Clin N Am. 2015;23(3):393-403.
- 18. Clayton JM, Hayes AC, Barnes RW. Tissue pressure and perfusion in the compartment syndrome. J Surg Res. 1977;22(4):333-9.
- 19. Naidu SH, Heppenstall RB. Compartment syndrome of the forearm and hand. *Hand Clin.* 1994;10(1):13-27.
- 20. Clement R, Wray RC, Jr. Operative and nonoperative treatment of mallet finger. Ann Plast Surg. 1986;16(2):136-41.
- 21. Abouna JM, Brown H. The treatment of mallet finger. The results in a series of 148 consecutive cases and a review of the literature. Br J Surg. 1968;55(9):653-67.
- 22. Peterson JJ, Bancroft LW. Injuries of the fingers and thumb in the athlete. Clin Sports Med. 2006;25(3):527-42, vii-viii.
- 23. Finkelstein H. Stenosing tendovaginitis at the radial styloid process. J Bone Joint Surg Am. 1930;12(3):509 -40
- 24. Flörcken H. Zur Frage der stenosierenden Tendovaginitis am Processus styloideus radii. 1912(suppl):1378.
- 25. Hauck G. Ein beitrag zur anatomie und physiologied. Finger und hand-gelenksehnenscheiden. Arch Chir Bd 1910;S151:136.
- 26. Mulpruek P, Prichasuk S, Orapin S. Trigger finger in children. J Pediatr Orthop. 1998;18(2):239-41.

- 27. Ryzewicz M, Wolf JM. Trigger digits: principles, management, and complications. J Hand Surg Am. 2006;31(1):135-46.
- 28. Troell A. On tendovaginitis and tendinitis stenosans. Acta Chir Scand. 1921;547-16.
- 29. Kapellusch J, Garg A, Hegmann K, Thiese M, Malloy E. The Strain Index and ACGIH TLV for HAL: risk of trigger digit in the WISTAH prospective cohort. *Hum Factors*. 2014;56(1):98-111.
- 30. Fujiwara M. A case of trigger finger following partial laceration of flexor digitorum superficialis and review of the literature. *Arch Orthop Trauma Surg*. 2005;125(6):430-2.
- 31. Rhoades CE, Gelberman RH, Manjarris JF. Stenosing tenosynovitis of the fingers and thumb. Results of a prospective trial of steroid injection and splinting. *Clin Orthop Relat Res.* 1984(190):236-8.
- 32. Buch-Jaeger N, Foucher G, Ehrler S, Sammut D. The results of conservative management of trigger finger. A series of 169 patients. *Ann Chir Main Memb Super*. 1992;11(3):189-93.
- 33. Gottlieb NL. Digital flexor tenosynovitis: diagnosis and clinical significance. J Rheumatol. 1991;18(7):954-5.
- 34. Yosipovitch G, Yosipovitch Z, Karp M, Mukamel M. Trigger finger in young patients with insulin dependent diabetes. *J Rheumatol*. 1990;17(7):951-2.
- 35. Sperling W. Snapping finger: roengten treatment and experimental production. *Acta Radiol*. 1951;3774-80.
- 36. Saldana MJ. Trigger digits: diagnosis and treatment. J Am Acad Orthop Surg. 2001;9(4):246-52.
- 37. Trezies AJ, Lyons AR, Fielding K, Davis TR. Is occupation an aetiological factor in the development of trigger finger? J Hand Surg Br. 1998;23(4):539-40.
- 38. Baumgarten KM, Gerlach D, Boyer MI. Corticosteroid injection in diabetic patients with trigger finger. A prospective, randomized, controlled double-blinded study. *J Bone Joint Surg Am.* 2007;89(12):2604-11.
- 39. Nimigan AS, Ross DC, Gan BS. Steroid injections in the management of trigger fingers. *Am J Phys Med Rehabil*. 2006;85(1):36-43.
- 40. Moore JS. Flexor tendon entrapment of the digits (trigger finger and trigger thumb). *J Occup Environ Med*. 2000;42(5):526-45.
- 41. Muckart RD. Stenosing tendovaginitis of abductor pollicis longus and extensor pollicis brevis at the radial styloid (de Quervain's disease). *Clin Orthop Relat Res.* 1964;33201-8.
- 42. Piligian G, Herbert R, Hearns M, Dropkin J, Landsbergis P, Cherniack M. Evaluation and management of chronic work-related musculoskeletal disorders of the distal upper extremity. *Am J Ind Med*. 2000;37(1):75-93.
- 43. Pantukosit S, Petchkrua W, Stiens SA. Intersection syndrome in Buriram Hospital: a 4-yr prospective study. Am J Phys Med Rehabil. 2001;80(9):656-61.
- 44. Grundberg AB, Reagan DS. Pathologic anatomy of the forearm: intersection syndrome. *J Hand Surg Am.* 1985;10(2):299-302.
- 45. Idler RS, Strickland JW, Creighton JJ, Jr. Intersection syndrome. *Indiana Med.* 1990;83(9):658-9.
- 46. Stern PJ. Tendinitis, overuse syndromes, and tendon injuries. *Hand Clin.* 1990;6(3):467-76.
- 47. Browne J, Helms CA. Intersection syndrome of the forearm. *Arthritis Rheum*. 2006;54(6):2038.
- 48. Amadio P. De Quervain's disease and tenosynovitis. *Repetitive motions disorders of the upper extremity Rosemont, IL: American Academy of Orthopaedic Surgeons*; 1995:435-48.
- 49. Kelsey J. Epidemiology of Musculoskeletal Disorders. New York: Oxford University Press; 1982.
- 50. Chiodo A, Chadd E. Ulnar neuropathy at or distal to the wrist: traumatic versus cumulative stress cases. Arch Phys Med Rehabil. 2007;88(4):504-12.
- 51. Wu JS, Morris JD, Hogan GR. Ulnar neuropathy at the wrist: case report and review of literature. *Arch Phys Med Rehabil*. 1985;66(11):785-8.
- 52. Ablett CT, Hackett LA. Hypothenar hammer syndrome: case reports and brief review. *Clin Med Res.* 2008;6(1):3-8.
- 53. Jalini L, Nice CA, Bhattacharya V. Ulnar artery thrombosis due to hypothenar hammer syndrome. *Recent Pat Cardiovasc Drug Discov*. 2007;2(2):139-42.
- 54. Kapoor JR, Kapoor R, Assimes TL. Digital ischemia. J Cardiovasc Med (Hagerstown). 2008;9(12):1285-6.
- 55. Marie I, Herve F, Primard E, Cailleux N, Levesque H. Long-term follow-up of hypothenar hammer syndrome: a series of 47 patients. *Medicine (Baltimore)*. 2007;86(6):334-43.

- 56. Dethmers RS, Houpt P. Surgical management of hypothenar and thenar hammer syndromes: a retrospective study of 31 instances in 28 patients. *J Hand Surg Br*. 2005;30(4):419-23.
- 57. Seror P, Lestrade M, Vacher H. Ulnar nerve compression at the wrist by a synovial cyst successfully treated with percutaneous puncture and corticosteroid injection. *Joint Bone Spine*. 2000;67(2):127-8.
- 58. Carlson N, Logigian EL. Radial neuropathy. Neurol Clin. 1999;17(3):499-523, vi.
- 59. Eaton CJ, Lister GD. Radial nerve compression. *Hand Clin.* 1992;8(2):345-57.
- 60. Plate AM, Green SM. Compressive radial neuropathies. *Instr Course Lect.* 2000;49295-304.
- 61. Tryfonidis M, Jass GK, Charalambous CP, Jacob S. Superficial branch of the radial nerve piercing the brachioradialis tendon to become subcutaneous: an anatomical variation with clinical relevance. *Hand Surg.* 2004;9(2):191-5.
- 62. Turkof E, Puig S, Choi SS, Zoch G, Dellon AL. The radial sensory nerve entrapped between the two slips of a split brachioradialis tendon: a rare aspect of Wartenberg's syndrome. *J Hand Surg Am.* 1995;20(4):676-8.
- 63. Adeyemi-Doro HO. Pattern of peripheral traumatic neuropathy of the upper limb in Lagos. *Injury*. 1988;19(5):329-32.
- 64. Wright TW, Glowczewskie F, Jr., Cowin D, Wheeler DL. Radial nerve excursion and strain at the elbow and wrist associated with upper-extremity motion. *J Hand Surg [Am]*. 2005;30(5):990-6.
- 65. Tzeng CY, Lee TS, Chen IC. Superficial radial nerve compression caused by a parosteal lipoma of proximal radius: a case report. Hand Surg. 2005;10(2-3):293-6.
- 66. Lanzetta M, Foucher G. Entrapment of the superficial branch of the radial nerve (Wartenberg's syndrome). A report of 52 cases. Int Orthop. 1993;17(6):342-5.
- 67. MacIver H, Smyth G, Bird HA. Occupational disorders: non-specific forearm pain. *Best Pract Res Clin Rheumatol*. 2007;21(2):349-65.
- 68. Klein DM, Belsole RJ. Percutaneous treatment of carpal, metacarpal, and phalangeal injuries. Clin Orthop Relat Res. 2000(375):116-25.
- 69. Yin ZG, Zhang JB, Kan SL, Wang P. Treatment of acute scaphoid fractures: systematic review and meta-analysis. Clin Orthop Relat Res. 2007;460142-51.
- 70. Phillips TG, Reibach AM, Slomiany WP. Diagnosis and management of scaphoid fractures. Am Fam Physician. 2004;70(5):879-84.
- 71. Schubert HE. Scaphoid fracture. Review of diagnostic tests and treatment. *Can Fam Physician*. 2000;461825-32.
- 72. Golden GT, David D, Smith TE, et al. Fractures of the phalanges and metacarpals: An analysis of 555 fractures. *Journal of the American College of Emergency Physicians*. 1977;6(3):79-84.
- 73. Frazier WH, Miller M, Fox RS, Brand D, Finseth F. Hand injuries: incidence and epidemiology in an emergency service. *JACEP*. 1978;7(7):265-8.
- 74. Butt WD. Fractures of the hand. II. Statistical review. *Can Med Assoc J.* 1962;86775-9.
- 75. Seaberg DC, Angelos WJ, Paris PM. Treatment of subungual hematomas with nail trephination: a prospective study. Am J Emerg Med. 1991;9(3):209-10.
- 76. Simon RR, Wolgin M. Subungual hematoma: association with occult laceration requiring repair. Am J Emerg Med. 1987;5(4):302-4.
- 77. Bowman SH, Simon RR. Metacarpal and phalangeal fractures. *Emerg Med Clin North Am.* 1993;11(3):671-702.
- 78. Lee SG, Jupiter JB. Phalangeal and metacarpal fractures of the hand. *Hand Clin.* 2000;16(3):323-32, vii.
- 79. Hove LM. Fractures of the hand. Distribution and relative incidence. Scand J Plast Reconstr Surg Hand Surg. 1993;27(4):317-9.
- 80. Freeland AE, Hardy MA, Singletary S. Rehabilitation for proximal phalangeal fractures. *J Hand Ther*. 2003;16(2):129-42.
- 81. Giddins G. The non-operative management of hand fractures. *J Hand Surg* 2015;40(1):33-41.
- 82. McMurtry RY, Paley D, Marks P, Axelrod T. A critical analysis of Swanson ulnar head replacement arthroplasty: rheumatoid versus nonrheumatoid. *J Hand Surg Am.* 1990;15(2):224-31.
- 83. Reyes FA, Latta LL. Conservative management of difficult phalangeal fractures. *Clin Orthop Relat Res.* 1987(214):23-30.
- 84. McNemar TB, Howell JW, Chang E. Management of metacarpal fractures. *J Hand Ther*. 2003;16(2):143-51.
- 85. Green D, Butler T. Fractures and dislocations in the hand. In: Rockwood and Green's Fractures in Adults. Vol 1. 4th ed. . Baltimore, Md: Lippincott Williams & Wilkins; 1996.
- 86. Gedda KO. Studies on Bennett's fracture; anatomy, roentgenology, and therapy. *Acta Chir Scand Suppl*. 1954;1931-114.

- 87. Kozin SH, Thoder JJ, Lieberman G. Operative treatment of metacarpal and phalangeal shaft fractures. *J Am Acad Orthop Surg.* 2000;8(2):111-21.
- 88. Leggit JC, Meko CJ. Acute finger injuries: part II. Fractures, dislocations, and thumb injuries. *Am Fam Physician*. 2006;73(5):827-34.
- 89. Freeland AE, Orbay JL. Extraarticular hand fractures in adults: a review of new developments. *Clin Orthop Relat Res.* 2006;445133-45.
- 90. Hanel DP, Jones MD, Trumble TE. Wrist fractures. Orthop Clin North Am. 2002;33(1):35-57, vii.
- 91. Thurston AJ. 'Ao' or eponyms: the classification of wrist fractures. ANZ J Surg. 2005;75(5):347-55.
- 92. Colles A. On the fracture of the carpal extremity of the radius. Edinb Med Surg J. 1814;10:181. *Clin Orthop Relat Res.* 2006;4455-7.
- 93. Jupiter JB. Complex Articular Fractures of the Distal Radius: Classification and Management. J Am Acad Orthop Surg. 1997;5(3):119-29.
- 94. Shah HM, Chung KC. Robert William Smith: his life and his contributions to medicine. *J Hand Surg Am.* 2008;33(6):948-51.
- 95. Resnick D. *Physical injury: extraspinal sites. In: Diagnosis of Bone and Joint Disorders. 4th ed.* Philadelphia, PA: WB Saunders; 2002.
- 96. Richards RS, Bennett JD, Roth JH, Milne K, Jr. Arthroscopic diagnosis of intra-articular soft tissue injuries associated with distal radial fractures. *J Hand Surg Am*. 1997;22(5):772-6.
- 97. Bruckner JD, Alexander AH, Lichtman DM. Acute dislocations of the distal radioulnar joint. *Instr Course Lect.* 1996;4527-36.
- 98. Pye SR ONT, Lunt M, et al. Risk factors for Colles' fracture in men and women: results from the European Prospective Osteoporosis Study. *Osteoporosis Intl.* 2003;14(3):213-8.
- 99. Hung VS, Bodavula VK, Dubin NH. Digital anaesthesia: comparison of the efficacy and pain associated with three digital nerve block techniques. *J Hand Surg* [*Br*]. 2005;30(6):581-4.
- 100. Vogt MT, Cauley JA, Tomaino MM, Stone K, Williams JR, Herndon JH. Distal radius fractures in older women: a 10-year follow-up study of descriptive characteristics and risk factors. The study of osteoporotic fractures. *J Am Geriatr Soc*. 2002;50(1):97-103.
- 101. Ahn AK, Chang D, Plate AM. Triangular fibrocartilage complex tears: a review. Bull NYU Hosp Jt Dis. 2006;64(3-4):114-8.
- 102. Schmidt H. The anatomy of the ulnocarpal complex. *Orthopade*. 2004;33(6):628-37.
- 103. Naqvi SG, Reynolds T, Kitsis C. Interobserver reliability and intraobserver reproducibility of the Fernandez classification for distal radius fractures. *J Hand Surg Eur Vol.* 2009;34(4):483-5.
- 104. Andersen DJ, Blair WF, Steyers CM, Jr., Adams BD, el-Khouri GY, Brandser EA. Classification of distal radius fractures: an analysis of interobserver reliability and intraobserver reproducibility. *J Hand Surg Am.* 1996;21(4):574-82.
- 105. Cooney W, Linscheid L, Dobyns J. Fractures and dislocations of the wrist. In: Rockwood CJ, Green D, eds. *Fractures in Adults*. Philadelphia, Pa: JB Lippincott; 1996:745-820.
- 106. Stoffelen D, Broos P. Minimally displaced distal radius fractures: do they need plaster treatment? J Trauma. 1998;44(3):503-5.
- 107. Cooney WP, 3rd, Linscheid RL, Dobyns JH. External pin fixation for unstable Colles' fractures. J Bone Joint Surg Am. 1979;61(6A):840-5.
- 108. Vaughan PA, Lui SM, Harrington IJ, Maistrelli GL. Treatment of unstable fractures of the distal radius by external fixation. *J Bone Joint Surg Br.* 1985;67(3):385-9.
- 109. van Eerten PV, Lindeboom R, Oosterkamp AE, Goslings JC. An X-ray template assessment for distal radial fractures. *Arch Orthop Trauma Surg*. 2008;128(2):217-21.
- 110. Cole RJ, Bindra RR, Evanoff BA, Gilula LA, Yamaguchi K, Gelberman RH. Radiographic evaluation of osseous displacement following intra-articular fractures of the distal radius: reliability of plain radiography versus computed tomography. *J Hand Surg Am*. 1997;22(5):792-800.
- 111. Flinkkila T, Raatikainen T, Hamalainen M. AO and Frykman's classifications of Colles' fracture. No prognostic value in 652 patients evaluated after 5 years. *Acta Orthop Scand*. 1998;69(1):77-81.
- 112. Thomason K, Smith KL. The reliability of measurements taken from computer-stored digitalised x-rays of acute distal radius fractures. *J Hand Surg Eur Vol.* 2008;33(3):369-72.

- 113. Tanaka S, Petersen M, Cameron L. Prevalence and risk factors of tendinitis and related disorders of the distal upper extremity among U.S. workers: comparison to carpal tunnel syndrome. *Am J Ind Med*. 2001;39(3):328-35.
- 114. Lowden CM, Attiah M, Garvin G, Macdermid JC, Osman S, Faber KJ. The prevalence of wrist ganglia in an asymptomatic population: magnetic resonance evaluation. *J Hand Surg Br.* 2005;30(3):302-6.
- 115. Limpaphayom N, Wilairatana V. Randomized controlled trial between surgery and aspiration combined with methylprednisolone acetate injection plus wrist immobilization in the treatment of dorsal carpal ganglion. *J Med Assoc Thai*. 2004;87(12):1513-7.
- 116. Rizzo M, Berger RA, Steinmann SP, Bishop AT. Arthroscopic resection in the management of dorsal wrist ganglions: results with a minimum 2-year follow-up period. *J Hand Surg Am*. 2004;29(1):59-62.
- 117. Matthews P. Ganglia of the flexor tendon sheaths in the hand. J Bone Joint Surg Br. 1973;55(3):612-7.
- 118. Gude W, Morelli V. Ganglion cysts of the wrist: pathophysiology, clinical picture, and management. *Curr Rev Musculoskelet Med.* 2008;1(3-4):205-11.
- 119. Schrank C, Meirer R, Stäbler A, Nerlich A, Reiser M, Putz R. Morphology and topography of intraosseous ganglion cysts in the carpus: an anatomic, histopathologic, and magnetic resonance imaging correlation study. *J Hand Surg Am.* 2003;28(1):52-61.
- 120. Thornburg L. Ganglions of the hand and wrist. J Am Acad Orthop Surg. 1999;7(4):231-8.
- 121. Young L, Bartell T, Logan S. Ganglions of the hand and wrist. South Med J. 1988;81(6):751-60.
- 122. Cherniack M, Brammer AJ, Lundstrom R, et al. The Hand-Arm Vibration International Consortium (HAVIC): prospective studies on the relationship between power tool exposure and health effects. *Journal of occupational and environmental medicine*. 2007;49(3):289-301.
- 123. Lin W, Chunzhi Z, Qiang Z, Kai Z, Xiaoli Z. The study on hand-arm vibration syndrome in China. *Ind Health*. 2005;43(3):480-3.
- 124. Bovenzi M, Ronchese F, Mauro M. A longitudinal study of peripheral sensory function in vibration-exposed workers. *Int Arch Occup Environ Health*. 2011;84(3):325-34.
- 125. Åström C, Rehn B, Lundström R, Nilsson T, Burström L, Sundelin G. Hand-arm vibration syndrome (HAVS) and musculoskeletal symptoms in the neck and the upper limbs in professional drivers of terrain vehicles—a cross sectional study. *Appl Ergon*. 2006;37(6):793-9.
- 126. Pyykko I. Clinical aspects of the hand-arm vibration syndrome. A review. Scand J Work Environ Health. 1986;12(5):439-47.
- 127. Pelmear PL, Leong D. Review of occupational standards and guidelines for hand-arm (segmental) vibration syndrome (HAVS). *Appl Occup Environ Hyg*. 2000;15(3):291-302.
- 128. Sutinen P, Toppila E, Starck J, Brammer A, Zou J, Pyykko I. Hand-arm vibration syndrome with use of anti-vibration chain saws: 19-year follow-up study of forestry workers. *Int Arch Occup Environ Health*. 2006;79(8):665-71.
- 129. Pelmear PL, Taylor W. Hand-arm vibration syndrome. J Fam Pract. 1994;38(2):180-5.
- 130. Sauni R, Paakkonen R, Virtema P, et al. Vibration-induced white finger syndrome and carpal tunnel syndrome among Finnish metal workers. *Int Arch Occup Environ Health*. 2009;82(4):445-53.
- 131. Falkiner S. Diagnosis and treatment of hand-arm vibration syndrome and its relationship to carpal tunnel syndrome. Aust fam Physician. 2003;32(7):530-4.
- 132. Fenga C, Rapisarda V, Valentino M, et al. Hand-arm vibration syndrome and upper limbs diseases in the forest workers of Italia meridionale. *G Ital Med Lav Ergon*. 2007;29(3 Suppl):592-3.
- 133. Chetter IC, Kent PJ, Kester RC. The hand arm vibration syndrome: a review. Cardiovasc Surg. 1998;6(1):1-9.
- 134. Govindaraju SR, Bain JL, Eddinger TJ, Riley DA. Vibration causes acute vascular injury in a two-step process: vasoconstriction and vacuole disruption. *Anat Rec* (*Hoboken*). 2008;291(8):999-1006.
- 135. Krajnak K, Dong R, Flavahan S, Welcome D, Flavahan N. Acute vibration increases α2C-adrenergic smooth muscle constriction and alters thermosensitivity of cutaneous arteries. *Journal of Applied Physiology*. 2006;100(4):1230-7.
- 136. Bovenzi M, D'Agostin F, Rui F, Ambrosi L, Zefferino R. Salivary endothelin and vascular disorders in vibration-exposed workers. *Scand J Work Environ Health*. 2008;34(2):133-41.

- 137. Pelmear PL. The clinical assessment of hand-arm vibration syndrome. Occup Med (Lond). 2003;53(5):337-41.
- 138. ISO I. 5349-1: Mechanical vibration—measurement and evaluation of human exposure to hand-transmitted vibration—part 1: general requirements. *Geneva*, *Switzerland: International Organization for Standardization*; 2001.
- 139. Sauni R, Paakkonen R, Virtema P, Toppila E, Uitti J. Dose-response relationship between exposure to hand-arm vibration and health effects among metalworkers. *Ann Occup Hyg.* 2009;53(1):55-62.
- 140. Krajnak K, Riley DA, Wu J, et al. Frequency-dependent effects of vibration on physiological systems: experiments with animals and other human surrogates. *Ind Health*. 2012;50(5):343-53.
- 141. American National Standards Institute. (revision/replacement of ANSI S3.34-1986) ANSI S2.70-2006: Guide for the Measurement and Evaluation of Human Exposure to Vibration Transmitted to the Hand. New York, May 2006.
- 142. The National Institute for Occupational Safety and Health. Criteria for a recommended standard. Occupational Exposure to Hand-Arm Vibration. Washington, DC: Department of Health and Human Services; 1989. DHHS Publication no. 89-106.
- 143. American Conference of Governmental Industrial Hygienists (ACGIH). Guide to Occupational Exposure Guidelines. Cincinnati, OH: ACGIH; 2009.
- 144. Bovenzi M. Exposure-response relationship in the hand-arm vibration syndrome: an overview of current epidemiology research. *Int Arch Occup Environ Health*. 1998;71(8):509-19.
- 145. Gell N, Werner RA, Franzblau A, Ulin SS, Armstrong TJ. A longitudinal study of industrial and clerical workers: incidence of carpal tunnel syndrome and assessment of risk factors. *J Occup Rehabil*. 2005;15(1):47-55.
- 146. Garg A, Kapellusch J, Hegmann K, et al. The Strain Index (SI) and Threshold Limit Value (TLV) for Hand Activity Level (HAL): risk of carpal tunnel syndrome (CTS) in a prospective cohort. *Ergonomics*. 2012;55(4):396-414.
- 147. Hollander J, Blasko B, Singer A, Valentine S, Thode H, Jr, Henry M. Poor correlation of short- and long-term cosmetic appearance of repaired lacerations. *Acad Emerg Med.* 1995;2(11):983-7.
- 148. Pearson A, Wolford R. Management of skin trauma. Prim Care. 2000;27(2):475-92.
- 149. Cheung K, Hatchell A, Thoma A. Approach to traumatic hand injuries for primary care physicians. Can Fam Physician. 2013;59(6):614-8.
- 150. Singer AJ, Hollander JE. Tissue adhesives for laceration closure. Jama. 1997;278(9):703-4.
- 151. Singer AJ, Hollander JE, Valentine SM, Turque TW, McCuskey CF, Quinn JV. Prospective, randomized, controlled trial of tissue adhesive (2-octylcyanoacrylate) vs standard wound closure techniques for laceration repair. Stony Brook Octylcyanoacrylate Study Group. *Acad Emerg Med.* 1998;5(2):94-9.
- 152. Wood PB. Wound infection in undressed sutured wounds of the hand. Br J Surg. 1971;58(7):543-5.
- 153. Patrick GR, O'Rourke KM. Dog and cat bites: epidemiologic analyses suggest different prevention strategies. *Public Health Rep.* 1998;113(3):252-7.
- 154. Weiss HB, Friedman DI, Coben JH. Incidence of dog bite injuries treated in emergency departments. JAMA. 1998;279(1):51-3.
- 155. Control CfD, Prevention. Nonfatal dog bite-related injuries treated in hospital emergency departments--United States, 2001. *MMWR: Morbidity and mortality weekly report*. 2003;52(26):605-10.
- 156. O'Neil ME, Mack KA, Gilchrist J. Epidemiology of non-canine bite and sting injuries treated in U.S. emergency departments, 2001-2004. *Public Health Rep.* 2007;122(6):764-75.
- 157. Jeyaretnam J, Jones H. Physical, chemical and biological hazards in veterinary practice. Aust Vet J. 2000;78(11):751-8.
- 158. Cancio-Bello TP, de Medina M, Shorey J, Valledor MD, Schiff ER. An institutional outbreak of hepatitis B related to a human biting carrier. *J Infect Dis*. 1982;146(5):652-6.
- 159. Solomons HC, Elardo R. Biting in day care centers: incidence, prevention, and intervention. J Pediatr Health Care. 1991;5(4):191-6.
- 160. Conlon HA. Human bites in the classroom: incidence, treatment, and complications. *J Sch Nurs*. 2007;23(4):197-201.
- 161. Sonder GJ, Bovee LP, Coutinho RA, Baayen D, Spaargaren J, van den Hoek A. Occupational exposure to bloodborne viruses in the Amsterdam police force, 2000-2003. *Am J Prev Med*. 2005;28(2):169-74.

- 162. Boenning D, GR F, JM C. Dog bites in children: Epidemiology, microbiology and penicillin prophylatic therapy. Am J Emerg Med. 1983;117-21.
- 163. Skurka J, Willert C, Yogev R. Wound infection following dog bite despite prophylactic penicillin. *Infection*. 1986;14(3):134-5.
- 164. Zubowicz VN, Gravier M. Management of early human bites of the hand: a prospective randomized study. *Plast Reconstr Surg.* 1991;88(1):111-4.
- 165. Irlenbusch U, Dominick G. Investigations in generalized osteoarthritis. Part 2: special histological features in generalized osteoarthritis (histological investigations in Heberden's nodes using a histological score). Osteoarthritis and cartilage. 2006;14(5):428-34.
- 166. Irlenbusch U, Schäller T. Investigations in generalized osteoarthritis. Part 1: genetic study of Heberden's nodes. Osteoarthritis and cartilage. 2006;14(5):423-7.
- 167. Chan L, Turner JA, Comstock BA, et al. The relationship between electrodiagnostic findings and patient symptoms and function in carpal tunnel syndrome. *Arch Phys Med Rehabil*. 2007;88(1):19-24.
- 168. Dale AM, Strickland J, Symanzik J, Franzblau A, Evanoff B. Reliability of hand diagrams for the epidemiologic case definition of carpal tunnel syndrome. *J Occup Rehabil.* 2008;18(3):233-48.
- 169. Burke DT, Burke MA, Bell R, Stewart GW, Mehdi RS, Kim HJ. Subjective swelling: a new sign for carpal tunnel syndrome. *Am J Phys Med Rehabil*. 1999;78(6):504-8.
- 170. Franzblau A, Flaschner D, Albers JW, Blitz S, Werner R, Armstrong T. Medical screening of office workers for upper extremity cumulative trauma disorders. *Arch Environ Health*. 1993;48(3):164-70.
- 171. Franzblau A, Werner RA, Johnston E, Torrey S. Evaluation of current perception threshold testing as a screening procedure for carpal tunnel syndrome among industrial workers. *J Occup Med.* 1994;36(9):1015-21.
- 172. Katz JN, Larson MG, Sabra A, et al. The carpal tunnel syndrome: diagnostic utility of the history and physical examination findings. *Ann Intern Med*. 1990;112(5):321-7.
- 173. Katz JN, Stirrat CR. A self-administered hand diagram for the diagnosis of carpal tunnel syndrome. J Hand Surg [Am]. 1990;15(2):360-3.
- 174. Katz JN, Stirrat CR, Larson MG, Fossel AH, Eaton HM, Liang MH. A self-administered hand symptom diagram for the diagnosis and epidemiologic study of carpal tunnel syndrome. *J Rheumatol*. 1990;17(11):1495-8.
- 175. Armstrong T, Dale AM, Franzblau A, Evanoff BA. Risk factors for carpal tunnel syndrome and median neuropathy in a working population. *J Occup Environ Med.* 2008;50(12):1355-64.
- 176. Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I. Prevalence of carpal tunnel syndrome in a general population. *Jama*. 1999;282(2):153-8.
- 177. Charles N, Vial C, Chauplannaz G, Bady B. Clinical validation of antidromic stimulation of the ring finger in early electrodiagnosis of mild carpal tunnel syndrome. *Electroencephalogr Clin Neurophysiol*. 1990;76(2):142-7.
- 178. Hegmann KT, Garg A, Wertsch J, MS. T. Prevalence of Median Nerve Related Symptoms and Signs in a Cohort at Baseline. Presented at the Fifth International Scientific Conference on Prevention of Work-related Musculoskeletal Disorders. ETH Zurich, Zurich, Switzerland. July 13, 2004. Premus. 2004485-6.
- 179. Jablecki CK, Andary MT, Floeter MK, et al. WITHDRAWN: Second AAEM literature review of the usefulness of nerve conduction studies and needle electromyography for the evaluation of patients with carpal tunnel syndrome. *Muscle Nerve*. 2002.
- 180. Makanji H, Zhao M, Mudgal C, Jupiter J, Ring D. Correspondence between clinical presentation and electrophysiological testing for potential carpal tunnel syndrome. *J Hand Surg.* 2013;38(5):489-95.
- 181. Salerno DF, Franzblau A, Werner RA, Bromberg MB, Armstrong TJ, Albers JW. Median and ulnar nerve conduction studies among workers: normative values. *Muscle Nerve*. 1998;21(8):999-1005.
- 182. Seror P. Sensitivity of the various tests for the diagnosis of carpal tunnel syndrome. Journal of Hand Surgery (British and European Volume). 1994;19(6):725-8.
- 183. Stevens JC. AAEE minimonograph #26: The electrodiagnosis of carpal tunnel syndrome. *Muscle Nerve*. 1987;10(2):99-113.
- 184. Uncini A, Di Muzio A, Awad J, Manente G, Tafuro M, Gambi D. Sensitivity of three median-to-ulnar comparative tests in diagnosis of mild carpal tunnel syndrome. *Muscle Nerve*. 1993;16(12):1366-73.

- 185. Werner RA, Franzblau A, Gell N, Hartigan AG, Ebersole M, Armstrong TJ. Incidence of carpal tunnel syndrome among automobile assembly workers and assessment of risk factors. *J Occup Environ Med*. 2005;47(10):1044-50.
- 186. Wong S, Griffith J, Hui A, Tang A, Wong K. Discriminatory sonographic criteria for the diagnosis of carpal tunnel syndrome. *Arthritis & Rheumatism*. 2002;46(7):1914-21.
- 187. Wong SM, Griffith JF, Hui AC, Lo SK, Fu M, Wong KS. Carpal Tunnel Syndrome: Diagnostic Usefulness of Sonography 1. Radiology. 2004;232(1):93-9.
- 188. Dale AM, Harris-Adamson C, Rempel D, et al. Prevalence and incidence of carpal tunnel syndrome in US working populations: pooled analysis of six prospective studies. *Scand J Work Environ Health*. 2013;39(5):495-505.
- 189. Thiese MS, Gerr F, Hegmann KT, et al. Effects of Varying Case Definition on Carpal Tunnel Syndrome Prevalence Estimates in a Pooled Cohort. *Arch Phys Med Rehabil*. 2014;95(12):2320-6.
- 190. Fahey J, Bollinger J. Trigger-finger in adults and children. *The Journal of Bone & Joint Surgery*. 1954;36(6):1200-18.
- 191. Quinnell R. Conservative management of trigger finger. The Practitioner. 1980;224(1340):187-90.
- 192. Compere E. Bilateral snapping thumbs. Ann Surg. 1933;97(5):773-7.
- 193. Kolind-Sorensen V. Treatment of trigger fingers. Acta Orthop Scand. 1970;41(4):428-32.
- 194. Ho P, Griffiths J, Lo W, Yen C, Hung L. Current treatment of ganglion of the wrist. *Hand Surgery*. 2001;6(01):49-58.
- 195. Singer AJ, Hollander JE, Quinn JV. Evaluation and management of traumatic lacerations. N Engl J Med. 1997;337(16):1142-8.
- 196. Balci K, Utku U. Carpal tunnel syndrome and metabolic syndrome. Acta Neurol Scand. 2007;116(2):113-7.
- 197. Bernard BP. Musculoskeletal Disorders and Workplace Factors. A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back. *National Institute for Occupational Safety and Health*. 1997.
- 198. Chammas M, Bousquet P, Renard E, Poirier J-L, Jaffiol C, Allieu Y. Dupuytren's disease, carpal tunnel syndrome, trigger finger, and diabetes mellitus. *J Hand Surg Am.* 1995;20(1):109-14.
- 199. Gelfman R, Melton L, Yawn B, Wollan P, Amadio P, Stevens J. Long-term trends in carpal tunnel syndrome. *Neurology*. 2009;72(1):33-41.
- 200. Goodson JT, DeBerard MS, Wheeler AJ, Colledge AL. Occupational and biopsychosocial risk factors for carpal tunnel syndrome. *Journal of Occupational and Environmental Medicine*. 2014;56(9):965-72.
- 201. Hanrahan LP, Higgins D, Anderson H, Smith M. Wisconsin occupational carpal tunnel syndrome surveillance: the incidence of surgically treated cases. *Wis Med* J. 1993;92(12):685-9.
- 202. Nathan PA, Keniston RC, Myers LD, Meadows KD. Obesity as a risk factor for slowing of sensory conduction of the median nerve in industry. A cross-sectional and longitudinal study involving 429 workers. *J Occup Med*. 1992;34(4):379-83.
- 203. Renard E, Jacques D, Chammas M, et al. Increased prevalence of soft tissue hand lesions in type 1 and type 2 diabetes mellitus: various entities and associated significance. *Diabete Metab.* 1994;20(6):513-21.
- 204. Roquelaure Y, Mechali S, Dano C, et al. Occupational and personal risk factors for carpal tunnel syndrome in industrial workers. *Scand J Work Environ Health*. 1997;23(5):364-9.
- 205. Mondelli M, Aprile I, Ballerini M, et al. Sex differences in carpal tunnel syndrome: comparison of surgical and non-surgical populations. *Eur J Neurol*. 2005;12(12):976-83.
- 206. Mondelli M, Rossi S, Monti E, et al. Long term follow-up of carpal tunnel syndrome during pregnancy: a cohort study and review of the literature. *Electromyogr Clin Neurophysiol*. 2007;47(6):259-71.
- 207. Silverstein BA, Fine LJ, Armstrong TJ. Occupational factors and carpal tunnel syndrome. Am J Ind Med. 1987;11(3):343-58.
- 208. Solomon DH, Katz JN, Bohn R, Mogun H, Avorn J. Nonoccupational risk factors for carpal tunnel syndrome. J Gen Intern Med. 1999;14(5):310-4.
- 209. Tanaka S, Wild DK, Cameron LL, Freund E. Association of occupational and non-occupational risk factors with the prevalence of self-reported carpal tunnel syndrome in a national survey of the working population. *Am J Ind Med.* 1997;32(5):550-6.

- 210. Werner RA, Albers JW, Franzblau A, Armstrong TJ. The relationship between body mass index and the diagnosis of carpal tunnel syndrome. *Muscle Nerve*. 1994;17(6):632-6.
- 211. Wolf JM, Mountcastle S, Owens BD. Incidence of carpal tunnel syndrome in the US military population. *Hand (N Y)*. 2009;4(3):289-93.
- 212. Institute of Medicine, Panel on Musculoskeletal Disorders and the Workplace Commission on Behavioral and Social Sciences and Education National Research Council and Institute of Medicine. *Musculoskeletal Disorders and the Workplace. Low Back and Upper Extremities.* Washington, D.C.: National Academy Press; 2001.
- 213. Bonfiglioli R, Mattioli S, Armstrong TJ, et al. Validation of the ACGIH TLV for hand activity level in the OCTOPUS cohort: a two-year longitudinal study of carpal tunnel syndrome. *Scand J Work Environ Health*. 2013;39(2):155-63.
- 214. Burt S, Deddens JA, Crombie K, Jin Y, Wurzelbacher S, Ramsey J. A prospective study of carpal tunnel syndrome: workplace and individual risk factors. *Occup Environ Med.* 2013;70(8):568-74.
- 215. Evanoff B, Dale AM, Deych E, Ryan D, Franzblau A. Risk factors for incident carpal tunnel syndrome: results of a prospective cohort study of newly-hired workers. *Work*. 2012;41 Suppl 14450-2.
- 216. Harris-Adamson C, Eisen E, Kapellusch J, et al. Biomechanical risk factors for carpal tunnel syndrome: a pooled study of 2474 workers. *Occup Environ Med.* 2015;72(1):33-41.
- 217. Harris-Adamson C, Eisen EA, Dale AM, et al. Personal and workplace psychosocial risk factors for carpal tunnel syndrome: a pooled study cohort. *Occup Environ Med.* 2013;70(8):529-37.
- 218. Kapellusch Jm JM, Gerr FE, Malloy EJ, et al. Exposure-response relationships for the ACGIH threshold limit value for hand-activity level: results from a pooled data study of carpal tunnel syndrome. *Scand J Work Environ Health*. 2014;40(6):610-20.
- 219. Violante FS, Armstrong TJ, Fiorentini C, et al. Carpal tunnel syndrome and manual work: a longitudinal study. J Occup Environ Med. 2007;49(11):1189-96.
- 220. Bednar JM, Osterman AL. The role of arthroscopy in the treatment of traumatic triangular fibrocartilage injuries. Hand Clin. 1994;10(4):605-14.
- 221. Haims AH, Schweitzer ME, Morrison WB, et al. Limitations of MR imaging in the diagnosis of peripheral tears of the triangular fibrocartilage of the wrist. *American Journal of Roentgenology*. 2002;178(2):419-22.
- 222. Coleman H. Injuries of the articular disc at the wrist. J Bone Joint Surg [Br]. 1960;42522-9.
- 223. Palmer AK. Triangular fibrocartilage complex lesions: a classification. J Hand Surg Am. 1989;14(4):594-606.
- 224. Palmer AK, Werner FW. The triangular fibrocartilage complex of the wrist—anatomy and function. J Hand Surg Am. 1981;6(2):153-62.
- 225. Melone Jr C, Nathan R. Traumatic Disruption of the Triangular Fibrocartilage Complex: Pathoanatomy. *Clin Orthop Relat Res.* 1992;27565-73.
- 226. Nagle DJ. Triangular fibrocartilage complex tears in the athlete. *Clin Sports Med.* 2001;20(1):155-66.
- 227. Dellaero DT, Levin LS. Compartment syndrome of the hand. Etiology, diagnosis, and treatment. Am J Orthop (Belle Mead NJ). 1996;25(6):404-8.
- 228. McQueen MM, Christie J, Court-Brown CM. Compartment pressures after intramedullary nailing of the tibia. J Bone Joint Surg Br. 1990;72(3):395-7.
- 229. Moed BR, Strom DE. Compartment syndrome after closed intramedullary nailing of the tibia: a canine model and report of two cases. *J Orthop Trauma*. 1991;5(1):71-7.
- 230. Ouellette EA, Kelly R. Compartment syndromes of the hand. J Bone Joint Surg Am. 1996;78(10):1515-22.
- 231. Schnall SB, Vu-Rose T, Holtom PD, Doyle B, Stevanovic M. Tissue pressures in pyogenic flexor tenosynovitis of the finger. Compartment syndrome and its management. *J Bone Joint Surg Br.* 1996;78(5):793-5.
- 232. Melhorn JM, Ackerman W, Glass L, Deitz D. Understanding work-relatedness. In: Melhorn J, Ackerman W, eds. *Guides to the Evaluation of Disease and Injury Causation*. Chicago, Ill: AMA Press: Springer; 2008:13-32.
- 233. Freiberg A, Mulholland R, Levine R. Nonoperative treatment of trigger fingers and thumbs. J Hand Surg Am. 1989;14(3):553-8.
- 234. Hadji-Zavar A. Quervain's stenosing tenosynovitis and snapping finger]. Z Unfallmed Berufskr. 1959;52275-97.
- 235. Hauck G. Über eine Tendovaginitis stenosans der Beugesehnenscheide mit dem Phänomen des schnellenden Fingers. Arch f Klin Chir. 1923;123233.

- 236. Hume MC, Gellman H, McKellop H, Brumfield RH. Functional range of motion of the joints of the hand. *J Hand Surg Am.* 1990;15(2):240-3.
- 237. Lapidus P, Fenton R. Stenosing tenovaginitis at the wrist and fingers: report of 423 cases in 369 patients with 354 operations. *AMA archives of surgery*. 1952;64(4):475-87.
- 238. Lenggenhager K. The genesis and therapy of the trigger finger. *Minnesota medicine*. 1969;52(1):11.
- 239. Lipscomb PR. Tenosynovitis of the hand and the wrist: carpal tunnel syndrome, de Quervain's disease, trigger digit. *Clin Orthop*. 1959;13(Spring):164-80.
- 240. Ploetz E. Funktioneller Bau und funktionelle Anpassung der Gleitsehnen. Z Orthop. 1938;67212-34.
- 241. Rayan GM. Stenosing tenosynovitis in bowlers. Am J Sports Med. 1990;18(2):214-5.
- 242. Sairanen E. The trigger finger as a rheumatic manifestation. *Acta Rheumatologica Scandinavica*. 1957;3(1-4):266-72.
- 243. Vogel K, Koob T. Structural specialization in tendons under compression. Intl Rev Cytology. 1989;115267-93.
- 244. Zelle OL, Schnepp KH. Snapping thumb: Tendovaginitis stenosans. *The American Journal of Surgery*. 1936;33(2):321-2.
- 245. Gorsche R, Wiley J, Renger R, Brant R, Gemer T, Sasyniuk T. Prevalence and incidence of stenosing flexor tenosynovitis (trigger finger) in a meat-packing plant. *J Occup Environ Med.* 1998;40(6):556-60.
- 246. Creighton Jr J, Idler R, Strickland J. Trigger finger and thumb. Indiana medicine: the journal of the Indiana State Medical Association. 1990;83(4):260-2.
- 247. Poulsen K. Sehnenscheidenentzündung im ersten Fach des Antibrachium, begleitet von Traktionsperiostitis am Processus styloideus radii. *DMW-Deutsche Medizinische Wochenschrift*. 1911;37(18):843-.
- 248. Thorpe A. Results of surgery for trigger finger. Journal of Hand Surgery (British and European Volume). 1988;13(2):199-201.
- 249. Fogh-Andersen P. Digitus saltans. Nord Med. 1947;341151-2.
- 250. Moore JS. De Quervain's tenosynovitis. Stenosing tenosynovitis of the first dorsal compartment. J Occup Environ Med. 1997;39(10):990-1002.
- 251. Alberton GM, High WA, Shin AY, Bishop AT. Extensor triggering in de Quervain's stenosing tenosynovitis. *J Hand Surg Am.* 1999;24(6):1311-4.
- 252. Pelmear P, Leong D. Review of occupational standards and guidelines for hand-arm (segmental) vibration syndrome (HAVS). *Applied Occ Env Hygiene*. 2000;15(3):291-302.
- 253. D'Arcy CA, McGee S. The rational clinical examination. Does this patient have carpal tunnel syndrome? JAMA. 2000;283(23):3110-7.
- 254. Dale AM, Descatha A, Coomes J, Franzblau A, Evanoff B. Physical examination has a low yield in screening for carpal tunnel syndrome. *Am J Ind Med*. 2011;54(1):1-9.
- 255. Szabo RM, Slater RR, Farver TB, Stanton DB, Sharman WK. The value of diagnostic testing in carpal tunnel syndrome. J Hand Surg Am. 1999;24(4):704-14.
- 256. Boyer K, Wies J, Turkelson CM. Effects of bias on the results of diagnostic studies of carpal tunnel syndrome. J Hand Surg Am. 2009;34(6):1006-13.
- 257. Jerosch-Herold C. A study of the relative responsiveness of five sensibility tests for assessment of recovery after median nerve injury and repair. *Journal of Hand Surgery (British and European Volume)*. 2003;28(3):255-60.
- 258. Patel MR, Bassini L. A comparison of five tests for determining hand sensibility. J Reconstr Microsurg. 1999;15(7):523-6.
- 259. Rozental T, Beredjiklian P, Guyette T, Weiland A. Intra- and interobserver reliability of sensibility testing in asymptomatic individuals. *Ann Plast Surg.* 2000;44(6):605-9.
- 260. Strauch B, Lang A, Ferder M, Keyes-Ford M, Freeman K, Newstein D. The ten test. *Plast Reconstr Surg.* 1997;99(4):1074-8.
- 261. Sansone J, Gatzke A, Aslinia F, Rolak L, Yale S. Jules Tinel (1879-1952) and Paul Hoffmann (1884-1962). Clin Med Res. 2006;4(1):85-9.
- 262. Phalen GS. The carpal-tunnel syndrome. Seventeen years' experience in diagnosis and treatment of six hundred fifty-four hands. *J Bone Joint Surg Am*. 1966;48(2):211-28.
- 263. Tetro AM, Evanoff BA, Hollstien SB, Gelberman RH. A new provocative test for carpal tunnel syndrome. Assessment of wrist flexion and nerve compression. *J* Bone Joint Surg Br. 1998;80(3):493-8.
- 264. Maitra A, Dorani B. The conservative treatment of mallet finger with a simple splint: a case report. Arch Emerg Med. 1993;10(3):244-8.
- 265. Bates S. Flexor Tendon Anatomy. *Emedicine*. 2008.

- 266. Moore S, Garg A. Upper extremity disorders in a pork processing plant: relationships between job risk factors and morbidity. *Am Industrial Hygiene Assoc*. 1994;55(8):703-15.
- 267. Nasca R. " Trigger finger." A common hand problem. J Arkansas Med Soc. 1980;76(10):388.
- 268. An H. Trigger finger, a report on a series of cases. *The Medical journal of Malaysia*. 1978;33(1):7-9.
- 269. Berger M. Painful tendon problems of the hand: trigger thumb, trigger finger and de Quervain's syndrome. Orthopaedic Nursing. 1982;1(5):20-3.
- 270. Conklin JE, White WL. Stenosing tenosynovitis and its possible relation to the carpal tunnel syndrome. The Surgical clinics of North America. 1960;40531.
- 271. Eastwood D, Gupta K, Johnson D. Percutaneous release of the trigger finger: an office procedure. J Hand Surg Am. 1992;17(1):114-7.
- 272. Gamstedt A, Holm-Glad J, OHLSON CG, Sundström M. Hand abnormalities are strongly associated with the duration of diabetes mellitus. *Journal of Internal Medicine*. 1993;234(2):189-93.
- 273. Griggs SM, Weiss A-PC, Lane LB, Schwenker C, Akelman E, Sachar K. Treatment of trigger finger in patients with diabetes mellitus. *J Hand Surg Am*. 1995;20(5):787-9.
- 274. Hombal J, Owen R. Carpal tunnel decompression and trigger digits. Hand. 1970;2(2):192-6.
- 275. Jahss S. Trigger finger in children. Journal of the American Medical Association. 1936;107(18):1463-4.
- 276. Kelly Jr A, Jacobson H. Hand Disability due to tenosynovitis Industrial Med Surg. 1964;33570.
- 277. Ranney D, Wells R, Moore A. Upper limb musculoskeletal disorders in highly repetitive industries: precise anatomical physical findings. *Ergonomics*. 1995;38(7):1408-23.
- 278. Sampson S, Wisch D, Badalamente M. Complications of conservative and surgical treatment of de Quervain's disease and trigger fingers. *Hand Clin.* 1994;10(1):73-82.
- 279. Hodgkins T, Lipscomb P. Bilateral trigger fingers in a child: report of case. *Proceedings of the staff meetings Mayo Clinic*; 1956:279.
- 280. Anderson B, Kaye S. Treatment of flexor tenosynovitis of the hand ('trigger finger') with corticosteroids. A prospective study of the response to local injection. *Arch Intern Med.* 1991;151(1):153-6.
- 281. Gould E. Treatment of tenosynovitis and ganglion. Br Med J. 1938;2415-6.
- 282. Griffiths D. Tenosynovitis and tendovaginitis. Br Med J (Clin Res Ed). 1952;1645-7.
- 283. Khoo D, Carmichael SW, Spinner RJ. Ulnar nerve anatomy and compression. Orthop Clin North Am. 1996;27(2):317-38.
- 284. Freeland P. Scaphoid tubercle tenderness: a better indicator of scaphoid fractures? Arch Emerg Med. 1989;6(1):46-50.
- 285. Mallee WH, Henny EP, van Dijk CN, Kamminga SP, van Enst WA, Kloen P. Clinical diagnostic evaluation for scaphoid fractures: a systematic review and metaanalysis. J Hand Surg Am. 2014;39(9):1683-91 e2.
- 286. Hankin F, Smith P, Braunstein E. Evaluation of the carpal scaphoid. *Am Fam Physician*. 1986;34(2):129-32.
- 287. Cockshott W. Distal avulsion fractures of the scaphoid. *The British journal of radiology*. 1980;53(635):1037-40.
- 288. McLaughlin H, Parkes II J. Fracture of the carpal navicular (scaphoid) bone: gradations in therapy based upon pathology. *J Trauma Acute Care Surg*. 1969;9(4):311-9.
- 289. Terry Jr. D, Ramin J. The navicular fat stripe: a useful roentgen feature for evaluating wrist trauma. Am J Roentgenology. 1975;124(1):25-8.
- 290. Fowler JR, Hughes TB. Scaphoid fractures. Clin Sports Med. 2015;34(1):37-50.
- 291. Chen S. The scaphoid compression test. Journal of Hand Surgery (British and European Volume). 1989;14(3):323-5.
- 292. Goldsmith S, Yang S. Magnetic resonance imaging in the diagnosis of occult dorsal wrist ganglions. *Journal of Hand Surgery (European Volume)*. 2008;33(5):595-9.
- 293. Gerhardsson L, Hagberg M. Work ability in vibration-exposed workers. Occup Med (Lond). 2014;64(8):629-34.
- 294. Rolke R, Rolke S, Vogt T, et al. Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing. *Clin Neurophysiol*. 2013;124(8):1680-8.

- 295. Cameron NE, Cotter MA. The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications. *Diabetes Metabolism Reviews-Clinical and Scientific Advances in Diabetes Research*. 1994;10(3):189-224.
- 296. Kuorinka I, Hannu H, Ilkka E. Prevention of musculoskeletal disorders at work: Validation and reliability in a multicenter intervention study *International Journal of Industrial Ergonomics*. 1995;15:437-46.
- 297. Onder B, Yalcin E, Selcuk B, Kurtaran A, Akyuz M. Carpal tunnel syndrome and metabolic syndrome co-occurrence. *Rheumatol Int.* 2013;33(3):583-6.
- 298. Nakamichi K, Tachibana S. Hypercholesterolemia as a risk factor for idiopathic carpal tunnel syndrome. *Muscle Nerve*. 2005;32(3):364-7.
- 299. Garg A, Hegmann KT, Wertsch JJ, et al. The WISTAH hand study: a prospective cohort study of distal upper extremity musculoskeletal disorders. *BMC Musculoskelet Disord*. 2012;1390.
- 300. Werner RA, Franzblau A, Gell N, Ulin SS, Armstrong TJ. A longitudinal study of industrial and clerical workers: predictors of upper extremity tendonitis. *J Occup Rehabil*. 2005;15(1):37-46.
- 301. Harris C, Eisen EA, Goldberg R, Krause N, Rempel D. 1st place, PREMUS best paper competition: workplace and individual factors in wrist tendinosis among blue-collar workers--the San Francisco study. *Scand J Work Environ Health*. 2011;37(2):85-98.
- 302. Thomsen JF, Hansson GA, Mikkelsen S, Lauritzen M. Carpal tunnel syndrome in repetitive work: a follow-up study. Am J Ind Med. 2002;42(4):344-53.
- 303. Gerawarapong C. Comparison of sensitivities between median-thumb sensory distal latency and conventional nerve conduction studies in electrodiagnosis of carpal tunnel syndrome. *J Med Assoc Thai*. 2014;97(9):969-76.
- 304. Geoghegan J, Clark D, Bainbridge L, Smith C, Hubbard R. Risk factors in carpal tunnel syndrome. *The Journal of Hand Surgery: British & European Volume*. 2004;29(4):315-20.
- 305. Kozak A, Schedlbauer G, Wirth T, Euler U, Westermann C, Nienhaus A. Association between work-related biomechanical risk factors and the occurrence of carpal tunnel syndrome: an overview of systematic reviews and a meta-analysis of current research. *BMC Musculoskelet Disord*. 2015;16(1):231.
- 306. Maghsoudipour M, Moghimi S, Dehghaan F, Rahimpanah A. Association of occupational and non-occupational risk factors with the prevalence of work related carpal tunnel syndrome. *J Occup Rehabil*. 2008;18(2):152-6.
- 307. Nordander C, Ohlsson K, Åkesson I, et al. Exposure–response relationships in work-related musculoskeletal disorders in elbows and hands–A synthesis of grouplevel data on exposure and response obtained using uniform methods of data collection. *Applied ergonomics*. 2013;44(2):241-53.
- 308. Palmer KT, Harris EC, Coggon D. Carpal tunnel syndrome and its relation to occupation: a systematic literature review. Occup Med (Lond). 2007;57(1):57-66.
- 309. Petit A, Ha C, Bodin J, et al. Risk factors for carpal tunnel syndrome related to the work organization: A prospective surveillance study in a large working population. *Applied ergonomics*. 2015;471-10.
- 310. Silverstein B. The prevalence of upper extremity cumulative trauma disorders in industry (ergonomics, occupational epidemiology): University of Michigan; 1985.
- 311. Roquelaure Y, Ha C, Nicolas G, et al. Attributable risk of carpal tunnel syndrome according to industry and occupation in a general population. *Arthritis Care Res* (*Hoboken*). 2008;59(9):1341-8.
- 312. Genovese E. Work-relatedness. In: Glass LS (ed.) Occupational Medicine Practice Guidelines: Evaluation and Management of Common Health Problems and Functional Recovery in Workers. 2nd edition. Elk Grove Village, Ill: American College of Occupational and Environmental Medicine. 2004.
- 313. Latko W, Armstrong T, Franzblau A, Ulin S, Werner R, Albers J. Cross-sectional study of the relationship between repetitive work and the prevalence of upper limb musculoskeletal disorders. *Am J Ind Med.* 1999;36(2):248-59.
- 314. Moore J, Garg A. The Strain Index: a proposed method to analyze jobs for risk of distal upper extremity disorders. . *Am Indus Hyg Assoc J*. 1995;56443-58.
- 315. Lozano-Calderon S, Anthony S, Ring D. The quality and strength of evidence for etiology: example of carpal tunnel syndrome. *J Hand Surg Am.* 2008;33(4):525-38.
- 316. Melhorn J, Martin D, Brooks C, Seaman S. Upper limb. In: Melhorn JM, Ackerman WE (eds). Guides to the Evaluation of Disease and Injury Causation. *Chicago, Ill: AMA Press.* 2008141-202.
- 317. Leclerc A, Landre M-F, Chastang J-F, Niedhammer I, Roquelaure Y. Upper-limb disorders in repetitive work. Scand J Work Environ Health. 2001268-78.

- 318. Nathan PA, Meadows KD, Istvan JA. Predictors of carpal tunnel syndrome: an 11-year study of industrial workers. J Hand Surg [Am]. 2002;27(4):644-51.
- 319. Atroshi I, Gummesson C, Johnsson R, McCabe SJ, Ornstein E. Severe carpal tunnel syndrome potentially needing surgical treatment in a general population. *J Hand Surg [Am]*. 2003;28(4):639-44.
- 320. English C, Maclaren W, Court-Brown C, et al. Relations between upper limb soft tissue disorders and repetitive movements at work. *Am J Ind Med*. 1995;27(1):75-90.
- 321. Franklin GM, Haug J, Heyer N, Checkoway H, Peck N. Occupational carpal tunnel syndrome in Washington State, 1984-1988. *Am J Public Health*. 1991;81(6):741-6.
- 322. Raffi GB, Lodi V, Malenchini G, et al. Cumulative trauma disorders of the upper limbs in workers on an agricultural farm. *Arh Hig Rada Toksikol*. 1996;47(1):19-23.
- 323. Andersen JH, Thomsen JF, Overgaard E, et al. Computer use and carpal tunnel syndrome: a 1-year follow-up study. JAMA. 2003;289(22):2963-9.
- 324. Atroshi I, Gummesson C, Ornstein E, Johnsson R, Ranstam J. Carpal tunnel syndrome and keyboard use at work: a population-based study. *Arthritis Rheum*. 2007;56(11):3620-5.
- 325. Davis L, Wellman H, Punnett L. Surveillance of work-related carpal tunnel syndrome in Massachusetts, 1992–1997: A report from the Massachusetts sentinel event notification system for occupational risks (SENSOR)*. *Am J Ind Med.* 2001;39(1):58-71.
- 326. de Krom MC, Kester AD, Knipschild PG, Spaans F. Risk factors for carpal tunnel syndrome. Am J Epidemiol. 1990;132(6):1102-10.
- 327. Garland FC, Garland CF, Doyle EJ, Jr., et al. Carpal tunnel syndrome and occupation in U.S. Navy enlisted personnel. Arch Environ Health. 1996;51(5):395-407.
- 328. Nathan PA, Keniston RC. Carpal tunnel syndrome and its relation to general physical condition. *Hand Clin.* 1993;9(2):253-61.
- 329. Silverstein B, Viikari-Juntura E, Kalat J. Use of a prevention index to identify industries at high risk for work-related musculoskeletal disorders of the neck, back, and upper extremity in Washington state, 1990–1998. *Am J Ind Med.* 2002;41(3):149-69.
- 330. Stevens JC, Witt JC, Smith BE, Weaver AL. The frequency of carpal tunnel syndrome in computer users at a medical facility. *Neurology*. 2001;56(11):1568-70.
- 331. Wellman H, Davis L, Punnett L, Dewey R. Work-related carpal tunnel syndrome (WR-CTS) in Massachusetts, 1992–1997: Source of WR-CTS, outcomes, and employer intervention practices. *Am J Ind Med*. 2004;45(2):139-52.
- 332. Ali KM, Sathiyasekaran BW. Computer professionals and Carpal Tunnel Syndrome (CTS). Int J Occup Saf Ergon. 2006;12(3):319-25.
- 333. Coggon D, Ntani G, Harris EC, et al. Differences in risk factors for neurophysiologically confirmed carpal tunnel syndrome and illness with similar symptoms but normal median nerve function: a case-control study. *BMC Musculoskelet Disord*. 2013;14240.
- 334. Eleftheriou A, Rachiotis G, Varitimidis SE, Koutis C, Malizos KN, Hadjichristodoulou C. Cumulative keyboard strokes: a possible risk factor for carpal tunnel syndrome. *J Occup Med Toxicol*. 2012;7(1):16.
- 335. Nathan PA. Intrinsic causes of keyboard injuries. J Occup Med. 1993;35(11):1084-6.
- 336. Nordstrom DL, Vierkant RA, DeStefano F, Layde PM. Risk factors for carpal tunnel syndrome in a general population. Occup Environ Med. 1997;54(10):734-40.
- 337. Gerr F, Marcus M, Ensor C, et al. A prospective study of computer users: I. Study design and incidence of musculoskeletal symptoms and disorders. *Am J Ind Med*. 2002;41(4):221-35.
- 338. Mediouni Z, Bodin J, Dale AM, et al. Carpal tunnel syndrome and computer exposure at work in two large complementary cohorts. *BMJ Open*. 2015;5(9):e008156.
- 339. Lassen C, Mikkelsen S, Kryger A, et al. Elbow and wrist/hand symptoms among 6,943 computer operators: A 1-year follow-up study (the NUDATA study). *Am J Ind Med*. 2004;46(5):521-33.
- 340. Brandt LP, Andersen JH, Lassen CF, et al. Neck and shoulder symptoms and disorders among Danish computer workers. *Scand J Work Environ Health*. 2004;30(5):399-409.
- 341. Moore J, Swanson N. The effect of alternative keyboards on musculoskeletal symptoms and disorders. *Proceedings of the Human–Computer Interaction International Conference, Crete*. 2003;103-7.

- 342. Tittiranonda P, Rempel D, Armstrong T, Burastero S. Effect of four computer keyboards in computer users with upper extremity musculoskeletal disorders. *Am J Ind Med.* 1999;35(6):647-61.
- 343. Byström S, Hall C, Welander T, Kilbom Å. Clinical disorders and pressure-pain threshold of the forearm and hand among automobile assembly line workers. *Journal of Hand Surgery (British and European Volume)*. 1995;20(6):782-90.
- 344. Punnett L, Robins JM, Wegman DH, Keyserling WM. Soft tissue disorders in the upper limbs of female garment workers. *Scand J Work Environ Health*. 1985417-25.
- 345. Gold JE, d'Errico A, Katz JN, Gore R, Punnett L. Specific and non-specific upper extremity musculoskeletal disorder syndromes in automobile manufacturing workers. *Am J Ind Med*. 2009;52(2):124-32.
- 346. Servi JT, Dienst Jr WL, Dightman L, Dworkin MS, Thompson RK, Howe WB. Wrist pain from overuse: detecting and relieving intersection syndrome. *Physician and sportsmedicine*. 1997;25(12):41-57.
- 347. Palmer RE. Sports injuries of the hand. Instr Course Lect. 1994;4325-30.
- 348. Descatha A, Leproust H, Roure P, Ronan C, Roquelaure Y. Is the intersection syndrome is an occupational disease? *Joint Bone Spine*. 2008;75(3):329-31.
- 349. Hanlon DP, Luellen JR. Intersection syndrome: a case report and review of the literature. *J Emerg Med.* 1999;17(6):969-71.
- 350. Steinberg D. Intersection Syndrome Treatment & Management. Available at: http://emedicine.medscape.com/article/1242239-treatment. Medscape. 2015.
- 351. Zeiss J, Jakab E. MR demonstration of an anomalous muscle in a patient with coexistent carpal and ulnar tunnel syndrome. Case report and literature summary. *Clin Imaging*. 1995;19(2):102-5.
- 352. Cerinic MM, Generini S, Pignone A, Casale R. The nervous system in systemic sclerosis (scleroderma). Clinical features and pathogenetic mechanisms. *Rheum Dis Clin North Am.* 1996;22(4):879-92.
- 353. Lori S, Matucci-Cerinic M, Casale R, et al. Peripheral nervous system involvement in systemic sclerosis: the median nerve as target structure. *Clin Exp Rheumatol*. 1996;14(6):601-5.
- 354. Seibold J. Scleroderma. In: Ruddy S, Harris EJ, Sledge C, eds. Kelley's Textbook of Rheumatology 12th edition. Philadelphia: WB Saunders; 2001:1211-40.
- 355. Hadler NM, Gillings DB, Imbus HR, et al. Hand structure and function in an industrial setting. Arthritis Rheum. 1978;21(2):210-20.
- 356. Franzblau A, Armstrong TJ, Werner RA, Ulin SS. A cross-sectional assessment of the ACGIH TLV for hand activity level. *J Occup Rehabil*. 2005;15(1):57-67.
- 357. Keogh JP, Gucer PW, Gordon JL, Nuwayhid I. Patterns and predictors of employer risk-reduction activities (ERRAs) in response to a work-related upper extremity cumulative trauma disorder (UECTD): reports from workers' compensation claimants. *Am J Ind Med.* 2000;38(5):489-97.
- 358. Lincoln AE, Vernick JS, Ogaitis S, Smith GS, Mitchell CS, Agnew J. Interventions for the primary prevention of work-related carpal tunnel syndrome. *Am J Prev Med.* 2000;18(4 Suppl):37-50.
- 359. O'Connor DM, S.; Massy-Westropp, N.; Pitt, V. Non-surgical treatment (other than steroid injection) for carpal tunnel syndrome (Review). *Cochrane Database Syst Rev.* 2012(1):1-106.
- 360. Marklin RW, Simoneau GG. Design features of alternative computer keyboards: a review of experimental data. J Orthop Sports Phys Ther. 2004;34(10):638-49.
- 361. Verhagen AP, Bierma-Zeinstra SM, Feleus A, et al. Ergonomic and physiotherapeutic interventions for treating upper extremity work related disorders in adults. *Cochrane Database Syst Rev.* 2004(1):CD003471.
- 362. Rempel D, Tittiranonda P, Burastero S, Hudes M, So Y. Effect of keyboard keyswitch design on hand pain. J Occup Environ Med. 1999;41(2):111-9.
- 363. Rempel DM, Krause N, Goldberg R, Benner D, Hudes M, Goldner GU. A randomised controlled trial evaluating the effects of two workstation interventions on upper body pain and incident musculoskeletal disorders among computer operators. *Occup Environ Med.* 2006;63(5):300-6.
- 364. Verhagen AP, Karels C, Bierma-Zeinstra S, et al. Ergonomic and physiotherapeutic interventions for treating work-related complaints of the arm, neck or shoulder in adults. *Cochrane Database Syst Rev.* 2006;3:CD003471.
- 365. Rempel D, Lee DL, Dawson K, Loomer P. The effects of periodontal curette handle weight and diameter on arm pain: a four-month randomized controlled trial. *J Am Dent Assoc.* 2012;143(10):1105-13.

- 366. Gerr F, Marcus M, Monteilh C, Hannan L, Ortiz D, Kleinbaum D. A randomised controlled trial of postural interventions for prevention of musculoskeletal symptoms among computer users. *Occup Environ Med.* 2005;62(7):478-87.
- 367. Arnetz BB, Sjögren B, Rydéhn B, Meisel R. Early workplace intervention for employees with musculoskeletal-related absenteeism: a prospective controlled intervention study. *Journal of occupational and environmental medicine*. 2003;45(5):499-506.
- 368. Herbert R, Gerr F, Dropkin J. Clinical evaluation and management of work-related carpal tunnel syndrome. Am J Ind Med. 2000;37(1):62-74.
- 369. Simmer-Beck M, Bray KK, Branson B, Glaros A, Weeks J. Comparison of muscle activity associated with structural differences in dental hygiene mirrors. *J Dent Hyg.* 2006;80(1):8.
- 370. Conlon CF, Krause N, Rempel DM. A randomised controlled trial evaluating an alternative mouse and forearm support on upper body discomfort and musculoskeletal disorders among engineers. *Occup Environ Med.* 2008;65(5):311-8.
- 371. van den Heuvel SG, de Looze MP, Hildebrandt VH, Thé KH. Effects of software programs stimulating regular breaks and exercises on work-related neck and upper-limb disorders. *Scand J Work Environ Health*. 2003106-16.
- 372. Galinsky T, Swanson N, Sauter S, Dunkin R, Hurrell J, Schleifer L. Supplementary breaks and stretching exercises for data entry operators: a follow-up field study. *Am J Ind Med.* 2007;50(7):519-27.
- 373. Galinsky TL, Swanson NG, Sauter SL, Hurrell JJ, Schleifer LM. A field study of supplementary rest breaks for data-entry operators. *Ergonomics*. 2000;43(5):622-38.
- 374. Lee K, Swanson N, Sauter S, Wickstrom R, Waikar A, Mangum M. A review of physical exercises recommended for VDT operators. *Appl Ergon*. 1992;23(6):387-408.
- 375. Carter J, Banister E. Musculoskeletal problems in VDT work: a review. *Ergonomics*. 1994;37(10):1623-48.
- 376. Fenety A, Walker JM. Short-term effects of workstation exercises on musculoskeletal discomfort and postural changes in seated video display unit workers. *Phys Ther.* 2002;82(6):578-89.
- 377. Feuerstein M, Nicholas RA, Huang GD, Dimberg L, Ali D, Rogers H. Job stress management and ergonomic intervention for work-related upper extremity symptoms. *Appl Ergon*. 2004;35(6):565-74.
- 378. Henning RA, Jacques P, Kissel GV, Sullivan AB, Alteras-Webb SM. Frequent short rest breaks from computer work: effects on productivity and well-being at two field sites. *Ergonomics*. 1997;40(1):78-91.
- 379. Silverstein BA, Armstrong TJ, Longmate A, Woody D. Can in-plant exercise control musculoskeletal symptoms? J Occup Med. 1988;30(12):922-7.
- 380. Balci R, Aghazadeh F. Effects of exercise breaks on performance, muscular load, and perceived discomfort in data entry and cognitive tasks. *Computers Industrial Engineering*. 2004;46:399-411.
- 381. Balci R, Aghazadeh F. The effect of work-rest schedules and type of task on the discomfort and performance of VDT users. *Ergonomics*. 2003;46(5):455-65.
- 382. Floru R, Cail F. Data entry task on VDU: underload or overload. *Selected papers from the International Scientific Conference on Work with display units* 86: North-Holland Publishing Co.; 1987:756-67.
- 383. Kopardekar P, Mital A. The effect of different work-rest schedules on fatigue and performance of a simulated directory assistance operator's task. *Ergonomics*. 1994;37(10):1697-707.
- 384. McLean L, Tingley M, Scott RN, Rickards J. Computer terminal work and the benefit of microbreaks. *Appl Ergon.* 2001;32(3):225-37.
- 385. Sauter S, Swanson N, Luzak H, Cakir A, Cakir G. The effects of frequent rest breaks on performance and musculoskeletal comfort in repetitive VDT work. *Work With Display Units '92 Conference*; 1992:1-4.
- 386. Ketola R, Toivonen R, Häkkänen M, Luukkonen R, Takala E-P, Viikari-Juntura E. Effects of ergonomic intervention in work with video display units. *Scand J Work Environ Health*. 200218-24.
- 387. Werner RA, Franzblau A, Gell N. Randomized controlled trial of nocturnal splinting for active workers with symptoms of carpal tunnel syndrome. *Arch Phys Med Rehabil*. 2005;86(1):1-7.

- 388. Lincoln AE, Feuerstein M, Shaw WS, Miller VI. Impact of case manager training on worksite accommodations in workers' compensation claimants with upper extremity disorders. *J Occup Environ Med*. 2002;44(3):237-45.
- 389. Ripat J, Scatliff T, Giesbrecht E, Quanbury A, Friesen M, Kelso S. The effect of alternate style keyboards on severity of symptoms and functional status of individuals with work related upper extremity disorders. *J Occup Rehabil*. 2006;16(4):707-18.
- 390. Hedge A, Morimoto S, McCrobie D. Effects of keyboard tray geometry on upper body posture and comfort. *Ergonomics*. 1999;42(10):1333-49.
- 391. Bonzani PJ, Millender L, Keelan B, Mangieri MG. Factors prolonging disability in work-related cumulative trauma disorders. *J Hand Surg [Am]*. 1997;22(1):30-4.
- 392. Gimeno D, Amick B, Habeck R, Ossmann J, Katz J. The role of job strain on return to work after carpal tunnel surgery. *Occup Environ Med.* 2005;62(11):778-85.
- 393. Turner JA, Franklin G, Fulton-Kehoe D, et al. Early predictors of chronic work disability associated with carpal tunnel syndrome: a longitudinal workers' compensation cohort study. *Am J Ind Med.* 2007;50(7):489-500.
- 394. Abasolo L, Carmona L, Hernandez-Garcia C, et al. Musculoskeletal work disability for clinicians: time course and effectiveness of a specialized intervention program by diagnosis. *Arthritis Rheum*. 2007;57(2):335-42.
- 395. Feuerstein M, Callan-Harris S, Hickey P, Dyer D, Armbruster W, Carosella AM. Multidisciplinary rehabilitation of chronic work-related upper extremity disorders. Long-term effects. *J Occup Med*. 1993;35(4):396-403.
- 396. JM. M. Return to work: filling out the forms. In Melhorn JM, DiPaola J, (eds). 8th Annual Occupational Orthopaedics and Workers' Compensation: A Multidisciplinary Perspective. Rosemont, Ill: American Academy of Orthopaedic Surgeons. 2006659-700.
- 397. Melhorn J. Carpal tunnel syndrome: three points of view on risk and recovery. J Workers Comp. 2006;1555-64.
- 398. Melhorn J. Working with common upper extremity problems. In: Talmage JB, JM M, eds. A *Physician's Guide to Return to Work*. Chicago, Ill: AMA Press; 2005:181-214.
- 399. Talmage JB MJ. How to Think About Work Ability and Work Restrictions Capacity, Tolerance, and Risk. *A Physician's Guide to Return to Work*. Chicago, Ill: American Medical Association; 2005:7-18.
- 400. ACOEM Stay-at-Work and Return-to-Work Process Improvement Committee. Preventing needless work disability by helping people stay employed. *J Occup Environ Med.* 2006;48(9):972-87.
- 401. McQueen MM, Gelbke MK, Wakefield A, Will EM, Gaebler C. Percutaneous screw fixation versus conservative treatment for fractures of the waist of the scaphoid: a prospective randomised study. *J Bone Joint Surg Br.* 2008;90(1):66-71.
- 402. Vinnars B, Pietreanu M, Bodestedt A, Ekenstam F, Gerdin B. Nonoperative compared with operative treatment of acute scaphoid fractures. A randomized clinical trial. *J Bone Joint Surg Am*. 2008;90(6):1176-85.
- 403. Patel PR, Miller MA. Postcare recommendations for emergency department wounds. *Emergency medicine clinics of North America*. 2007;25(1):147-58.
- 404. Checkosky CM, Bolanowski SJ, Cohen JC. Assessment of vibrotactile sensitivity in patients with carpal tunnel syndrome. *Journal of occupational and environmental medicine*. 1996;38(6):593-601.
- 405. Crossman MW, Gilbert CA, Travlos A, Craig KD, Eisen A. Nonneurologic hand pain versus carpal tunnel syndrome: do psychological measures differentiate? *Am J Phys Med Rehabil*. 2001;80(2):100-7.
- 406. Jablecki CK, Andary MT, Floeter MK, et al. Practice parameter: Electrodiagnostic studies in carpal tunnel syndrome. Report of the American Association of Electrodiagnostic Medicine, American Academy of Neurology, and the American Academy of Physical Medicine and Rehabilitation. *Neurology*. 2002;58(11):1589-92.
- 407. Kang EK, Lim JY, Shin HI, Gong HS, Oh JH, Paik NJ. Comparison between nerve conduction studies and current perception threshold test in carpal tunnel syndrome. *Neurophysiol Clin*. 2008;38(2):127-31.
- 408. Megerian JT, Kong X, Gozani SN. Utility of nerve conduction studies for carpal tunnel syndrome by family medicine, primary care, and internal medicine physicians. *J Am Board Fam Med*. 2007;20(1):60-4.

- 409. Melvin JL, Schuchmann JA, Lanese RR. Diagnostic specificity of motor and sensory nerve conduction variables in the carpal tunnel syndrome. *Arch Phys Med Rehabil*. 1973;54(2):69-74.
- 410. Mondelli M, Aretini A. Low sensitivity of F-wave in the electrodiagnosis of carpal tunnel syndrome. J Electromyogr Kinesiol. 2015;25(2):247-52.
- 411. Mondelli M, Aretini A, Rossi S. Ulnar Neuropathy at the Elbow in Diabetes. Am J Phys Med Rehabil. 2008.
- 412. Slutsky DJ. Use of nerve conduction studies and the pressure-specified sensory device in the diagnosis of carpal tunnel syndrome. *J Hand Surg Eur Vol.* 2009;34(1):60-5.
- 413. Smith NJ. Nerve conduction studies for carpal tunnel syndrome: essential prelude to surgery or unnecessary luxury? J Hand Surg Br. 2002;27(1):83-5.
- 414. Spindler HA, Dellon AL. Nerve conduction studies and sensibility testing in carpal tunnel syndrome. J Hand Surg Am. 1982;7(3):260-3.
- 415. Steinberg DR, Gelberman RH, Rydevik B, Lundborg G. The utility of portable nerve conduction testing for patients with carpal tunnel syndrome: a prospective clinical study. *J Hand Surg Am.* 1992;17(1):77-81.
- 416. Strickland JW, Gozani SN. Accuracy of in-office nerve conduction studies for median neuropathy: a meta-analysis. J Hand Surg Am. 2011;36(1):52-60.
- 417. Walters RJ, Murray NM. Transcarpal motor conduction velocity in carpal tunnel syndrome. *Muscle Nerve*. 2001;24(7):966-8.
- 418. Werner RA, Albers JW. Relation between needle electromyography and nerve conduction studies in patients with carpal tunnel syndrome. *Arch Phys Med Rehabil*. 1995;76(3):246-9.
- 419. Werner RA, Andary M. Electrodiagnostic evaluation of carpal tunnel syndrome. *Muscle Nerve*. 2011;44(4):597-607.
- 420. Werner RA, Franzblau A, Albers JW, Buchele H, Armstrong TJ. Use of screening nerve conduction studies for predicting future carpal tunnel syndrome. *Occup Environ Med.* 1997;54(2):96-100.
- 421. Andary MT, Fankhauser MJ, Ritson JL, et al. Comparison of sensory mid-palm studies to other techniques in carpal tunnel syndrome. *Electromyogr Clin Neurophysiol*. 1996;36(5):279-85.
- 422. Balbierz JM, Cottrell AC, Cottrell WD. Is needle examination always necessary in evaluation of carpal tunnel syndrome? *Arch Phys Med Rehabil*. 1998;79(5):514-6.
- 423. Burnham RS, Burnham TR. Effect of hand warming on electrodiagnostic testing results and diagnosis in patients with suspected carpal tunnel syndrome. *Arch Phys Med Rehabil*. 2009;90(12):2062-5.
- 424. Dale AM, Gardner BT, Zeringue A, Werner R, Franzblau A, Evanoff B. The effectiveness of post-offer pre-placement nerve conduction screening for carpal tunnel syndrome. *J Occup Environ Med*. 2014;56(8):840-7.
- 425. Dunne CA, Thompson PW, Cole J, et al. Carpal tunnel syndrome: evaluation of a new method of assessing median nerve conduction at the wrist. *Ann Rheum Dis*. 1996;55(6):396-8.
- 426. Glowacki KA, Breen CJ, Sachar K, Weiss AP. Electrodiagnostic testing and carpal tunnel release outcome. *J Hand Surg Am.* 1996;21(1):117-21.
- 427. Havton LA, Hotson JR, Kellerth JO. Correlation of median forearm conduction velocity with carpal tunnel syndrome severity. *Clin Neurophysiol*. 2007;118(4):781-5.
- 428. Lee WJ, Liao YC, Wei SJ, Tsai CW, Chang MH. How to make electrodiagnosis of carpal tunnel syndrome with normal distal conductions? *J Clin Neurophysiol*. 2011;28(1):45-50.
- 429. Loong S.C. SCS. Comparison of median and ulnar sensory nerve action potentials in the diagnosis of the carpal tunnel syndrome. *Journal of neurology*, *Neurosurgery & Psychiatry*. 1971;34(1):750-4.
- 430. Parkhad SP, S. Utility of Nerve Conduction Study in Early Diagnosis of Carpal Tunnel Syndrome (CTS). *National Journal of Physiology, Pharmacy & Pharmacology*. 2013;4(1):9-14.
- 431. Prakash KM, Fook-Chong S, Leoh TH, et al. Sensitivities of sensory nerve conduction study parameters in carpal tunnel syndrome. *J Clin Neurophysiol*. 2006;23(6):565-7.

- 432. Pransky G, Long R, Hammer K, Schulz LA, Himmelstein J, Fowke J. Screening for carpal tunnel syndrome in the workplace. An analysis of portable nerve conduction devices. *J Occup Environ Med.* 1997;39(8):727-33.
- 433. Redmond MD, Rivner MH. False positive electrodiagnostic tests in carpal tunnel syndrome. *Muscle Nerve*. 1988;11(5):511-8.
- 434. Neligan A, O'Sullivan SS, Mullins GM, et al. A review of nerve conduction studies in cases of suspected compression neuropathies of the upper limb. *Eur Neurol*. 2010;63(1):11-6.
- 435. Uzar E, Tamam Y, Acar A, et al. Sensitivity and specificity of terminal latency index and residual latency in the diagnosis of carpal tunnel syndrome. *Eur Rev Med Pharmacol Sci.* 2011;15(9):1078-84.
- 436. Carroll GJ. Comparison of median and radial nerve sensory latencies in the electrophysiological diagnosis of carpal tunnel syndrome. *Electroencephalogr Clin Neurophysiol.* 1987;68(2):101-6.
- 437. Celik B. Review of different electrodiagnostic studies in mild carpal tunnel syndrome. *Neurosurgery Quarterly*. 2008;18(2):83-8.
- 438. Chang MH, Liao YC, Lee YC, Hsieh PF, Liu LH. Electrodiagnosis of carpal tunnel syndrome: which transcarpal conduction technique is best? *J Clin Neurophysiol*. 2009;26(5):366-71.
- 439. Choi SJ, Ahn DS. Correlation of clinical history and electrodiagnostic abnormalities with outcome after surgery for carpal tunnel syndrome. *Plast Reconstr Surg*. 1998;102(7):2374-80.
- 440. Dhong ES, Han SK, Lee BI, Kim WK. Correlation of electrodiagnostic findings with subjective symptoms in carpal tunnel syndrome. *Ann Plast Surg.* 2000;45(2):127-31.
- 441. Katz RT. NC-stat as a screening tool for carpal tunnel syndrome in industrial workers. J Occup Environ Med. 2006;48(4):414-8.
- 442. Scelsa SN, Herskovitz S, Bieri P, Berger AR. Median mixed and sensory nerve conduction studies in carpal tunnel syndrome. *Electroencephalogr Clin Neurophysiol*. 1998;109(3):268-73.
- 443. Taylor-Gjevre RM, Gjevre JA, Nair B. Suspected carpal tunnel syndrome: Do nerve conduction study results and symptoms match? *Can Fam Physician*. 2010;56(7):e250-4.
- 444. Cherniack MG, Moalli D, Viscolli C. A comparison of traditional electrodiagnostic studies, electroneurometry, and vibrometry in the diagnosis of carpal tunnel syndrome. *J Hand Surg Am.* 1996;21(1):122-31.
- 445. Leffler C, Gozani S, Nguyen Z, Cros D. An Automated Electrodiagnostic Technique for Detection of Carpal Tunnel Syndrome. *American Academy of Clinical Neurophysiology*. 20002-10
- 446. Lo YL, Fook-Chong S, Leoh TH, et al. Rapid ultrasonographic diagnosis of radial entrapment neuropathy at the spiral groove. *J Neurol Sci.* 2008;271(1-2):75-9.
- 447. Rha DW, Im SH, Kim SK, Chang WH, Kim KJ, Lee SC. Median nerve conduction study through the carpal tunnel using segmental nerve length measured by ultrasonographic and conventional tape methods. *Arch Phys Med Rehabil*. 2011;92(1):1-6.
- 448. Witt JC, Hentz JG, Stevens JC. Carpal tunnel syndrome with normal nerve conduction studies. *Muscle Nerve*. 2004;29(4):515-22.
- 449. Jordan R, Carter T, Cummins C. A systematic review of the utility of electrodiagnostic testing in carpal tunnel syndrome. Br J Gen Pract. 2002;52(481):670-3.
- 450. AAEM position statements. Who is qualified to practice electrodiagnostic medicine? *Muscle Nerve Suppl.* 1999;8:S263-5.
- 451. Buch-Jaeger N, Foucher G. Correlation of clinical signs with nerve conduction tests in the diagnosis of carpal tunnel syndrome. J Hand Surg Br. 1994;19(6):720-4.
- 452. Dale AM, Agboola F, Yun A, Zeringue A, Al-Lozi MT, Evanoff B. Comparison of automated versus traditional nerve conduction study methods for median nerve testing in a general worker population. *PM R*. 2015;7(3):276-82.
- 453. Elkowitz SJ, Dubin NH, Richards BE, Wilgis EF. Clinical utility of portable versus traditional electrodiagnostic testing for diagnosing, evaluating, and treating carpal tunnel syndrome. *Am J Orthop (Belle Mead NJ)*. 2005;34(8):362-4.
- 454. Atroshi I, Gummesson C, Johnsson R, Ornstein E. Diagnostic properties of nerve conduction tests in population-based carpal tunnel syndrome. *BMC Musculoskelet Disord*. 2003;49.

- 455. Kuntzer T. Carpal tunnel syndrome in 100 patients: sensitivity, specificity of multi-neurophysiological procedures and estimation of axonal loss of motor, sensory and sympathetic median nerve fibers. *J Neurol Sci.* 1994;127(2):221-9.
- 456. Nathan PA, Keniston RC, Meadows KD, Lockwood RS. Predictive value of nerve conduction measurements at the carpal tunnel. *Muscle Nerve*. 1993;16(12):1377-82.
- 457. Guidelines in electrodiagnostic medicine. Technology review: the Neurometer Current Perception Threshold (CPT). Muscle Nerve Suppl. 1999;8S247-59.
- 458. American Association of Electrodiagnostic M, Chaudhry V. Guidelines in electrodiagnostic medicine. Technology review: Nervepace Digital Electroneurometer. *Muscle Nerve Suppl.* 1999;8:S243-6.
- 459. Aydin G, Keles I, Ozbudak Demir S, Baysal AI. Sensitivity of median sensory nerve conduction tests in digital branches for the diagnosis of carpal tunnel syndrome. *Am J Phys Med Rehabil*. 2004;83(1):17-21.
- 460. Bodofsky EB, Wu KD, Campellone JV, Greenberg WM, Tomaio AC. A sensitive new median-ulnar technique for diagnosing mild Carpal Tunnel Syndrome. *Electromyogr Clin Neurophysiol*. 2005;45(3):139-44.
- 461. Chang MH, Liu LH, Lee YC, Wei SJ, Chiang HL, Hsieh PF. Comparison of sensitivity of transcarpal median motor conduction velocity and conventional conduction techniques in electrodiagnosis of carpal tunnel syndrome. *Clin Neurophysiol*. 2006;117(5):984-91.
- 462. Graham B. The value added by electrodiagnostic testing in the diagnosis of carpal tunnel syndrome. J Bone Joint Surg Am. 2008;90(12):2587-93.
- 463. Khosrawi S, Dehghan F. Determination of the median nerve residual latency values in the diagnosis of carpal tunnel syndrome in comparison with other electrodiagnostic parameters. *J Res Med Sci.* 2013;18(11):934-8.
- 464. Lew HL, Date ES, Pan SS, Wu P, Ware PF, Kingery WS. Sensitivity, specificity, and variability of nerve conduction velocity measurements in carpal tunnel syndrome. *Arch Phys Med Rehabil*. 2005;86(1):12-6.
- 465. Pastare D, Therimadasamy AK, Lee E, Wilder-Smith EP. Sonography versus nerve conduction studies in patients referred with a clinical diagnosis of carpal tunnel syndrome. *J Clin Ultrasound*. 2009;37(7):389-93.
- 466. Sheu JJ, Yuan RY, Chiou HY, Hu CJ, Chen WT. Segmental study of the median nerve versus comparative tests in the diagnosis of mild carpal tunnel syndrome. *Clin Neurophysiol*. 2006;117(6):1249-55.
- 467. Violante FS, Bonfiglioli R, Isolani L, Raffi GB. Levels of agreement of nerve conduction studies and symptoms in workers at risk of carpal tunnel syndrome. *Int Arch Occup Environ Health*. 2004;77(8):552-8.
- 468. Wang YJ, Yan SH. Improvement of diagnostic rate of carpal tunnel syndrome with additional median-to-ulnar comparative nerve conduction studies. *Acta Neurol Taiwan*. 2013;22(4):152-7.
- 469. Zagnoli F, Andre V, Le Dreff P, Garcia JF, Bellard S. Idiopathic carpal tunnel syndrome. Clinical, electrodiagnostic, and magnetic resonance imaging correlations. *Rev Rhum Engl Ed.* 1999;66(4):192-200.
- 470. Concannon MJ, Gainor B, Petroski GF, Puckett CL. The predictive value of electrodiagnostic studies in carpal tunnel syndrome. *Plast Reconstr Surg*. 1997;100(6):1452-8.
- 471. Lee KY, Lee YJ, Koh SH. Usefulness of the median terminal latency ratio in the diagnosis of carpal tunnel syndrome. *Clin Neurophysiol*. 2009;120(4):765-9.
- 472. Homan MM, Franzblau A, Werner RA, Albers JW, Armstrong TJ, Bromberg MB. Agreement between symptom surveys, physical examination procedures and electrodiagnostic findings for the carpal tunnel syndrome. *Scand J Work Environ Health*. 1999;25(2):115-24.
- 473. Jackson DA, Clifford JC. Electrodiagnosis of mild carpal tunnel syndrome. Arch Phys Med Rehabil. 1989;70(3):199-204.
- 474. Uncini A, Lange DJ, Solomon M, Soliven B, Meer J, Lovelace RE. Ring finger testing in carpal tunnel syndrome: a comparative study of diagnostic utility. *Muscle Nerve*. 1989;12(9):735-41.
- 475. Zaher A, Mattar M, Gomaa M, Zaher A. Value of contemporary investigation tools in management of carpal tunnel syndrome. *Neurol Psychiat Neurosurg*. 2012;49(4):375-80.
- 476. Altinok MT, Baysal O, Karakas HM, Firat AK. Sonographic evaluation of the carpal tunnel after provocative exercises. J Ultrasound Med. 2004;23(10):1301-6.

- 477. Buchberger W, Judmaier W, Birbamer G, Lener M, Schmidauer C. Carpal tunnel syndrome: diagnosis with high-resolution sonography. *AJR Am J Roentgenol*. 1992;159(4):793-8.
- 478. Fujimoto K, Kanchiku T, Kido K, Imajo Y, Funaba M, Taguchi T. Diagnosis of severe carpal tunnel syndrome using nerve conduction study and ultrasonography. *Ultrasound Med Biol.* 2015;41(10):2575-80.
- 479. Lee D, van Holsbeeck MT, Janevski PK, Ganos DL, Ditmars DM, Darian VB. Diagnosis of carpal tunnel syndrome. Ultrasound versus electromyography. *Radiol Clin North Am*. 1999;37(4):859-72, x.
- 480. Mondelli M, Filippou G, Gallo A, Frediani B. Diagnostic utility of ultrasonography versus nerve conduction studies in mild carpal tunnel syndrome. *Arthritis Rheum*. 2008;59(3):357-66.
- 481. Roll SC, Case-Smith J, Evans KD. Diagnostic accuracy of ultrasonography vs. electromyography in carpal tunnel syndrome: a systematic review of literature. *Ultrasound Med Biol.* 2011;37(10):1539-53.
- 482. Seror P. Sonography and electrodiagnosis in carpal tunnel syndrome diagnosis, an analysis of the literature. *Eur J Radiol.* 2008;67(1):146-52.
- 483. Cartwright MS, Hobson-Webb LD, Boon AJ, et al. Evidence-based guideline: neuromuscular ultrasound for the diagnosis of carpal tunnel syndrome. *Muscle Nerve*. 2012;46(2):287-93.
- 484. Descatha A, Huard L, Aubert F, Barbato B, Gorand O, Chastang JF. Meta-analysis on the performance of sonography for the diagnosis of carpal tunnel syndrome. *Semin Arthritis Rheum*. 2012;41(6):914-22.
- 485. Fowler JR, Gaughan JP, Ilyas AM. The sensitivity and specificity of ultrasound for the diagnosis of carpal tunnel syndrome: a meta-analysis. *Clin Orthop Relat Res*. 2011;469(4):1089-94.
- 486. McDonagh C, Alexander M, Kane D. The role of ultrasound in the diagnosis and management of carpal tunnel syndrome: a new paradigm. *Rheumatology* (*Oxford*). 2015;54(1):9-19.
- 487. Tai TW, Wu CY, Su FC, Chern TC, Jou IM. Ultrasonography for diagnosing carpal tunnel syndrome: a meta-analysis of diagnostic test accuracy. *Ultrasound Med Biol.* 2012;38(7):1121-8.
- 488. Ziswiler HR, Reichenbach S, Vogelin E, Bachmann LM, Villiger PM, Juni P. Diagnostic value of sonography in patients with suspected carpal tunnel syndrome: a prospective study. *Arthritis Rheum*. 2005;52(1):304-11.
- 489. Visser LH, Smidt MH, Lee ML. High-resolution sonography versus EMG in the diagnosis of carpal tunnel syndrome. *J Neurol Neurosurg Psychiatry*. 2008;79(1):63-7.
- 490. Wang LY, Leong CP, Huang YC, Hung JW, Cheung SM, Pong YP. Best diagnostic criterion in high-resolution ultrasonography for carpal tunnel syndrome. *Chang Gung Med J*. 2008;31(5):469-76.
- 491. Wiesler ER, Chloros GD, Cartwright MS, Smith BP, Rushing J, Walker FO. The use of diagnostic ultrasound in carpal tunnel syndrome. *J Hand Surg Am*. 2006;31(5):726-32.
- 492. Yesildag A, Kutluhan S, Sengul N, et al. The role of ultrasonographic measurements of the median nerve in the diagnosis of carpal tunnel syndrome. *Clin Radiol*. 2004;59(10):910-5.
- 493. Keberle M, Jenett M, Kenn W, et al. Technical advances in ultrasound and MR imaging of carpal tunnel syndrome. *Eur Radiol*. 2000;10(7):1043-50.
- 494. Kleindienst A, Hamm B, Hildebrandt G, Klug N. Diagnosis and staging of carpal tunnel syndrome: comparison of magnetic resonance imaging and intra-operative findings. *Acta Neurochir (Wien)*. 1996;138(2):228-33.
- 495. Kleindienst A, Hamm B, Lanksch WR. Carpal tunnel syndrome: staging of median nerve compression by MR imaging. *J Magn Reson Imaging*. 1998;8(5):1119-25.
- 496. Kobayashi S, Hayakawa K, Nakane T, et al. Visualization of intraneural edema using gadolinium-enhanced magnetic resonance imaging of carpal tunnel syndrome. *J Orthop Sci.* 2009;14(1):24-34.

- 497. Koh SH, Kwon BC, Park C, Hwang SY, Lee JW, Kim SS. A comparison of the performance of anatomical MRI and DTI in diagnosing carpal tunnel syndrome. *Eur J Radiol.* 2014;83(11):2065-73.
- 498. Lindberg PG, Feydy A, Le Viet D, Maier MA, Drape JL. Diffusion tensor imaging of the median nerve in recurrent carpal tunnel syndrome initial experience. *Eur Radiol.* 2013;23(11):3115-23.
- 499. Martins RS, Siqueira MG, Simplicio H, Agapito D, Medeiros M. Magnetic resonance imaging of idiopathic carpal tunnel syndrome: correlation with clinical findings and electrophysiological investigation. *Clin Neurol Neurosurg*. 2008;110(1):38-45.
- 500. Mesgarzadeh M, Schneck CD, Bonakdarpour A. Carpal tunnel: MR imaging. Part I. Normal anatomy. *Radiology*. 1989;171(3):743-8.
- 501. Mesgarzadeh M, Schneck CD, Bonakdarpour A, Mitra A, Conaway D. Carpal tunnel: MR imaging. Part II. Carpal tunnel syndrome. *Radiology*. 1989;171(3):749-54.
- 502. Middleton WD, Kneeland JB, Kellman GM, et al. MR imaging of the carpal tunnel: normal anatomy and preliminary findings in the carpal tunnel syndrome. *AJR Am J Roentgenol*. 1987;148(2):307-16.
- 503. Mogk JP, Keir PJ. Evaluation of the carpal tunnel based on 3-D reconstruction from MRI. J Biomech. 2007;40(10):2222-9.
- 504. Momose T, Uchiyama S, Kobayashi S, Nakagawa H, Kato H. Structural changes of the carpal tunnel, median nerve and flexor tendons in MRI before and after endoscopic carpal tunnel release. *Hand Surg.* 2014;19(2):193-8.
- 505. Monagle K, Dai G, Chu A, Burnham RS, Snyder RE. Quantitative MR imaging of carpal tunnel syndrome. AJR Am J Roentgenol. 1999;172(6):1581-6.
- 506. Murphy RX, Jr., Chernofsky MA, Osborne MA, Wolson AH. Magnetic resonance imaging in the evaluation of persistent carpal tunnel syndrome. *J Hand Surg Am.* 1993;18(1):113-20.
- 507. Musluoglu L, Celik M, Tabak H, Forta H. Clinical, electrophysiological and magnetic resonance imaging findings in carpal tunnel syndrome. *Electromyogr Clin Neurophysiol*. 2004;44(3):161-5.
- 508. Pasternack, II, Malmivaara A, Tervahartiala P, Forsberg H, Vehmas T. Magnetic resonance imaging findings in respect to carpal tunnel syndrome. *Scand J Work Environ Health*. 2003;29(3):189-96.
- 509. Allmann KH, Horch R, Uhl M, et al. MR imaging of the carpal tunnel. *Eur J Radiol*. 1997;25(2):141-5.
- 510. Barcelo C, Faruch M, Lapegue F, Bayol MA, Sans N. 3-T MRI with diffusion tensor imaging and tractography of the median nerve. *Eur Radiol*. 2013;23(11):3124-30.
- 511. Beck JD, Jones RB, Malone WJ, Heimbach JL, Ebbitt T, Klena JC. Magnetic resonance imaging after endoscopic carpal tunnel release. *J Hand Surg Am*. 2013;38(2):331-5.
- 512. Bower JA, Stanisz GJ, Keir PJ. An MRI evaluation of carpal tunnel dimensions in healthy wrists: Implications for carpal tunnel syndrome. *Clin Biomech (Bristol, Avon)*. 2006;21(8):816-25.
- 513. Brahme SK, Hodler J, Braun RM, Sebrechts C, Jackson W, Resnick D. Dynamic MR imaging of carpal tunnel syndrome. *Skeletal Radiol*. 1997;26(8):482-7.
- 514. Britz GW, Haynor DR, Kuntz C, Goodkin R, Gitter A, Kliot M. Carpal tunnel syndrome: correlation of magnetic resonance imaging, clinical, electrodiagnostic, and intraoperative findings. *Neurosurgery*. 1995;37(6):1097-103.
- 515. Campagna R, Pessis E, Feydy A, et al. MRI assessment of recurrent carpal tunnel syndrome after open surgical release of the median nerve. *AJR Am J Roentgenol*. 2009;193(3):644-50.
- 516. Chen CK, Chung CB, Yeh L, et al. Carpal tunnel syndrome caused by tophaceous gout: CT and MR imaging features in 20 patients. *AJR Am J Roentgenol*. 2000;175(3):655-9.
- 517. Chen HC, Wang YY, Lin CH, et al. A knowledge-based approach for carpal tunnel segmentation from magnetic resonance images. *J Digit Imaging*. 2013;26(3):510-20.
- 518. Cudlip SA, Howe FA, Clifton A, Schwartz MS, Bell BA. Magnetic resonance neurography studies of the median nerve before and after carpal tunnel decompression. *J Neurosurg*. 2002;96(6):1046-51.

- 519. Deniz FE, Oksuz E, Sarikaya B, et al. Comparison of the diagnostic utility of electromyography, ultrasonography, computed tomography, and magnetic resonance imaging in idiopathic carpal tunnel syndrome determined by clinical findings. *Neurosurgery*. 2012;70(3):610-6.
- 520. Fornander L, Nyman T, Hansson T, Ragnehed M, Brismar T. Age- and time-dependent effects on functional outcome and cortical activation pattern in patients with median nerve injury: a functional magnetic resonance imaging study. *J Neurosurg*. 2010;113(1):122-8.
- 521. Goetz JE, Kunze NM, Main EK, et al. MRI-apparent localized deformation of the median nerve within the carpal tunnel during functional hand loading. *Ann Biomed Eng.* 2013;41(10):2099-108.
- 522. Goetz JE, Thedens DR, Kunze NM, Lawler EA, Brown TD. Day-to-day variability of median nerve location within the carpal tunnel. *Clin Biomech (Bristol, Avon)*. 2010;25(7):660-5.
- 523. Healy C, Watson JD, Longstaff A, Campbell MJ. Magnetic resonance imaging of the carpal tunnel. J Hand Surg Br. 1990;15(2):243-8.
- 524. Hiltunen J, Kirveskari E, Numminen J, Lindfors N, Goransson H, Hari R. Pre- and post-operative diffusion tensor imaging of the median nerve in carpal tunnel syndrome. *Eur Radiol*. 2012;22(6):1310-9.
- 525. Horch RE, Allmann KH, Laubenberger J, Langer M, Stark GB. Median nerve compression can be detected by magnetic resonance imaging of the carpal tunnel. *Neurosurgery*. 1997;41(1):76-82; discussion -3.
- 526. Iannicelli E, Chianta GA, Salvini V, Almberger M, Monacelli G, Passariello R. Evaluation of bifid median nerve with sonography and MR imaging. *J Ultrasound Med.* 2000;19(7):481-5.
- 527. Kabakci N, Gurses B, Firat Z, et al. Diffusion tensor imaging and tractography of median nerve: normative diffusion values. *AJR Am J Roentgenol*. 2007;189(4):923-7.
- 528. Naraghi A, da Gama Lobo L, Menezes R, et al. Diffusion tensor imaging of the median nerve before and after carpal tunnel release in patients with carpal tunnel syndrome: feasibility study. *Skeletal Radiol*. 2013;42(10):1403-12.
- 529. Pierre-Jerome C, Bekkelund SI. Magnetic resonance assessment of the double-crush phenomenon in patients with carpal tunnel syndrome: a bilateral quantitative study. *Scand J Plast Reconstr Surg Hand Surg*. 2003;37(1):46-53.
- 530. Pierre-Jerome C, Bekkelund SI, Mellgren SI, Nordstrom R. Bilateral fast magnetic resonance imaging of the operated carpal tunnel. *Scand J Plast Reconstr Surg Hand Surg*. 1997;31(2):171-7.
- 531. Pierre-Jerome C, Bekkelund SI, Mellgren SI, Torbergsen T. Quantitative magnetic resonance imaging and the electrophysiology of the carpal tunnel region in floor cleaners. *Scand J Work Environ Health*. 1996;22(2):119-23.
- 532. Radack DM, Schweitzer ME, Taras J. Carpal tunnel syndrome: are the MR findings a result of population selection bias? *AJR Am J Roentgenol*. 1997;169(6):1649-53.
- 533. Seyfert S, Boegner F, Hamm B, Kleindienst A, Klatt C. The value of magnetic resonance imaging in carpal tunnel syndrome. J Neurol. 1994;242(1):41-6.
- 534. Shafer-Crane GA, Meyer RA, Schlinger MC, Bennett DL, Robinson KK, Rechtien JJ. Effect of occupational keyboard typing on magnetic resonance imaging of the median nerve in subjects with and without symptoms of carpal tunnel syndrome. *Am J Phys Med Rehabil*. 2005;84(4):258-66.
- 535. Soccetti A, Raffaelli P, Giovagnoni A, Ercolani P, Mercante O, Pelliccioni G. MR imaging in the diagnosis of carpal tunnel syndrome. *Ital J Orthop Traumatol*. 1992;18(1):123-7.
- 536. Stein D, Neufeld A, Pasternak O, et al. Diffusion tensor imaging of the median nerve in healthy and carpal tunnel syndrome subjects. *J Magn Reson Imaging*. 2009;29(3):657-62.
- 537. Sugimoto H, Miyaji N, Ohsawa T. Carpal tunnel syndrome: evaluation of median nerve circulation with dynamic contrast-enhanced MR imaging. *Radiology*. 1994;190(2):459-66.
- 538. Tsujii M, Hirata H, Morita A, Uchida A. Palmar bowing of the flexor retinaculum on wrist MRI correlates with subjective reports of pain in carpal tunnel syndrome. *J Magn Reson Imaging*. 2009;29(5):1102-5.
- 539. Wu HT, Schweitzer ME, Culp RW. Potential MR signs of recurrent carpal tunnel syndrome: initial experience. J Comput Assist Tomogr. 2004;28(6):860-4.

- 540. Yao L, Gai N. Median nerve cross-sectional area and MRI diffusion characteristics: normative values at the carpal tunnel. *Skeletal Radiol*. 2009;38(4):355-61.
- 541. Cha JG, Han JK, Im SB, Kang SJ. Median nerve T2 assessment in the wrist joints: preliminary study in patients with carpal tunnel syndrome and healthy volunteers. *J Magn Reson Imaging*. 2014;40(4):789-95.
- 542. Chalian M, Behzadi AH, Williams EH, Shores JT, Chhabra A. High-resolution magnetic resonance neurography in upper extremity neuropathy. *Neuroimaging Clin N Am.* 2014;24(1):109-25.
- 543. Somay G, Somay H, Cevik D, Sungur F, Berkman Z. The pressure angle of the median nerve as a new magnetic resonance imaging parameter for the evaluation of carpal tunnel. *Clin Neurol Neurosurg.* 2009;111(1):28-33.
- 544. Brienza M, Pujia F, Colaiacomo MC, et al. 3T diffusion tensor imaging and electroneurography of peripheral nerve: a morphofunctional analysis in carpal tunnel syndrome. *J Neuroradiol*. 2014;41(2):124-30.
- 545. Bulut HT, Yildirim A, Ekmekci B, Gunbey HP. The diagnostic and grading value of diffusion tensor imaging in patients with carpal tunnel syndrome. *Acad Radiol*. 2014;21(6):767-73.
- 546. Jarvik JG, Yuen E, Haynor DR, et al. MR nerve imaging in a prospective cohort of patients with suspected carpal tunnel syndrome. *Neurology*. 2002;58(11):1597-602.
- 547. Uchiyama S, Itsubo T, Yasutomi T, Nakagawa H, Kamimura M, Kato H. Quantitative MRI of the wrist and nerve conduction studies in patients with idiopathic carpal tunnel syndrome. *J Neurol Neurosurg Psychiatry*. 2005;76(8):1103-8.
- 548. Wang CK, Jou IM, Huang HW, et al. Carpal tunnel syndrome assessed with diffusion tensor imaging: comparison with electrophysiological studies of patients and healthy volunteers. *Eur J Radiol*. 2012;81(11):3378-83.
- 549. Bak L, Bak S, Gaster P, et al. MR imaging of the wrist in carpal tunnel syndrome. *Acta Radiol*. 1997;38(6):1050-2.
- 550. Deryani E, Aki S, Muslumanoglu L, Rozanes I. MR imaging and electrophysiological evaluation in carpal tunnel syndrome. *Yonsei Med J*. 2003;44(1):27-32.
- 551. Guggenberger R, Markovic D, Eppenberger P, et al. Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. *Radiology*. 2012;265(1):194-203.
- 552. Horng YS, Chang HC, Lin KE, Guo YL, Liu DH, Wang JD. Accuracy of ultrasonography and magnetic resonance imaging in diagnosing carpal tunnel syndrome using rest and grasp positions of the hands. *J Hand Surg Am*. 2012;37(8):1591-8.
- 553. Sambandam SN, Priyanka P, Gul A, Ilango B. Critical analysis of outcome measures used in the assessment of carpal tunnel syndrome. *Int Orthop*. 2008;32(4):497-504.
- 554. Appleby MA, Neville-Smith M, Parrott MW. Functional outcomes post carpal tunnel release: a modified replication of a previous study. *J Hand Ther*. 2009;22(3):240-8; quiz 9.
- 555. Bakhsh H, Ibrahim I, Khan W, Smitham P, Goddard N. Assessment of validity, reliability, responsiveness and bias of three commonly used patient-reported outcome measures in carpal tunnel syndrome. *Ortop Traumatol Rehabil*. 2012;14(4):335-40.
- 556. Becker SJ, Makanji HS, Ring D. Expected and actual improvement of symptoms with carpal tunnel release. *J Hand Surg Am.* 2012;37(7):1324-9 e1-5.
- 557. Buckley T, Mitten D, Elfar J. The effect of informed consent on results of a standard upper extremity intake questionnaire. J Hand Surg Am. 2013;38(2):366-71.
- 558. Gong HS, Oh JH, Kim WS, Kim SH, Rhee SH, Baek GH. The effect of dividing muscles superficial to the transverse carpal ligament on carpal tunnel release outcomes. *J Hand Surg Am.* 2011;36(9):1475-81.
- 559. Greenslade JR, Mehta RL, Belward P, Warwick DJ. Dash and Boston questionnaire assessment of carpal tunnel syndrome outcome: what is the responsiveness of an outcome questionnaire? *J Hand Surg Br.* 2004;29(2):159-64.
- 560. Hobby JL, Watts C, Elliot D. Validity and responsiveness of the patient evaluation measure as an outcome measure for carpal tunnel syndrome. *J Hand Surg Br*. 2005;30(4):350-4.
- 561. Imaeda T, Toh S, Wada T, et al. Validation of the Japanese Society for Surgery of the Hand Version of the Quick Disability of the Arm, Shoulder, and Hand (QuickDASH-JSSH) questionnaire. *J Orthop Sci.* 2006;11(3):248-53.

- 562. Iwatsuki K, Nishikawa K, Chaki M, Sato A, Morita A, Hirata H. Comparative responsiveness of the Hand 20 and the DASH-JSSH questionnaires to clinical changes after carpal tunnel release. *J Hand Surg Eur Vol.* 2014;39(2):145-51.
- 563. Jeon SH, Lee JH, Chung MS, et al. Responsiveness of the Korean version of the disabilities of the arm, shoulder and hand questionnaire (K-DASH) after carpal tunnel release. *Clin Orthop Surg.* 2011;3(2):147-51.
- 564. Jerosch-Herold C, Shepstone L, Miller L, Chapman P. The responsiveness of sensibility and strength tests in patients undergoing carpal tunnel decompression. BMC Musculoskelet Disord. 2011;12244.
- 565. Koldas Dogan S, Ay S, Evcik D, Baser O. Adaptation of Turkish version of the questionnaire Quick Disability of the Arm, Shoulder, and Hand (Quick DASH) in patients with carpal tunnel syndrome. *Clin Rheumatol*. 2011;30(2):185-91.
- 566. Kotsis SV, Chung KC. Responsiveness of the Michigan Hand Outcomes Questionnaire and the Disabilities of the Arm, Shoulder and Hand questionnaire in carpal tunnel surgery. *J Hand Surg Am*. 2005;30(1):81-6.
- 567. Lue YJ, Lu YM, Lin GT, Liu YF. Validation of the Chinese version of the Boston Carpal Tunnel Questionnaire. J Occup Rehabil. 2014;24(1):139-45.
- 568. Niekel MC, Lindenhovius AL, Watson JB, Vranceanu AM, Ring D. Correlation of DASH and QuickDASH with measures of psychological distress. *J Hand Surg Am.* 2009;34(8):1499-505.
- 569. Park DJ, Kang JH, Lee JW, et al. Cross-cultural adaptation of the Korean version of the Boston carpal tunnel questionnaire: its clinical evaluation in patients with carpal tunnel syndrome following local corticosteroid injection. *J Korean Med Sci.* 2013;28(7):1095-9.
- 570. Rosales RS, Delgado EB, Diez de la Lastra-Bosch I. Evaluation of the Spanish version of the DASH and carpal tunnel syndrome health-related quality-of-life instruments: cross-cultural adaptation process and reliability. *J Hand Surg Am.* 2002;27(2):334-43.
- 571. Unglaub F, Wolf E, Goldbach C, Hahn P, Kroeber MW. Subjective and functional outcome after revision surgery in carpal tunnel syndrome. *Arch Orthop Trauma Surg.* 2008;128(9):931-6.
- 572. Van Vliet MM, Maradey JA, Homa KA, Kerrigan CL. The usefulness of patient-reported measures for clinical practice. *Plast Reconstr Surg.* 2013;132(1):105-12.
- 573. Vranceanu AM, Kadzielski J, Hwang R, Ring D. A patient-specific version of the Disabilities of the Arm, Shoulder, and Hand Questionnaire. *J Hand Surg Am*. 2010;35(5):824-6.
- 574. Wi SM, Gong HS, Bae KJ, Roh YH, Lee YH, Baek GH. Responsiveness of the Korean version of the Michigan Hand Outcomes Questionnaire after carpal tunnel release. *Clin Orthop Surg.* 2014;6(2):203-7.
- 575. Zyluk A, Piotuch B. A Comparison of DASH, PEM and Levine questionnaires in outcome measurement of carpal tunnel release. *Handchir Mikrochir Plast Chir*. 2011;43(3):162-6.
- 576. Alderson M, McGall D. The Alderson-McGall hand function questionnaire for patients with Carpal Tunnel syndrome: a pilot evaluation of a future outcome measure. *J Hand Ther*. 1999;12(4):313-22.
- 577. Atroshi I, Breidenbach WC, McCabe SJ. Assessment of the carpal tunnel outcome instrument in patients with nerve-compression symptoms. *J Hand Surg Am*. 1997;22(2):222-7.
- 578. Ball C, Pearse M, Kennedy D, Hall A, Nanchahal J. Validation of a one-stop carpal tunnel clinic including nerve conduction studies and hand therapy. *Ann R Coll Surg Engl.* 2011;93(8):634-8.
- 579. Caliandro P, Giannini F, Pazzaglia C, et al. A new clinical scale to grade the impairment of median nerve in carpal tunnel syndrome. *Clin Neurophysiol*. 2010;121(7):1066-71.
- 580. Cevik MU, Altun Y, Uzar E, et al. Diagnostic value of F-wave inversion in patients with early carpal tunnel syndrome. *Neurosci Lett.* 2012;508(2):110-3.
- 581. de la Llave-Rincon AI, Fernandez-de-Las-Penas C, Perez-de-Heredia-Torres M, Martinez-Perez A, Valenza MC, Pareja JA. Bilateral deficits in fine motor control and pinch grip force are not associated with electrodiagnostic findings in women with carpal tunnel syndrome. *Am J Phys Med Rehabil*. 2011;90(6):443-51.
- 582. Descatha A, Dale AM, Franzblau A, Evanoff B. Natural history and predictors of long-term pain and function among workers with hand symptoms. *Arch Phys Med Rehabil*. 2013;94(7):1293-9.

- 583. Fernandez-de-Las-Penas C, Cleland JA, Plaza-Manzano G, et al. Clinical, physical, and neurophysiological impairments associated with decreased function in women with carpal tunnel syndrome. *J Orthop Sports Phys Ther*. 2013;43(9):641-9.
- 584. Gehrmann S, Tang J, Kaufmann RA, Goitz RJ, Windolf J, Li ZM. Variability of precision pinch movements caused by carpal tunnel syndrome. *J Hand Surg Am.* 2008;33(7):1069-75.
- 585. Kim JY, Yoon JS, Kim SJ, Won SJ, Jeong JS. Carpal tunnel syndrome: Clinical, electrophysiological, and ultrasonographic ratio after surgery. *Muscle Nerve*. 2012;45(2):183-8.
- 586. Leit ME, Weiser RW, Tomaino MM. Patient-reported outcome after carpal tunnel release for advanced disease: a prospective and longitudinal assessment in patients older than age 70. *J Hand Surg Am*. 2004;29(3):379-83.
- 587. Levine DW, Simmons BP, Koris MJ, et al. A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. *J Bone Joint Surg Am.* 1993;75(11):1585-92.
- 588. Li K, Evans PJ, Seitz WH, Jr., Li ZM. Carpal tunnel syndrome impairs sustained precision pinch performance. *Clin Neurophysiol*. 2015;126(1):194-201.
- 589. Mattos DJ, Domenech SC, Borges Junior NG, Santos MJ. Effect of fatigue on grip force control during object manipulation in carpal tunnel syndrome. *Motor Control*. 2012;16(4):521-36.
- 590. Mody GN, Anderson GA, Thomas BP, Pallapati SC, Santoshi JA, Antonisamy B. Carpal tunnel syndrome in Indian patients: use of modified questionnaires for assessment. *J Hand Surg Eur Vol.* 2009;34(5):671-8.
- 591. Mondelli M, Ginanneschi F, Rossi S, Reale F, Padua L, Giannini F. Inter-observer reproducibility and responsiveness of a clinical severity scale in surgically treated carpal tunnel syndrome. *Acta Neurol Scand.* 2002;106(5):263-8.
- 592. Ortiz-Corredor F, Calambas N, Mendoza-Pulido C, Galeano J, Diaz-Ruiz J, Delgado O. Factor analysis of carpal tunnel syndrome questionnaire in relation to nerve conduction studies. *Clin Neurophysiol*. 2011;122(10):2067-70.
- 593. Tamburin S, Cacciatori C, Praitano ML, et al. Median nerve small- and large-fiber damage in carpal tunnel syndrome: a quantitative sensory testing study. *J Pain*. 2011;12(2):205-12.
- 594. Tan JS, Tan AB. Outcomes of open carpal tunnel releases and its predictors: a prospective study. *Hand Surg.* 2012;17(3):341-5.
- 595. Zyluk A, Szlosser Z. The results of carpal tunnel release for carpal tunnel syndrome diagnosed on clinical grounds, with or without electrophysiological investigations: a randomized study. *J Hand Surg Eur Vol.* 2013;38(1):44-9.
- 596. Zyluk A, Walaszek I. The effect of the involvement of the dominant or non-dominant hand on grip/pinch strengths and the Levine score in patients with carpal tunnel syndrome. *J Hand Surg Eur Vol.* 2012;37(5):427-31.
- 597. Weber RA, DeSalvo DJ, Rude MJ. Five-year follow-up of carpal tunnel release in patients over age 65. J Hand Surg Am. 2010;35(2):207-11.
- 598. Flinn SR, Pease WS, Freimer ML. Score reliability and construct validity of the Flinn Performance Screening Tool for adults with symptoms of carpal tunnel syndrome. *Am J Occup Ther*. 2012;66(3):330-7.
- 599. Fok M, Leung HB, Lee WM. Evaluation of a Hong Kong Chinese version of a self-administered questionnaire for assessing symptom severity and functional status of carpal tunnel syndrome: cross-cultural adaptation and reliability. *Hong Kong Med J.* 2007;13(5):342-7.
- 600. Louie DL, Earp BE, Collins JE, et al. Outcomes of open carpal tunnel release at a minimum of ten years. J Bone Joint Surg Am. 2013;95(12):1067-73.
- 601. Katz JN, Gelberman RH, Wright EA, Abrahamsson SO, Lew RA. A preliminary scoring system for assessing the outcome of carpal tunnel release. *J Hand Surg Am.* 1994;19(4):531-8.
- 602. Baker NA, Moehling KK, Desai AR, Gustafson NP. Effect of carpal tunnel syndrome on grip and pinch strength compared with sex- and age-matched normative data. *Arthritis Care Res (Hoboken)*. 2013;65(12):2041-5.
- 603. Lowe BD, Freivalds A. Effect of carpal tunnel syndrome on grip force coordination on hand tools. *Ergonomics*. 1999;42(4):550-64.
- 604. Schreuders TA, Roebroeck ME, Jaquet JB, Hovius SE, Stam HJ. Long-term outcome of muscle strength in ulnar and median nerve injury: comparing manual muscle strength testing, grip and pinch strength dynamometers and a new intrinsic muscle strength dynamometer. *J Rehabil Med.* 2004;36(6):273-8.

- 605. Zhang W, Johnston JA, Ross MA, et al. Effects of carpal tunnel syndrome on adaptation of multi-digit forces to object weight for whole-hand manipulation. *PLoS One*. 2011;6(11):e27715.
- 606. Netscher D, Steadman AK, Thornby J, Cohen V. Temporal changes in grip and pinch strength after open carpal tunnel release and the effect of ligament reconstruction. *J Hand Surg Am*. 1998;23(1):48-54.
- 607. Olsen KM, Knudson DV. Change in strength and dexterity after open carpal tunnel release. Int J Sports Med. 2001;22(4):301-3.
- 608. Tredgett MW, Davis TR. Rapid repeat testing of grip strength for detection of faked hand weakness. J Hand Surg Br. 2000;25(4):372-5.
- 609. Zieske L, Ebersole GC, Davidge K, Fox I, Mackinnon SE. Revision carpal tunnel surgery: a 10-year review of intraoperative findings and outcomes. *J Hand Surg Am.* 2013;38(8):1530-9.
- 610. Akalin E, El O, Peker O, et al. Treatment of carpal tunnel syndrome with nerve and tendon gliding exercises. *Am J Phys Med Rehabil*. 2002;81(2):108-13.
- 611. Baysal O, Altay Z, Ozcan C, Ertem K, Yologlu S, Kayhan A. Comparison of three conservative treatment protocols in carpal tunnel syndrome. *Int J Clin Pract*. 2006;60(7):820-8.
- 612. Muller M, Tsui D, Schnurr R, Biddulph-Deisroth L, Hard J, MacDermid JC. Effectiveness of hand therapy interventions in primary management of carpal tunnel syndrome: a systematic review. *J Hand Ther*. 2004;17(2):210-28.
- 613. Page MJ, O'Connor D, Pitt V, Massy-Westropp N. Exercise and mobilisation interventions for carpal tunnel syndrome. Cochrane Database Syst Rev. 2012;13(6).
- 614. Pinar L, Enhos A, Ada S, Gungor N. Can we use nerve gliding exercises in women with carpal tunnel syndrome? Adv Ther. 2005;22(5):467-75.
- 615. Rozmaryn LM, Dovelle S, Rothman ER, Gorman K, Olvey KM, Bartko JJ. Nerve and tendon gliding exercises and the conservative management of carpal tunnel syndrome. *J Hand Ther*. 1998;11(3):171-9.
- 616. Ashworth NL. Carpal tunnel syndrome. *BMJ Clin Evid*. 2011;2011.
- 617. Medina McKeon J, Yancosek K. Neural gliding techniques for the treatment of carpal tunnel syndrome: a systematic review. J Sport Rehabil. 2008;17(3):324-41.
- 618. Seradge H, Jia YC, Owens W. In vivo measurement of carpal tunnel pressure in the functioning hand. *J Hand Surg Am.* 1995;20(5):855-9.
- 619. Szabo RM, Bay BK, Sharkey NA, Gaut C. Median nerve displacement through the carpal canal. *J Hand Surg Am.* 1994;19(6):901-6.
- 620. Totten PA, Hunter JM. Therapeutic techniques to enhance nerve gliding in thoracic outlet syndrome and carpal tunnel syndrome. Hand Clin. 1991;7(3):505-20.
- 621. Bialosky JE, Bishop MD, Price DD, Robinson ME, Vincent KR, George SZ. A randomized sham-controlled trial of a neurodynamic technique in the treatment of carpal tunnel syndrome. *J Orthop Sports Phys Ther*. 2009;39(10):709-23.
- 622. Brininger TL, Rogers JC, Holm MB, Baker NA, Li ZM, Goitz RJ. Efficacy of a fabricated customized splint and tendon and nerve gliding exercises for the treatment of carpal tunnel syndrome: a randomized controlled trial. *Arch Phys Med Rehabil*. 2007;88(11):1429-35.
- 623. Schmid AB, Elliott JM, Strudwick MW, Little M, Coppieters MW. Effect of splinting and exercise on intraneural edema of the median nerve in carpal tunnel syndrome--an MRI study to reveal therapeutic mechanisms. *J Orthop Res.* 2012;30(8):1343-50.
- 624. Bardak AN, Alp M, Erhan B, Paker N, Kaya B, Onal AE. Evaluation of the clinical efficacy of conservative treatment in the management of carpal tunnel syndrome. *Adv Ther*. 2009;26(1):107-16.
- 625. Heebner ML, Roddey TS. The effects of neural mobilization in addition to standard care in persons with carpal tunnel syndrome from a community hospital. *J Hand Ther*. 2008;21(3):229-40.
- 626. Horng YS, Hsieh SF, Tu YK, Lin MC, Wang JD. The comparative effectiveness of tendon and nerve gliding exercises in patients with carpal tunnel syndrome: a randomized trial. *Am J Phys Med Rehabil*. 2011;90(6):435-42.
- 627. Tal-Akabi A, Rushton A. An investigation to compare the effectiveness of carpal bone mobilisation and neurodynamic mobilisation as methods of treatment for carpal tunnel syndrome. *Man Ther*. 2000;5(4):214-22.
- 628. Garfinkel MS, Singhal A, Katz WA, Allan DA, Reshetar R, Schumacher HR, Jr. Yoga-based intervention for carpal tunnel syndrome: a randomized trial. *JAMA*. 1998;280(18):1601-3.

- 629. Williams K, Abildso C, Steinberg L, et al. Evaluation of the effectiveness and efficacy of Iyengar yoga therapy on chronic low back pain. *Spine (Phila Pa 1976)*. 2009;34(19):2066-76.
- 630. Banta CA. A prospective, nonrandomized study of iontophoresis, wrist splinting, and antiinflammatory medication in the treatment of early-mild carpal tunnel syndrome. *J Occup Med.* 1994;36(2):166-8.
- 631. Celiker R, Arslan S, Inanici F. Corticosteroid injection vs. nonsteroidal antiinflammatory drug and splinting in carpal tunnel syndrome. *Am J Phys Med Rehabil*. 2002;81(3):182-6.
- 632. de Pablo P, Katz JN. Pharmacotherapy of carpal tunnel syndrome. *Expert Opin Pharmacother*. 2003;4(6):903-9.
- 633. Giele H. Evidence-based treatment of carpal tunnel syndrome. *Curr Orthop*. 2001;15(4):249-55.
- 634. O'Connor D, Marshall S, Massy-Westropp N. Non-surgical treatment (other than steroid injection) for carpal tunnel syndrome. *Cochrane Database Syst Rev.* 2003(1):CD003219.
- 635. Piazzini DB, Aprile I, Ferrara PE, et al. A systematic review of conservative treatment of carpal tunnel syndrome. *Clin Rehabil*. 2007;21(4):299-314.
- 636. Chang M, Chiang H, Lee S-J, Ger L, Lo Y. Oral drug of choice in carpal tunnel syndrome. *Neurology*. 1998;51(2):390-3.
- 637. Davis PT, Hulbert JR, Kassak KM, Meyer JJ. Comparative efficacy of conservative medical and chiropractic treatments for carpal tunnel syndrome: a randomized clinical trail. *J Manipulative Physiol Ther*. 1998;21(5):317-26.
- 638. Nalamachu S, Crockett RS, Gammaitoni AR, Gould EM. A comparison of the lidocaine patch 5% vs naproxen 500 mg twice daily for the relief of pain associated with carpal tunnel syndrome: a 6-week, randomized, parallel-group study. *MedGenMed*. 2006;8(3):33.
- 639. Husby T, Haugstvedt JR, Fyllingen G, Skoglund LA. Acute postoperative swelling after hand surgery: an exploratory, double-blind, randomised study with paracetamol, naproxen, and placebo. *Scand J Plast Reconstr Surg Hand Surg*. 2001;35(1):91-8.
- 640. Yildiz N, Atalay NS, Gungen GO, Sanal E, Akkaya N, Topuz O. Comparison of ultrasound and ketoprofen phonophoresis in the treatment of carpal tunnel syndrome. *J Back Musculoskelet Rehabil*. 2011;24(1):39-47.
- 641. Jarvik JG, Comstock BA, Kliot M, et al. Surgery versus non-surgical therapy for carpal tunnel syndrome: a randomised parallel-group trial. *Lancet*. 2009;374(9695):1074-81.
- 642. Gurcay E, Unlu E, Gurcay AG, Tuncay R, Cakci A. Evaluation of the effect of local corticosteroid injection and anti-inflammatory medication in carpal tunnel syndrome. *Scott Med J.* 2009;54(1):4-6.
- 643. Chang MH, Ger LP, Hsieh PF, Huang SY. A randomised clinical trial of oral steroids in the treatment of carpal tunnel syndrome: a long term follow up. *J Neurol Neurosurg Psychiatry*. 2002;73(6):710-4.
- 644. Herskovitz S, Berger AR, Lipton RB. Low-dose, short-term oral prednisone in the treatment of carpal tunnel syndrome. *Neurology*. 1995;45(10):1923-5.
- 645. Hui AC, Wong SM, Tang A, Mok V, Hung LK, Wong KS. Long-term outcome of carpal tunnel syndrome after conservative treatment. *Int J Clin Pract.* 2004;58(4):337-9.
- 646. Hui AC, Wong SM, Wong KS, et al. Oral steroid in the treatment of carpal tunnel syndrome. Ann Rheum Dis. 2001;60(8):813-4.
- 647. Mishra S, Prabhakar S, Lal V, Modi M, Das CP, Khurana D. Efficacy of splinting and oral steroids in the treatment of carpal tunnel syndrome: a prospective randomized clinical and electrophysiological study. *Neurol India*. 2006;54(3):286-90.
- 648. Wong S, Hui A, Tang A, et al. Local vs systemic corticosteroids in the treatment of carpal tunnel syndrome. *Neurology*. 2001;56(11):1565-7.
- 649. Ashworth NL. Carpal tunnel syndrome. *Clin Evid (Online)*. 2010;2010.
- 650. Gerritsen AA, de Krom MC, Struijs MA, Scholten RJ, de Vet HC, Bouter LM. Conservative treatment options for carpal tunnel syndrome: a systematic review of randomised controlled trials. *J Neurol*. 2002;249(3):272-80.
- 651. Goodyear-Smith F, Arroll B. What can family physicians offer patients with carpal tunnel syndrome other than surgery? A systematic review of nonsurgical management. *Ann Fam Med*. 2004;2(3):267-73.

- 652. Pal B, Mangion P, Hossain MA, Wallace AS, Diffey BL. Should diuretics be prescribed for idiopathic carpal tunnel syndrome? Results of a controlled trial. *Clin Rehabil.* 1988;2(299-301).
- 653. Atluri S, Sudarshan G. Development of a screening tool to detect the risk of inappropriate prescription opioid use in patients with chronic pain. *Pain Physician*. 2004;7(3):333-8.
- 654. Cheng M, Sauer B, Johnson E, Porucznik C, Hegmann K. Comparison of opioid-related deaths by work-related injury. Am J Industrial Med. 2013;56308-16.
- 655. Eriksen J, Sjogren P, Bruera E, Ekholm O, Rasmussen NK. Critical issues on opioids in chronic non-cancer pain: an epidemiological study. *Pain*. 2006;125(1-2):172-9.
- 656. Green TC, Grau LE, Carver HW, Kinzly M, Heimer R. Epidemiologic trends and geographic patterns of fatal opioid intoxications in Connecticut, USA: 1997-2007. *Drug Alcohol Depend*. 2011;115(3):221-8.
- 657. Dunn KM, Saunders KW, Rutter CM, et al. Opioid prescriptions for chronic pain and overdose: a cohort study. Ann Intern Med. 2010;152(2):85-92.
- 658. Grattan A, Sullivan M, Saunders K, Campbell C, Von Korff M. Depression and prescription opioid misuse among chronic opioid therapy recipients with no history of substance abuse. *Annals Fam Med.* 2012;10(4):304-11.
- 659. Hadidi MS, Ibrahim MI, Abdallat IM, Hadidi KA. Current trends in drug abuse associated fatalities Jordan, 2000-2004. Forensic Sci Int. 2009;186(1-3):44-7.
- 660. Hall A, Logan J, Toblin R, et al. Patterns of abuse among unintentional pharmaceutical overdose fatalities. JAMA. 2008;300(22):2613-20.
- 661. Manchikanti L, Damron KS, McManus CD, Barnhill RC. Patterns of illicit drug use and opioid abuse in patients with chronic pain at initial evaluation: a prospective, observational study. *Pain Physician*. 2004;7(4):431-7.
- 662. Nyhlen A, Fridell M, Backstrom M, Hesse M, Krantz P. Substance abuse and psychiatric co-morbidity as predictors of premature mortality in Swedish drug abusers: a prospective longitudinal study 1970-2006. *BMC Psychiatry*. 2011;11122.
- 663. Paulozzi L, Baldwin G, Franklin G, et al. CDC Grand Rounds: Prescription Drug Overdoses-a U.S. Epidemic. *MMWR*. 2012;61(1):10-3.
- 664. Paulozzi LJ, Logan JE, Hall AJ, McKinstry E, Kaplan JA, Crosby AE. A comparison of drug overdose deaths involving methadone and other opioid analgesics in West Virginia. *Addiction*. 2009;104(9):1541-8.
- 665. Shah NG, Lathrop SL, Reichard RR, Landen MG. Unintentional drug overdose death trends in New Mexico, USA, 1990-2005: combinations of heroin, cocaine, prescription opioids and alcohol. *Addiction*. 2008;103(1):126-36.
- 666. Toblin RL, Paulozzi LJ, Logan JE, Hall AJ, Kaplan JA. Mental illness and psychotropic drug use among prescription drug overdose deaths: a medical examiner chart review. *J Clin Psychiatry*. 2010;71(4):491-6.
- 667. Webster L, Cochella S, Dasgupta N, et al. An analysis of the root causes for opioid-related overdose deaths in the United States. *Pain Med.* 2011;12(Suppl 2):S26-35.
- 668. Wunsch M, Nakamoto K, Behonick G, Massello W. Opioid deaths in rural Virginia: a description of the high prevalence of accidental fatalities involving prescribed medications. *Am J Addict*. 2009;18(1).
- 669. Wysowski DK. Surveillance of prescription drug-related mortality using death certificate data. *Drug Saf.* 2007;30(6):533-40.
- 670. Wysowski DK, Governale LA, Swann J. Trends in outpatient prescription drug use and related costs in the US: 1998-2003. *Pharmacoeconomics*. 2006;24(3):233-6.
- 671. Centers for Disease Control and Prevention. Unintentional deaths from drug poisoning by urbanization of area New Mexico, 1994–2003. *MMWR*. 2005;54(35):870-3.
- 672. Centers for Disease Control and Prevention. Adult Use of Prescription Opioid Pain Medications Utah, 2008. MMWR. 2010;59(6):153-7.
- 673. Dean M. Opioids in renal failure and dialysis patients. J Pain Symptom Manage. 2004;28(5):497-504.
- 674. Deyo RA, Smith DH, Johnson ES, et al. Opioids for back pain patients: primary care prescribing patterns and use of services. *J Am Board Fam Med*. 2011;24(6):717-27.
- 675. Fareed A, Casarella J, Roberts M, et al. High dose versus moderate dose methadone maintenance: is there a better outcome? J Addict Dis. 2009;28(4):399-405.

- 676. Goodridge D, Lawson J, Rocker G, Marciniuk D, Rennie D. Factors associated with opioid dispensation for patients with COPD and lung cancer in the last year of life: A retrospective analysis. *Int J Chron Obstruct Pulmon Dis.* 2010;599-105.
- 677. Mills K, Teesson M, Ross J, Darke S, Shanahan M. The costs and outcomes of treatment for opioid dependence associated with posttraumatic stress disorder. *Psychiatr Serv.* 2005;56(8):940-5.
- 678. Seal KH, Shi Y, Cohen G, et al. Association of mental health disorders with prescription opioids and high-risk opioid use in US veterans of Iraq and Afghanistan. *JAMA*. 2012;307(9):940-7.
- 679. Walter SR, Thein HH, Amin J, et al. Trends in mortality after diagnosis of hepatitis B or C infection: 1992-2006. J Hepatol. 2011;54(5):879-86.
- 680. Gomes T, Redelmeier DA, Juurlink DN, Dhalla IA, Camacho X, Mamdani MM. Opioid dose and risk of road trauma in Canada: a population-based study. *JAMA Intern Med.* 2013;173(3):196-201.
- 681. Cifuentes M, Webster B, Genevay S, Pransky G. The course of opioid prescribing for a new episode of disabling low back pain: opioid features and dose escalation. *Pain*. 2010;151(1):22-9.
- 682. Volinn E, Fargo JD, Fine PG. Opioid therapy for nonspecific low back pain and the outcome of chronic work loss. *Pain*. 2009;142(3):194-201.
- 683. Dersh J, Mayer T, Gatchel R, Polatin P, Theodore B, Mayer E. Prescription opioid dependence is associated with poorer outcomes in disabling spinal disorders. *Spine (Phila Pa 1976)*. 2008;33(20):2219-27.
- 684. Innes GD, Croskerry P, Worthington J, Beveridge R, Jones D. Ketorolac versus acetaminophen-codeine in the emergency department treatment of acute low back pain. *J Emerg Med.* 1998;16(4):549-56.
- 685. Veenema K, Leahey N, S. S. Ketorolac versus meperidine: ED treatment of severe musculoskeletal low back pain. Am J Emerg Med. 2000;18(4):404-7.
- 686. Reneman MF, Jorritsma W, Schellekens JM, Goeken LN. Concurrent validity of questionnaire and performance-based disability measurements in patients with chronic nonspecific low back pain. *J Occup Rehabil*. 2002;12(3):119-29.
- 687. Swinkels-Meewisse IE, Roelofs J, Oostendorp RA, Verbeek AL, Vlaeyen JW. Acute low back pain: pain-related fear and pain catastrophizing influence physical performance and perceived disability. *Pain*. 2006;120(1-2):36-43.
- 688. Bohnert AS, Valenstein M, Bair MJ, et al. Association between opioid prescribing patterns and opioid overdose-related deaths. JAMA. 2011;305(13):1315-21.
- 689. Church CA, Stewart Ct, TJ OL, Wallace D. Rofecoxib versus hydrocodone/acetaminophen for postoperative analgesia in functional endoscopic sinus surgery. *Laryngoscope*. 2006;116(4):602-6.
- 690. Nussmeier NA, Whelton AA, Brown MT, et al. Safety and efficacy of the cyclooxygenase-2 inhibitors parecoxib and valdecoxib after noncardiac surgery. *Anesthesiology*. 2006;104(3):518-26.
- 691. Dirks J, Fredensborg BB, Christensen D, Fomsgaard JS, Flyger H, Dahl JB. A randomized study of the effects of single-dose gabapentin versus placebo on postoperative pain and morphine consumption after mastectomy. *Anesthesiology*. 2002;97(3):560-4.
- 692. Legeby M, Sandelin K, Wickman M, Olofsson C. Analgesic efficacy of diclofenac in combination with morphine and paracetamol after mastectomy and immediate breast reconstruction. *Acta Anaesthesiol Scand*. 2005;49(9):1360-6.
- 693. Pettersson PH, Jakobsson J, Owall A. Intravenous acetaminophen reduced the use of opioids compared with oral administration after coronary artery bypass grafting. *J Cardiothorac Vasc Anesth.* 2005;19(3):306-9.
- 694. Wininger SJ, Miller H, Minkowitz HS, et al. A randomized, double-blind, placebo-controlled, multicenter, repeat-dose study of two intravenous acetaminophen dosing regimens for the treatment of pain after abdominal laparoscopic surgery. *Clin Ther*. 2010;32(14):2348-69.
- 695. Buchler MW, Seiler CM, Monson JR, et al. Clinical trial: alvimopan for the management of post-operative ileus after abdominal surgery: results of an international randomized, double-blind, multicentre, placebo-controlled clinical study. *Aliment Pharmacol Ther.* 2008;28(3):312-25.
- 696. Wolff BG, Michelassi F, Gerkin TM, et al. Alvimopan, a novel, peripherally acting mu opioid antagonist: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and postoperative ileus. *Ann Surg*. 2004;240(4):728-34; discussion 34-5.

- 697. Dierking G, Duedahl TH, Rasmussen ML, et al. Effects of gabapentin on postoperative morphine consumption and pain after abdominal hysterectomy: a randomized, double-blind trial. *Acta Anaesthesiol Scand*. 2004;48(3):322-7.
- 698. Pizzi LT, Toner R, Foley K, et al. Relationship between potential opioid-related adverse effects and hospital length of stay in patients receiving opioids after orthopedic surgery. *Pharmacotherapy*. 2012;32(6):502-14.
- 699. Christensen KS, Cohen AE, Mermelstein FH, et al. The analgesic efficacy and safety of a novel intranasal morphine formulation (morphine plus chitosan), immediate release oral morphine, intravenous morphine, and placebo in a postsurgical dental pain model. *Anesth Analg.* 2008;107(6):2018-24.
- 700. Nader A, Kendall MC, Wixson RL, Chung B, Polakow LM, McCarthy RJ. A randomized trial of epidural analgesia followed by continuous femoral analgesia compared with oral opioid analgesia on short- and long-term functional recovery after total knee replacement. *Pain Med.* 2012;13(7):937-47.
- 701. Belknap SM, Moore H, Lanzotti SA, et al. Application of software design principles and debugging methods to an analgesia prescription reduces risk of severe injury from medical use of opioids. *Clin Pharmacol Ther*. 2008;84(3):385-92.
- 702. Federation of State Medical Boards. Model Policy on the Use of Opioid Analgesics in the Treatment of Chronic Pain. 2013.
- 703. International Association of Industrial Accident Boards and Commissions. Reducing Inappropriate Opioid Use in Treatment of Injured Workers: A Policy Guide. 2013. http://www.iaiabc.org/files/OpioidPolicies_05-29-13.pdf.
- 704. Brouwer S, Dijkstra PU, Stewart RE, Goeken LN, Groothoff JW, Geertzen JH. Comparing self-report, clinical examination and functional testing in the assessment of work-related limitations in patients with chronic low back pain. *Disabil Rehabil*. 2005;27(17):999-1005.
- 705. Buelow AK, Haggard R, Gatchel RJ. Additional validation of the pain medication questionnaire in a heterogeneous sample of chronic pain patients. *Pain Pract.* 2009;9(6):428-34.
- 706. Food and Drug Administration. Letter to Dr. Andrew Kolodny in Response to the Citizen Petition Submitted by Physicians for Responsible Opioid Prescribing. 2013.
- 707. Fox CD, Steger HG, Jennison JH. Ratio scaling of pain perception with the submaximum effort tourniquet technique. *Pain*. 1979;7(1):21-9.
- 708. Gross DP, Battie MC. Construct validity of a kinesiophysical functional capacity evaluation administered within a worker's compensation environment. *J Occup Rehabil*. 2003;13(4):287-95.
- 709. Hartrick CT, Kovan JP, Shapiro S. The numeric rating scale for clinical pain measurement: a ratio measure? *Pain Pract*. 2003;3(4):310-6.
- 710. Lund I, Lundeberg T, Sandberg L, Budh CN, Kowalski J, Svensson E. Lack of interchangeability between visual analogue and verbal rating pain scales: a cross sectional description of pain etiology groups. *BMC Med Res Methodol*. 2005;531.
- 711. Mahowald ML, Singh JA, Majeski P. Opioid use by patients in an orthopedics spine clinic. Arthritis Rheum. 2005;52(1):312-21.
- 712. Morasco BJ, Cavanagh R, Gritzner S, Dobscha SK. Care management practices for chronic pain in veterans prescribed high doses of opioid medications. *Fam Pract.* 2013.
- 713. Reneman MF, Schiphorts Preuper HR, Kleen M, Geertzen JH, Dijkstra PU. Are pain intensity and pain related fear related to functional capacity evaluation performances of patients with chronic low back pain? *J Occup Rehabil*. 2007;17(2):247-58.
- 714. Schiphorst Preuper H, Reneman M, Boonstra A, et al. Relationship between psychological factors and performance-based and self-reported disability in chronic low back pain. *Eur Spine J*. 2008;17(11):1448-56.
- 715. Smeets RJ, van Geel AC, Kester AD, Knottnerus JA. Physical capacity tasks in chronic low back pain: what is the contributing role of cardiovascular capacity, pain and psychological factors? *Disabil Rehabil*. 2007;29(7):577-86.
- 716. Von Korff M, Merrill JO, Rutter CM, Sullivan M, Campbell CI, Weisner C. Time-scheduled vs. pain-contingent opioid dosing in chronic opioid therapy. *Pain*. 2011;152(6):1256-62.
- 717. Cifuentes M, Powell R, Webster B. Shorter time between opioid prescriptions associated with reduced work disability among acute low back pain opioid users. *J Occup Environ Med*. 2012;54(4):491-6.

- 718. Hartrick C, Gatchel R, Conroy S. Identification and management of pain medication abuse and misuse: current state and future directions. *Expert Rev Neurother*. 2012;12(5).
- 719. Kidner CL, Gatchel RJ, Mayer TG. MMPI disability profile is associated with degree of opioid use in chronic work-related musculoskeletal disorders. *Clin J Pain*. 2010;26(1):9-15.
- 720. Naliboff BD, Wu SM, Schieffer B, et al. A randomized trial of 2 prescription strategies for opioid treatment of chronic nonmalignant pain. *J Pain*. 2011;12(2):288-96.
- 721. Chou R, Fanciullo GJ, Fine PG, et al. Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain. J Pain. 2009;10(2):113-30.
- 722. Goldberg K, Simel D, Oddone E. Effect of an opioid management system on opioid prescribing and unscheduled visits in a large primary care clinic. *JCOM*. 2005;12(12):621-8.
- 723. Manchikanti L, Manchukonda R, Damron KS, Brandon D, McManus CD, Cash K. Does adherence monitoring reduce controlled substance abuse in chronic pain patients? *Pain Physician*. 2006;9(1):57-60.
- 724. Manchikanti L, Manchukonda R, Pampati V, et al. Does random urine drug testing reduce illicit drug use in chronic pain patients receiving opioids? *Pain Physician*. 2006;9(2):123-9.
- 725. Starrels JL, Becker WC, Alford DP, Kapoor A, Williams AR, Turner BJ. Systematic review: treatment agreements and urine drug testing to reduce opioid misuse in patients with chronic pain. *Ann Intern Med.* 2010;152(11):712-20.
- 726. Wiedemer N, Harden P, Arndt I, Gallagher R. The opioid renewal clinic: a primary care, managed approach to opioid therapy in chronic pain patients at risk for substance abuse. *Pain Med.* 2007;8(7):573-84.
- 727. Chelminski PR, Ives TJ, Felix KM, et al. A primary care, multi-disciplinary disease management program for opioid-treated patients with chronic non-cancer pain and a high burden of psychiatric comorbidity. *BMC Health Serv Res.* 2005;5(1):3.
- 728. Compton PA, Wu SM, Schieffer B, Pham Q, Naliboff BD. Introduction of a self-report version of the Prescription Drug Use Questionnaire and relationship to medication agreement noncompliance. *J Pain Symptom Manage*. 2008;36(4):383-95.
- 729. Hariharan J, Lamb GC, Neuner JM. Long-term opioid contract use for chronic pain management in primary care practice. A five year experience. *J Gen Intern Med*. 2007;22(4):485-90.
- 730. Ives TJ, Chelminski PR, Hammett-Stabler CA, et al. Predictors of opioid misuse in patients with chronic pain: a prospective cohort study. *BMC Health Serv Res*. 2006;646.
- 731. Vaglienti RM, Huber SJ, Noel KR, Johnstone RE. Misuse of prescribed controlled substances defined by urinalysis. W V Med J. 2003;99(2):67-70.
- 732. Burchman S, Pagel P. Implementation of a formal treatment agreement for outpatient management of chronic nonmalignant pain with opioid analgesics. *J Pain Symptom Manage*. 1995;10(7):556-63.
- 733. Appenzeller BM, Agirman R, Neuberg P, Yegles M, Wennig R. Segmental determination of ethyl glucuronide in hair: a pilot study. *Forensic Sci Int.* 2007;173(2-3):87-92.
- 734. Cooper GA, Kronstrand R, Kintz P. Society of Hair Testing guidelines for drug testing in hair. *Forensic Sci Int.* 2012;218(1-3):20-4.
- 735. Kulaga V, Velazquez-Armenta Y, Aleksa K, Vergee Z, Koren G. The effect of hair pigment on the incorporation of fatty acid ethyl esters (FAEE). *Alcohol Alcohol*. 2009;44(3):287-92.
- 736. Lamoureux F, Gaulier JM, Sauvage FL, Mercerolle M, Vallejo C, Lachatre G. Determination of ethyl-glucuronide in hair for heavy drinking detection using liquid chromatography-tandem mass spectrometry following solid-phase extraction. *Anal Bioanal Chem.* 2009;394(7):1895-901.
- 737. Lees R, Kingston R, Williams TM, Henderson G, Lingford-Hughes A, Hickman M. Comparison of ethyl glucuronide in hair with self-reported alcohol consumption. *Alcohol Alcohol.* 2012;47(3):267-72.
- 738. Politi L, Zucchella A, Morini L, Stramesi C, Polettini A. Markers of chronic alcohol use in hair: comparison of ethyl glucuronide and cocaethylene in cocaine users. *Forensic Sci Int*. 2007;172(1):23-7.

- 739. Substance Abuse and Mental Health Services Administration. Federal Guidelines for Opioid Treatment. 2013.
- 740. Auerbach K. Drug testing methods. In: Lessenger J, Roper G, eds. *Drug Courts: A New Approach to Treatment and Rehabilitation*. New York, NY: Springer Science+Business Media; 2007:215-33.
- 741. Heit H, Gourlay D. Urine drug testing in pain medicine. *J Pain Symptom Manage*. 2004;27(3):260-7.
- 742. Jortani S, Stauble E, Wong S. Chapter 1. Pharmacogenetics in clinical and forensic toxicology: opioid overdoses and deaths. In: Mozayani A, Raymon L, eds. *Handbook of Drug Interactions A Clinical and Forensic Guide*. New York, NY: Humana Press; 2012:3-22.
- 743. Ellis JM, Folkers K, Levy M, et al. Response of vitamin B-6 deficiency and the carpal tunnel syndrome to pyridoxine. *Proc Natl Acad Sci U S A*. 1982;79(23):7494-8.
- 744. Guzmán FL, Gonzalez-Buitrago J, De Arriba F, Mateos F, Moyano J, López-Alburquerque T. Carpal tunnel syndrome and vitamin B6. *Klinische Wochenschrift*. 1989;67(1):38-41.
- 745. Spooner GR, Desai HB, Angel JF, Reeder BA, Donat JR. Using pyridoxine to treat carpal tunnel syndrome. Randomized control trial. *Can Fam Physician*. 1993;392122-7.
- 746. Stransky M, Rubin A, Lava NS, Lazaro RP. Treatment of carpal tunnel syndrome with vitamin B6: a double-blind study. *South Med J*. 1989;82(7):841-2.
- 747. Keniston RC, Nathan PA, Leklem JE, Lockwood RS. Vitamin B6, vitamin C, and carpal tunnel syndrome: a cross-sectional study of 441 adults. *Journal of occupational and environmental medicine*. 1997;39(10):949-59.
- 748. Franzblau A, Rock CL, Werner RA, Albers JW, Kelly MP, Johnston EC. The relationship of vitamin B6 status to median nerve function and carpal tunnel syndrome among active industrial workers. *Journal of occupational and environmental medicine*. 1996;38(5):485-91.
- 749. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K. Amelioration by mecobalamin of subclinical carpal tunnel syndrome involving unaffected limbs in stroke patients. *J Neurol Sci.* 2005;231(1-2):13-8.
- 750. Galer BS, Rowbotham MC, Perander J, Friedman E. Topical lidocaine patch relieves postherpetic neuralgia more effectively than a vehicle topical patch: results of an enriched enrollment study. *Pain*. 1999;80(3):533-8.
- 751. Nalamachu S, Crockett RS, Mathur D. Lidocaine patch 5 for carpal tunnel syndrome: how it compares with injections: a pilot study. *J Fam Pract*. 2006;55(3):209-14.
- 752. US Food and Drug Administration. Botox and Botox Cosmetic (botulinum toxin type A) and Myobloc (botulinum toxin type B). *MedWatch*. 2009.
- 753. Jensen MP, Gammaitoni AR, Olaleye DO, Oleka N, Nalamachu SR, Galer BS. The pain quality assessment scale: assessment of pain quality in carpal tunnel syndrome. *J Pain*. 2006;7(11):823-32.
- 754. Moghtaderi AR, Jazayeri SM, Azizi S. EMLA cream for carpal tunnel syndrome: how it compares with steroid injection. *Electromyogr Clin Neurophysiol*. 2009;49(6-7):287-9.
- 755. Hui AC, Wong SM, Leung HW, Man BL, Yu E, Wong LK. Gabapentin for the treatment of carpal tunnel syndrome: a randomized controlled trial. *Eur J Neurol*. 2011;18(5):726-30.
- 756. Carter R, Aspy CB, Mold J. The effectiveness of magnet therapy for treatment of wrist pain attributed to carpal tunnel syndrome. J Fam Pract. 2002;51(1):38-40.
- 757. Colbert AP, Markov MS, Carlson N, Gregory WL, Carlson H, Elmer PJ. Static magnetic field therapy for carpal tunnel syndrome: a feasibility study. *Arch Phys Med Rehabil*. 2010;91(7):1098-104.
- 758. Weintraub MI, Cole SP. Neuromagnetic treatment of pain in refractory carpal tunnel syndrome: An electrophysiological and placebo analysis. *J Back Musculoskelet Rehabil*. 2000;15(2):77-81.
- 759. Dakowicz A, Kuryliszyn-Moskal A, Kosztyla-Hojna B, Moskal D, Latosiewicz R. Comparison of the long-term effectiveness of physiotherapy programs with lowlevel laser therapy and pulsed magnetic field in patients with carpal tunnel syndrome. *Adv Med Sci*. 2011;56(2):270-4.
- 760. Weintraub MI, Cole SP. A randomized controlled trial of the effects of a combination of static and dynamic magnetic fields on carpal tunnel syndrome. *Pain Med.* 2008;9(5):493-504.

- 761. Arikan F. The effectiveness of pulsed magnetic field therapy in idiopathic carpal tunnel syndrome: a randomized, double blind, sham controlled trial. *J Phys Med Rehabil Sci.* 2011;141-8.
- 762. Huisstede BM, Hoogvliet P, Randsdorp MS, Glerum S, van Middelkoop M, Koes BW. Carpal tunnel syndrome. Part I: effectiveness of nonsurgical treatments--a systematic review. *Arch Phys Med Rehabil*. 2010;91(7):981-1004.
- 763. Gerritsen AA, de Vet HC, Scholten RJ, Bertelsmann FW, de Krom MC, Bouter LM. Splinting vs surgery in the treatment of carpal tunnel syndrome: a randomized controlled trial. *JAMA*. 2002;288(10):1245-51.
- 764. Premoselli S, Sioli P, Grossi A, Cerri C. Neutral wrist splinting in carpal tunnel syndrome: a 3- and 6-months clinical and neurophysiologic follow-up evaluation of night-only splint therapy. *Eura Medicophys*. 2006;42(2):121-6.
- 765. Walker WC, Metzler M, Cifu DX, Swartz Z. Neutral wrist splinting in carpal tunnel syndrome: a comparison of night-only versus full-time wear instructions. *Arch Phys Med Rehabil*. 2000;81(4):424-9.
- 766. Manente G, Torrieri F, Di Blasio F, Staniscia T, Romano F, Uncini A. An innovative hand brace for carpal tunnel syndrome: a randomized controlled trial. *Muscle Nerve*. 2001;24(8):1020-5.
- 767. Stralka SW, Jackson JA, Lewis AR. Treatment of hand and wrist pain. A randomized clinical trial of high voltage pulsed, direct current built into a wrist splint. *AAOHN J.* 1998;46(5):233-6.
- 768. Burke DT, Burke MM, Stewart GW, Cambre A. Splinting for carpal tunnel syndrome: in search of the optimal angle. *Arch Phys Med Rehabil*. 1994;75(11):1241-4.
- 769. Nobuta S, Sato K, Nakagawa T, Hatori M, Itoi E. Effects of wrist splinting for Carpal Tunnel syndrome and motor nerve conduction measurements. *Ups J Med Sci.* 2008;113(2):181-92.
- 770. Page MJ, Massy-Westropp N, O'Connor D, Pitt V. Splinting for carpal tunnel syndrome. *Cochrane Database Syst Rev.* 2012;7CD010003.
- 771. Peters S, Page MJ, Coppieters MW, Ross M, Johnston V. Rehabilitation following carpal tunnel release. Cochrane Database Syst Rev. 2013;6CD004158.
- 772. Stevinson C, Devaraj VS, Fountain-Barber A, Hawkins S, Ernst E. Homeopathic arnica for prevention of pain and bruising: randomized placebo-controlled trial in hand surgery. *J R Soc Med.* 2003;96(2):60-5.
- 773. King S, Thomas JJ, Rice MS. The immediate and short-term effects of a wrist extension orthosis on upper-extremity kinematics and range of shoulder motion. *Am J Occup Ther*. 2003;57(5):517-24.
- 774. De Angelis MV, Pierfelice F, Di Giovanni P, Staniscia T, Uncini A. Efficacy of a soft hand brace and a wrist splint for carpal tunnel syndrome: a randomized controlled study. *Acta Neurol Scand*. 2009;119(1):68-74.
- 775. Storey P AD, Dear H, Bradley M, Burke F. Pilot randomised controlled trial comparing C-Trac splints with Beta Wrist Braces for the management of carpal tunnel syndrome. *Hand Ther*. 2013;18(2):35-41.
- 776. Gerritsen AA, Korthals-de Bos IB, Laboyrie PM, de Vet HC, Scholten RJ, Bouter LM. Splinting for carpal tunnel syndrome: prognostic indicators of success. J Neurol Neurosurg Psychiatry. 2003;74(9):1342-4.
- 777. Ucan H, Yagci I, Yilmaz L, Yagmurlu F, Keskin D, Bodur H. Comparison of splinting, splinting plus local steroid injection and open carpal tunnel release outcomes in idiopathic carpal tunnel syndrome. *Rheumatol Int.* 2006;27(1):45-51.
- 778. Korthals-de Bos IB, Gerritsen AA, van Tulder MW, et al. Surgery is more cost-effective than splinting for carpal tunnel syndrome in the Netherlands: results of an economic evaluation alongside a randomized controlled trial. *BMC Musculoskelet Disord*. 2006;786.
- 779. Fusakul Y, Aranyavalai T, Saensri P, Thiengwittayaporn S. Low-level laser therapy with a wrist splint to treat carpal tunnel syndrome: A double-blinded randomized controlled trial. *Lasers in Medical Science*. 2014;29(3):1279-87.
- 780. Hall B, Lee HC, Fitzgerald H, Byrne B, Barton A, Lee AH. Investigating the effectiveness of full-time wrist splinting and education in the treatment of carpal tunnel syndrome: a randomized controlled trial. *Am J Occup Ther*. 2013;67(4):448-59.

- 781. Kumnerddee W, Kaewtong A. Efficacy of acupuncture versus night splinting for carpal tunnel syndrome: a randomized clinical trial. *J Med Assoc Thai*. 2010;93(12):1463-9.
- 782. Macdermid JC, Vincent JI, Gan BS, Grewal R. A blinded placebo-controlled randomized trial on the use of astaxanthin as an adjunct to splinting in the treatment of carpal tunnel syndrome. *Hand (N Y)*. 2012;7(1):1-9.
- 783. Soyupek F, Kutluhan S, Uslusoy G, Ilgun E, Eris S, Askin A. The efficacy of phonophoresis on electrophysiological studies of the patients with carpal tunnel syndrome. *Rheumatol Int*. 2012;32(10):3235-42.
- 784. Bhatia R, Field J, Grote J, Huma H. Does splintage help pain after carpal tunnel release? J Hand Surg [Br]. 2000;25(2):150.
- 785. Dincer U, Cakar E, Kiralp MZ, Kilac H, Dursun H. The effectiveness of conservative treatments of carpal tunnel syndrome: splinting, ultrasound, and low-level laser therapies. *Photomed Laser Surg.* 2009;27(1):119-25.
- 786. Gurcay E, Unlu E, Gurcay AG, Tuncay R, Cakci A. Assessment of phonophoresis and iontophoresis in the treatment of carpal tunnel syndrome: a randomized controlled trial. *Rheumatol Int.* 2012;32(3):717-22.
- 787. Koca I, Boyaci A, Tutoglu A, Ucar M, Kocaturk O. Assessment of the effectiveness of interferential current therapy and TENS in the management of carpal tunnel syndrome: a randomized controlled study. *Rheumatol Int.* 2014;34(12):1639-45.
- 788. Madjdinasab N ZN, Assarzadegan F, Ali AM, Pipelzadeh M. Efficacy comparison of splint and oral steroid therapy in nerve conduction velocity and latency median nerve in carpal tunnel syndrome in south west of Iran. *Pak J Med Sci.* 2008;24(5):725-28.
- 789. Sevim S, Dogu O, Camdeviren H, et al. Long-term effectiveness of steroid injections and splinting in mild and moderate carpal tunnel syndrome. *Neurol Sci.* 2004;25(2):48-52.
- 790. Branco K, Naeser MA. Carpal tunnel syndrome: clinical outcome after low-level laser acupuncture, microamps transcutaneous electrical nerve stimulation, and other alternative therapies--an open protocol study. *J Altern Complement Med.* 1999;5(1):5-26.
- 791. Sim H, Shin BC, Lee MS, Jung A, Lee H, Ernst E. Acupuncture for carpal tunnel syndrome: a systematic review of randomized controlled trials. *J Pain*. 2011;12(3):307-14.
- 792. Yao E, Gerritz PK, Henricson E, et al. Randomized controlled trial comparing acupuncture with placebo acupuncture for the treatment of carpal tunnel syndrome. *PM R*. 2012;4(5):367-73.
- 793. Yang CP, Hsieh CL, Wang NH, et al. Acupuncture in patients with carpal tunnel syndrome: A randomized controlled trial. *Clin J Pain*. 2009;25(4):327-33.
- 794. Yang CP, Wang NH, Li TC, et al. A randomized clinical trial of acupuncture versus oral steroids for carpal tunnel syndrome: a long-term follow-up. *J Pain*. 2011;12(2):272-9.
- 795. Ho CY, Lin HC, Lee YC, et al. Clinical effectiveness of acupuncture for carpal tunnel syndrome. Am J Chin Med. 2014;42(2):303-14.
- 796. Khosrawi S, Moghtaderi A, Haghighat S. Acupuncture in treatment of carpal tunnel syndrome: A randomized controlled trial study. J Res Med Sci. 2012;17(1):1-7.
- 797. Cai D. Warm-needling plus Tuina relaxing for the treatment of carpal tunnel syndrome. J Tradit Chin Med. 2010;30(1):23-4.
- 798. Thomas RE, Vaidya SC, Herrick RT, Congleton JJ. The effects of biofeedback on carpal tunnel syndrome. *Ergonomics*. 1993;36(4):353-61.
- 799. Ekim A, Armagan O, Tascioglu F, Oner C, Colak M. Effect of low level laser therapy in rheumatoid arthritis patients with carpal tunnel syndrome. *Swiss Med Wkly*. 2007;137(23-24):347-52.
- 800. Padua L, Padua R, Moretti C, Nazzaro M, Tonali P. Clinical outcome and neurophysiological results of low-power laser irradiation in carpal tunnel syndrome. *Lasers Med Sci.* 1999;14198-202.
- 801. Fitz-Ritson D. Lasers and their therapeutic application in chiropractic. *The Journal of the Canadian Chiropractic Association*. 2001;45(1):26.
- 802. Evcik D, Kavuncu V, Cakir T, Subasi V, Yaman M. Laser therapy in the treatment of carpal tunnel syndrome: a randomized controlled trial. *Photomed Laser Surg*. 2007;25(1):34-9.
- 803. Irvine J, Chong SL, Amirjani N, Chan KM. Double-blind randomized controlled trial of low-level laser therapy in carpal tunnel syndrome. *Muscle Nerve*. 2004;30(2):182-7.

- 804. Tascioglu F, Degirmenci NA, Ozkan S, Mehmetoglu O. Low-level laser in the treatment of carpal tunnel syndrome: clinical, electrophysiological, and ultrasonographical evaluation. *Rheumatol Int*. 2012;32(2):409-15.
- 805. Bakhtiary AH, Rashidy-Pour A. Ultrasound and laser therapy in the treatment of carpal tunnel syndrome. Aust J Physiother. 2004;50(3):147-51.
- 806. Saeed F-U-R, Hanif S, Aasim M. The effects of laser and ultrasound therapy on carpal tunnel syndrome. 2012.
- 807. Yagci I, Elmas O, Akcan E, Ustun I, Gunduz OH, Guven Z. Comparison of splinting and splinting plus low-level laser therapy in idiopathic carpal tunnel syndrome. *Clin Rheumatol*. 2009;28(9):1059-65.
- 808. Chang WD, Wu JH, Jiang JA, Yeh CY, Tsai CT. Carpal tunnel syndrome treated with a diode laser: a controlled treatment of the transverse carpal ligament. *Photomed Laser Surg.* 2008;26(6):551-7.
- 809. Naeser MA, Hahn KA, Lieberman BE, Branco KF. Carpal tunnel syndrome pain treated with low-level laser and microamperes transcutaneous electric nerve stimulation: A controlled study. *Arch Phys Med Rehabil*. 2002;83(7):978-88.
- 810. Raeissadat A, Soltani ZR. Study of long term effects of laser therapy versus local corticosteroid injection in patients with carpal tunnel syndrome. *J Lasers Med Sci* 2010;1(1):24-30.
- 811. Shooshtari SM, Badiee V, Taghizadeh SH, Nematollahi AH, Amanollahi AH, Grami MT. The effects of low level laser in clinical outcome and neurophysiological results of carpal tunnel syndrome. *Electromyogr Clin Neurophysiol*. 2008;48(5):229-31.
- 812. Stasinopoulos D, Stasinopoulos I, Johnson MI. Treatment of carpal tunnel syndrome with polarized polychromatic noncoherent light (Bioptron light): A preliminary, prospective, open clinical trial. *Photomedicine and Laser Surgery*. 2005;23(2):225-8.
- 813. Sucher BM. Palpatory diagnosis and manipulative management of carpal tunnel syndrome. J Am Osteopath Assoc. 1994;94(8):647-63.
- 814. Brantingham JW, Cassa TK, Bonnefin D, et al. Manipulative and multimodal therapy for upper extremity and temporomandibular disorders: a systematic review. *J Manipulative Physiol Ther*. 2013;36(3):143-201.
- 815. Clar C, Tsertsvadze A, Court R, Hundt GL, Clarke A, Sutcliffe P. Clinical effectiveness of manual therapy for the management of musculoskeletal and nonmusculoskeletal conditions: systematic review and update of UK evidence report. *Chiropr Man Therap*. 2014;22(1):12.
- 816. Heiser R, O'Brien VH, Schwartz DA. The use of joint mobilization to improve clinical outcomes in hand therapy: a systematic review of the literature. *J Hand Ther*. 2013;26(4):297-311; quiz
- 817. Hunt K, Hung S, Boddy K, Ernst E. Chiropractic manipulation for carpal tunnel syndrome: a systematic review. *Hand Ther.* 2009.
- 818. McHardy A, Hoskins W, Pollard H, Onley R, Windsham R. Chiropractic treatment of upper extremity conditions: a systematic review. *J Manipulative Physiol Ther*. 2008;31(2):146-59.
- 819. Burke J, Buchberger DJ, Carey-Loghmani MT, Dougherty PE, Greco DS, Dishman JD. A pilot study comparing two manual therapy interventions for carpal tunnel syndrome. *J Manipulative Physiol Ther*. 2007;30(1):50-61.
- 820. Pratelli E, Pintucci M, Cultrera P, et al. Conservative treatment of carpal tunnel syndrome: comparison between laser therapy and Fascial Manipulation((R)). J Bodyw Mov Ther. 2015;19(1):113-8.
- 821. Bialosky J, Bishop M, Robinson M, Price D, George S. Heightened pain sensitivity in individuals with signs and symptoms of carpal tunnel syndrome and the relationship to clinical outcomes following a manual therapy intervention. *Man Ther.* 2011;16(6):602-8.
- 822. Madenci E, Altindag O, Koca I, Yilmaz M, Gur A. Reliability and efficacy of the new massage technique on the treatment in the patients with carpal tunnel syndrome. *Rheumatol Int.* 2012;32(10):3171-9.
- 823. Moraska A, Chandler C, Edmiston-Schaetzel A, Franklin G, Calenda EL, Enebo B. Comparison of a targeted and general massage protocol on strength, function, and symptoms associated with carpal tunnel syndrome: a randomized pilot study. *J Altern Complement Med*. 2008;14(3):259-67.
- 824. Moraska A, Pollini RA, Boulanger K, Brooks MZ, Teitlebaum L. Physiological adjustments to stress measures following massage therapy: a review of the literature. *Evid Based Complement Alternat Med*. 2010;7(4):409-18.

- 825. Blankfield RP, Sulzmann C, Fradley LG, Tapolyai AA, Zyzanski SJ. Therapeutic touch in the treatment of carpal tunnel syndrome. *J Am Board Fam Pract*. 2001;14(5):335-42.
- 826. Dziedzic K, Hill J, Lewis M, Sim J, Daniels J, Hay EM. Effectiveness of manual therapy or pulsed shortwave diathermy in addition to advice and exercise for neck disorders: a pragmatic randomized controlled trial in physical therapy clinics. *Arthritis Rheum*. 2005;53(2):214-22.
- 827. Garrett CL, Draper DO, Knight KL. Heat distribution in the lower leg from pulsed short-wave diathermy and ultrasound treatments. J Athl Train. 2000;35(1):50-5.
- 828. Goats GC. Continuous short-wave (radio-frequency) diathermy. Br J Sports Med. 1989;23(2):123-7.
- 829. Frasca G, Maggi L, Padua L, et al. Short-term effects of local microwave hyperthermia on pain and function in patients with mild to moderate carpal tunnel syndrome: a double blind randomized sham-controlled trial. *Clin Rehabil.* 2011;25(12):1109-18.
- 830. Incebiyik S, Boyaci A, Tutoglu A. Short-term effectiveness of short-wave diathermy treatment on pain, clinical symptoms, and hand function in patients with mild or moderate idiopathic carpal tunnel syndrome. *J Back Musculoskeletal Rehabil*. 20141-8.
- 831. Ebenbichler G, Resch K, Nicolakis P, et al. Ultrasound treatment for treating the carpal tunnel syndrome: randomised "sham" controlled trial. *Br Med J*. 1998;316(7133):731-5.
- 832. Oztas O, Turan B, Bora I, Karakaya MK. Ultrasound therapy effect in carpal tunnel syndrome. Arch Phys Med Rehabil. 1998;79(12):1540-4.
- 833. Piravej K, Boonhong J. Effect of ultrasound thermotherapy in mild to moderate carpal tunnel syndrome. J Med Assoc Thai. 2004;87 Suppl 2S100-6.
- 834. Page MJ, O'Connor D, Pitt V, Massy-Westropp N. Therapeutic ultrasound for carpal tunnel syndrome. *Cochrane Database Syst Rev.* 2013;3CD009601.
- 835. Bilgici A, Ulusoy H, Kuru O, Canturk F. The comparison of ultrasound treatment and local steroid injection plus splinting in the carpal tunnel syndrome: a randomized controlled trial. *Bratisl Lek Listy*. 2010;111(12):659-65.
- 836. Chang YW, Hsieh SF, Horng YS, Chen HL, Lee KC, Horng YS. Comparative effectiveness of ultrasound and paraffin therapy in patients with carpal tunnel syndrome: a randomized trial. *BMC Musculoskelet Disord*. 2014;15399.
- 837. Armagan O, Bakilan F, Ozgen M, Mehmetoglu O, Oner S. Effects of placebo-controlled continuous and pulsed ultrasound treatments on carpal tunnel syndrome: a randomized trial. *Clinics (Sao Paulo)*. 2014;69(8):524-8.
- 838. Duymaz T, Sindel D, Kesikta N, Müslümano IL. Efficacy of some combined conservative methods in the treatment of carpal tunnel syndrome: a randomized controlled clinical and electrophysiological trial. *Turkish J Rheumatology*. 2012;27(1):38-46.
- 839. Aygul R, Ulvi H, Karatay S, Deniz O, Varoglu AO. Determination of sensitive electrophysiologic parameters at follow-up of different steroid treatments of carpal tunnel syndrome. *J Clin Neurophysiol*. 2005;22(3):222-30.
- 840. Bakhtiary AH, Fatemi E, Emami M, Malek M. Phonophoresis of dexamethasone sodium phosphate may manage pain and symptoms of patients with carpal tunnel syndrome. *Clin J Pain*. 2013;29(4):348-53.
- 841. Amirjani N, Ashworth N, Watt M, Gordon T, Chan K. Corticosteroid iontophoresis to treat carpal tunnel syndrome: A double-blind randomized controlled trial. *Muscle & nerve*. 2009;39(5):627-33.
- 842. Gokoglu F, Fndkoglu G, Yorgancoglu ZR, Okumus M, Ceceli E, Kocaoglu S. Evaluation of iontophoresis and local corticosteroid injection in the treatment of carpal tunnel syndrome. *Am J Phys Med Rehabil*. 2005;84(2):92-6.
- 843. Armstrong T, Devor W, Borschel L, Contreras R. Intracarpal steroid injection is safe and effective for short-term management of carpal tunnel syndrome. *Muscle Nerve*. 2004;29(1):82-8.
- 844. Dammers J, Veering M, Vermeulen M. Injection with methylprednisolone proximal to the carpal tunnel: randomised double blind trial. *Bmj*. 1999;319(7214):884-6.
- 845. Dammers JW, Roos Y, Veering MM, Vermeulen M. Injection with methylprednisolone in patients with the carpal tunnel syndrome: a randomised double blind trial testing three different doses. *J Neurol*. 2006;253(5):574-7.
- 846. Demirci S, Kutluhan S, Koyuncuoglu HR, et al. Comparison of open carpal tunnel release and local steroid treatment outcomes in idiopathic carpal tunnel syndrome. *Rheumatol Int*. 2002;22(1):33-7.

- 847. Feuerstein M, Burrell LM, Miller VI, Lincoln A, Huang GD, Berger R. Clinical management of carpal tunnel syndrome: a 12-year review of outcomes. *Am J Ind Med.* 1999;35(3):232-45.
- 848. Girlanda P, Dattola R, Venuto C, Mangiapane R, Nicolosi C, Messina C. Local steroid treatment in idiopathic carpal tunnel syndrome: short- and long-term efficacy. *J Neurol.* 1993;240(3):187-90.
- 849. Habib GS, Badarny S, Rawashdeh H. A novel approach of local corticosteroid injection for the treatment of carpal tunnel syndrome. *Clin Rheumatol*. 2006;25(3):338-40.
- 850. Hamamoto Filho PT, Leite FV, Ruiz T, Resende LA. A systematic review of anti-inflammatories for mild to moderate carpal tunnel syndrome. *J Clin Neuromuscul Dis*. 2009;11(1):22-30.
- 851. Hui A, Wong S, Leung C, et al. A randomized controlled trial of surgery vs steroid injection for carpal tunnel syndrome. *Neurology*. 2005;64(12):2074-8.
- 852. Ly-Pen D, Andreu JL. Treatment of carpal tunnel syndrome. Med Clin (Barc). 2005;125(15):585-9.
- 853. Ly-Pen D, Andreu JL, de Blas G, Sanchez-Olaso A, Millan I. Surgical decompression versus local steroid injection in carpal tunnel syndrome: a one-year, prospective, randomized, open, controlled clinical trial. *Arthritis Rheum*. 2005;52(2):612-9.
- 854. Ozdogan H, Yazici H. The efficacy of local steroid injections in idiopathic carpal tunnel syndrome: a double-blind study. Br J Rheumatol. 1984;23(4):272-5.
- 855. Wong S, Hui A, Lo SK, Chiu J, Poon W, Wong L. Single vs. two steroid injections for carpal tunnel syndrome: a randomised clinical trial. *Int J Clin Pract*. 2005;59(12):1417-21.
- 856. Schnetzler KA. Acute carpal tunnel syndrome. J Am Acad Orthop Surg. 2008;16(5):276-82.
- 857. Szabo RM. Acute carpal tunnel syndrome. Hand Clin. 1998;14(3):419-29, ix.
- 858. Hegmann K, Gaines W J, Keller R. Session #104: Advancements in Upper Extremity Ergonomics and Neuromusculoskeletal Disorders. *ACOEM State-of-the-Art Conference; Bridging Canyons to the 21st Century.* Phoenix, Arizona: J Occup Environ Med; 1998:745.
- 859. Burke FD, Bradley MJ, Sinha S, Wilgis EF, Dubin NH. Primary care management of patients with carpal tunnel syndrome referred to surgeons: are non-operative interventions effectively utilised? *Postgrad Med J*. 2007;83(981):498-501.
- 860. Atroshi I, Flondell M, Hofer M, Ranstam J. Methylprednisolone injections for the carpal tunnel syndrome: a randomized, placebo-controlled trial. *Ann Intern Med.* 2013;159(5):309-17.
- 861. Andreu JL, Ly-Pen D. A randomized controlled trial of surgery vs steroid injection for carpal tunnel syndrome. *Neurology*. 2006;66(6):955-6; author reply -6.
- 862. Wang AA, Whitaker E, Hutchinson DT, Coleman DA. Pain levels after injection of corticosteroid to hand and elbow. *Am J Orthop (Belle Mead NJ)*. 2003;32(8):383-5.
- 863. O'Gradaigh D, Merry P. Corticosteroid injection for the treatment of carpal tunnel syndrome. Ann Rheum Dis. 2000;59(11):918-9.
- 864. Ustun N, Tok F, Yagz AE, et al. Ultrasound-guided vs. blind steroid injections in carpal tunnel syndrome: A single-blind randomized prospective study. *Am J Phys Med Rehabil*. 2013;92(11):999-1004.
- 865. Karadas O, Tok F, Akarsu S, Tekin L, Balaban B. Triamcinolone acetonide vs procaine hydrochloride injection in the management of carpal tunnel syndrome: randomized placebo-controlled study. *J Rehabil Med*. 2012;44(7):601-4.
- 866. Karadas O, Tok F, Ulas UH, Odabasi Z. The effectiveness of triamcinolone acetonide vs. procaine hydrochloride injection in the management of carpal tunnel syndrome: a double-blind randomized clinical trial. *Am J Phys Med Rehabil*. 2011;90(4):287-92.
- 867. Ly-Pen D, Andreu JL, Millan I, de Blas G, Sanchez-Olaso A. Comparison of surgical decompression and local steroid injection in the treatment of carpal tunnel syndrome: 2-year clinical results from a randomized trial. *Rheumatology (Oxford)*. 2012;51(8):1447-54.
- 868. Peters-Veluthamaningal C, Winters JC, Groenier KH, Meyboom-de Jong B. Randomised controlled trial of local corticosteroid injections for carpal tunnel syndrome in general practice. *BMC Fam Pract*. 2010;1154.
- 869. Kamanli A, Bezgincan M, Kaya A. Comparison of local steroid injection into carpal tunnel via proximal and distal approach in patients with carpal tunnel syndrome. *Bratisl Lek Listy*. 2011;112(6):337-41.

- 870. Seok H, Kim SH. The effectiveness of extracorporeal shock wave therapy vs. local steroid injection for management of carpal tunnel syndrome: a randomized controlled trial. *Am J Phys Med Rehabil*. 2013;92(4):327-34.
- 871. Stepic N, Novakovic M, Martic V, Peric D. Effects of perineural steroid injections on median nerve conduction during the carpal tunnel release. *Vojnosanit Pregl.* 2008;65(11):825-9.
- 872. Ozkul Y, Sabuncu T, Yazgan P, Nazligul Y. Local insulin injection improves median nerve regeneration in NIDDM patients with carpal tunnel syndrome. *Eur J Neurol*. 2001;8(4):329-34.
- 873. Ashraf A, Moghtaderi AR, Yazdani AH, Mirshams S. Evaluation of effectiveness of local insulin injection in none insulin dependent diabetic patient with carpal tunnel syndrome. *Electromyogr Clin Neurophysiol*. 2009;49(4):161-6.
- 874. Breuer B, Sperber K, Wallenstein S, et al. Clinically significant placebo analgesic response in a pilot trial of botulinum B in patients with hand pain and carpal tunnel syndrome. *Pain Med.* 2006;7(1):16-24.
- 875. Tsai CP, Liu CY, Lin KP, Wang KC. Efficacy of botulinum toxin type A in the relief of Carpal tunnel syndrome: A preliminary experience. *Clin Drug Investig*. 2006;26(9):511-5.
- 876. Li M, Goldberger BA, Hopkins C. Fatal case of Botox-related anaphylaxis? J Forensic Sci. 2005;50(1):169-72.
- 877. Scholten RJ, Mink van der Molen A, Uitdehaag BM, Bouter LM, de Vet HC. Surgical treatment options for carpal tunnel syndrome. *Cochrane Database Syst Rev.* 2007(4):CD003905.
- 878. Serra L, Panagiotopoulos K, Bucciero A, et al. Endoscopic release in carpal tunnel syndrome: analysis of clinical results in 200 cases. *Minim Invasive Neurosurg*. 2003;46(1):11-5.
- 879. Shapiro S. Microsurgical carpal tunnel release. *Neurosurgery*. 1995;37(1):66-70.
- 880. Straub TA. Endoscopic carpal tunnel release: a prospective analysis of factors associated with unsatisfactory results. *Arthroscopy*. 1999;15(3):269-74.
- 881. Brown MG, Keyser B, Rothenberg ES. Endoscopic carpal tunnel release. J Hand Surg [Am]. 1992;17(6):1009-11.
- 882. Chaise F, Bellemere P, Friol JP, Gaisne E, Poirier P, Menadi A. Professional absenteeism and surgery for carpal tunnel syndrome. Results of a prospective series of 233 patients. *Chir Main*. 2001;20(2):117-21.
- 883. Chow JC. The Chow technique of endoscopic release of the carpal ligament for carpal tunnel syndrome: four years of clinical results. *Arthroscopy*. 1993;9(3):301-14.
- 884. Davies BW, Pennington GA, Fritz AM. Two-portal endoscopic carpal tunnel release: an outcome analysis of 333 hands. Ann Plast Surg. 1998;40(5):542-8.
- 885. Gainer JV, Jr., Nugent GR. Carpal tunnel syndrome: report of 430 operations. South Med J. 1977;70(3):325-8.
- 886. Hankins CL, Brown MG, Lopez RA, Lee AK, Dang J, Harper RD. A 12-year experience using the Brown two-portal endoscopic procedure of transverse carpal ligament release in 14,722 patients: defining a new paradigm in the treatment of carpal tunnel syndrome. *Plast Reconstr Surg*. 2007;120(7):1911-21.
- 887. Jerosch-Herold C, Leite JC, Song F. A systematic review of outcomes assessed in randomized controlled trials of surgical interventions for carpal tunnel syndrome using the International Classification of Functioning, Disability and Health (ICF) as a reference tool. *BMC Musculoskelet Disord*. 2006;796.
- 888. Lichtman DM, Florio RL, Mack GR. Carpal tunnel release under local anesthesia: evaluation of the outpatient procedure. J Hand Surg [Am]. 1979;4(6):544-6.
- 889. Mondelli M, Padua L, Reale F. Carpal tunnel syndrome in elderly patients: results of surgical decompression. *J Peripher Nerv Syst.* 2004;9(3):168-76.
- 890. Mondelli M, Padua L, Reale F, Signorini AM, Romano C. Outcome of surgical release among diabetics with carpal tunnel syndrome. *Arch Phys Med Rehabil*. 2004;85(1):7-13.
- 891. Nazzi V, Franzini A, Messina G, Broggi G. Carpal tunnel syndrome: matching minimally invasive surgical techniques. Technical note. *J Neurosurg*. 2008;108(5):1033-6.
- 892. Okutsu I, Hamanaka I, Tanabe T, Takatori Y, Ninomiya S. Complete endoscopic carpal tunnel release in long-term haemodialysis patients. *J Hand Surg [Br]*. 1996;21(5):668-71.

- 893. Scholten RJ, Gerritsen AA, Uitdehaag BM, van Geldere D, de Vet HC, Bouter LM. Surgical treatment options for carpal tunnel syndrome. *Cochrane Database* Syst Rev. 2004(4):CD003905.
- 894. Thoma A, Veltri K, Haines T, Duku E. A systematic review of reviews comparing the effectiveness of endoscopic and open carpal tunnel decompression. *Plast Reconstr Surg.* 2004;113(4):1184-91.
- 895. Thoma A, Veltri K, Haines T, Duku E. A meta-analysis of randomized controlled trials comparing endoscopic and open carpal tunnel decompression. *Plast Reconstr Surg.* 2004;114(5):1137-46.
- 896. Tuzuner S, Özkaynak S, Acikbas C, Yildirim A. Median nerve excursion during endoscopic carpal tunnel release. *Neurosurgery*. 2004;54(5):1155-61.
- 897. Verdugo RJ, Salinas RA, Castillo JL, Cea JG. Surgical versus non-surgical treatment for carpal tunnel syndrome. *Cochrane Database Syst Rev.* 2008(4):CD001552.
- 898. Verdugo RJ, Salinas RS, Castillo J, Cea JG. Surgical versus non-surgical treatment for carpal tunnel syndrome. *Cochrane Database Syst Rev.* 2003(3):CD001552.
- 899. Weber RA, Rude MJ. Clinical outcomes of carpal tunnel release in patients 65 and older. J Hand Surg [Am]. 2005;30(1):75-80.
- 900. Sanati KA, Mansouri M, Macdonald D, Ghafghazi S, Macdonald E, Yadegarfar G. Surgical techniques and return to work following carpal tunnel release: a systematic review and meta-analysis. *J Occup Rehabil*. 2011;21(4):474-81.
- 901. Scholten RJ, Gerritsen AA, Uitdehaag BM, van Geldere D, de Vet HC, Bouter LM. Surgical treatment options for carpal tunnel syndrome. *Cochrane Database* Syst Rev. 2002(4):CD003905.
- 902. Shi Q, MacDermid JC. Is surgical intervention more effective than non-surgical treatment for carpal tunnel syndrome? A systematic review. *J Orthop Surg Res.* 2011;617.
- 903. Vasiliadis HS, Georgoulas P, Shrier I, Salanti G, Scholten RJ. Endoscopic release for carpal tunnel syndrome. *Cochrane Database Syst Rev.* 2014;1CD008265.
- 904. Bernstein RA. Endoscopic carpal tunnel release. Conn Med. 1994;58(7):387-94.
- 905. Brief R, Brief LP. Endoscopic carpal tunnel release: report of 146 cases. Mt Sinai J Med. 2000;67(4):274-7.
- 906. Chow JC. Endoscopic release of the carpal ligament for carpal tunnel syndrome: 22-month clinical result. *Arthroscopy*. 1990;6(4):288-96.
- 907. Dumontier C, Sokolow C, Leclercq C, Chauvin P. Early results of conventional versus two-portal endoscopic carpal tunnel release. A prospective study. *J Hand Surg* [*Br*]. 1995;20(5):658-62.
- 908. Menon J. Endoscopic carpal tunnel release: preliminary report. *Arthroscopy*. 1994;10(1):31-8.
- 909. Pagnanelli DM, Barrer SJ. Carpal tunnel syndrome: surgical treatment using the Paine retinaculatome. J Neurosurg. 1991;75(1):77-81.
- 910. Povlsen B, Tegnell L, Revell M, Adolfsson L. Touch allodynia following endoscopic (single portal) or open decompression for carpal tunnel syndrome. *J Hand Surg [Br]*. 1997;22(3):325-7.
- 911. Sennwald GR, Benedetti R. The value of one-portal endoscopic carpal tunnel release: a prospective randomized study. *Knee Surg Sports Traumatol Arthrosc*. 1995;3(2):113-6.
- 912. Slattery PG. Endoscopic carpal tunnel release. Use of the modified Chow technique in 215 cases. *Med J Aust.* 1994;160(3):104-7.
- 913. Worseg AP, Kuzbari R, Korak K, et al. Endoscopic carpal tunnel release using a single-portal system. Br J Plast Surg. 1996;49(1):1-10.
- 914. Agee JM, McCarroll HR, Jr., Tortosa RD, Berry DA, Szabo RM, Peimer CA. Endoscopic release of the carpal tunnel: a randomized prospective multicenter study. *J Hand Surg [Am]*. 1992;17(6):987-95.
- 915. Brown RA, Gelberman RH, Seiler JG, 3rd, et al. Carpal tunnel release. A prospective, randomized assessment of open and endoscopic methods. *J Bone Joint Surg Am.* 1993;75(9):1265-75.
- 916. Erdmann MW. Endoscopic carpal tunnel decompression. J Hand Surg [Br]. 1994;19(1):5-13.
- 917. Saw NL, Jones S, Shepstone L, Meyer M, Chapman PG, Logan AM. Early outcome and cost-effectiveness of endoscopic versus open carpal tunnel release: a randomized prospective trial. *J Hand Surg [Br]*. 2003;28(5):444-9.

- 918. Trumble TE, Diao E, Abrams RA, Gilbert-Anderson MM. Single-portal endoscopic carpal tunnel release compared with open release : a prospective, randomized trial. *J Bone Joint Surg Am*. 2002;84-A(7):1107-15.
- 919. Concannon MJ, Brownfield ML, Puckett CL. The incidence of recurrence after endoscopic carpal tunnel release. *Plast Reconstr Surg.* 2000;105(5):1662-5.
- 920. Chow JC, Hantes ME. Endoscopic carpal tunnel release: thirteen years' experience with the Chow technique. J Hand Surg [Am]. 2002;27(6):1011-8.
- 921. Jugovac I, Burgic N, Micovic V, et al. Carpal tunnel release by limited palmar incision vs traditional open technique: randomized controlled trial. *Croat Med J*. 2002;43(1):33-6.
- 922. Atroshi I, Larsson G-U, Ornstein E, Hofer M, Johnsson R, Ranstam J. Outcomes of endoscopic surgery compared with open surgery for carpal tunnel syndrome among employed patients: randomised controlled trial. *Br Med J*. 2006;332(7556):1473.
- 923. Ferdinand RD, MacLean JG. Endoscopic versus open carpal tunnel release in bilateral carpal tunnel syndrome. A prospective, randomised, blinded assessment. J Bone Joint Surg Br. 2002;84(3):375-9.
- 924. Jacobsen MB, Rahme H. A prospective, randomized study with an independent observer comparing open carpal tunnel release with endoscopic carpal tunnel release. *J Hand Surg [Br]*. 1996;21(2):202-4.
- 925. MacDermid JC, Richards RS, Roth JH, Ross DC, King GJ. Endoscopic versus open carpal tunnel release: a randomized trial. *J Hand Surg [Am]*. 2003;28(3):475-80.
- 926. Abdullah AF, Wolber PH, Ditto III EW. Sequelae of carpal tunnel surgery: Rationale for the design of a surgical approach. *Neurosurgery*. 1995;37(5):931-6.
- 927. Ahčan U, Arnez ZM, Bajrović F, Zorman P. Surgical technique to reduce scar discomfort after carpal tunnel surgery. J Hand Surg Am. 2002;27(5):821-7.
- 928. Bhattacharya R, Birdsall PD, Finn P, Stothard J. A randomized controlled trial of knifelight and open carpal tunnel release. J Hand Surg [Br]. 2004;29(2):113-5.
- 929. Blair WF, Goetz DD, Ross MA, Steyers CM, Chang P. Carpal tunnel release with and without epineurotomy: a comparative prospective trial. *J Hand Surg [Am]*. 1996;21(4):655-61.
- 930. Borisch N, Haussmann P. Neurophysiological recovery after open carpal tunnel decompression: comparison of simple decompression and decompression with epineurotomy. *J Hand Surg [Br]*. 2003;28(5):450-4.
- 931. Forward DP, Singh AK, Lawrence TM, Sithole JS, Davis TR, Oni JA. Preservation of the ulnar bursa within the carpal tunnel: does it improve the outcome of carpal tunnel surgery? A randomized, controlled trial. *J Bone Joint Surg Am.* 2006;88(11):2432-8.
- 932. Helm RH, Vaziri S. Evaluation of carpal tunnel release using the Knifelight instrument. J Hand Surg [Br]. 2003;28(3):251-4.
- 933. Jones SM, Stuart PR, Stothard J. Open carpal tunnel release. Does a vascularized hypothenar fat pad reduce wound tenderness? *J Hand Surg [Br]*. 1997;22(6):758-60.
- 934. Klein RD, Kotsis SV, Chung KC. Open carpal tunnel release using a 1-centimeter incision: technique and outcomes for 104 patients. *Plast Reconstr Surg*. 2003;111(5):1616-22.
- 935. Leinberry CF, Hammond NL, 3rd, Siegfried JW. The role of epineurotomy in the operative treatment of carpal tunnel syndrome. *J Bone Joint Surg Am*. 1997;79(4):555-7.
- 936. Lorgelly PK, Dias JJ, Bradley MJ, Burke FD. Carpal tunnel syndrome, the search for a cost-effective surgical intervention: a randomised controlled trial. *Ann R Coll Surg Engl.* 2005;87(1):36-40.
- 937. Lowry WE, Jr., Follender AB. Interfascicular neurolysis in the severe carpal tunnel syndrome. A prospective, randomized, double-blind, controlled study. *Clin Orthop Relat Res.* 1988;227251-4.
- 938. Mackinnon S, Murray J, Szalai J, et al. Internal neurolysis fails to improve the results of primary carpal tunnel decompression. J Hand Surg Am. 1991;16(2):211-8.
- 939. Shum C, Parisien M, Strauch RJ, Rosenwasser MP. The role of flexor tenosynovectomy in the operative treatment of carpal tunnel syndrome. *J Bone Joint Surg Am.* 2002;84-A(2):221-5.
- 940. Siegmeth AW, Hopkinson-Woolley JA. Standard open decompression in carpal tunnel syndrome compared with a modified open technique preserving the superficial skin nerves: a prospective randomized study. *J Hand Surg [Am]*. 2006;31(9):1483-9.

- 941. Zyluk A, Strychar J. A comparison of two limited open techniques for carpal tunnel release. J Hand Surg Br. 2006;31(5):466-72.
- 942. Cobb TK, Amadio PC. Reoperation for carpal tunnel syndrome. *Hand Clin.* 1996;12(2):313-23.
- 943. Cobb TK, Amadio PC, Leatherwood DF, Schleck CD, Ilstrup DM. Outcome of reoperation for carpal tunnel syndrome. *J Hand Surg [Am]*. 1996;21(3):347-56.
- 944. De Kesel R, Donceel P, De Smet L. Factors influencing return to work after surgical treatment for carpal tunnel syndrome. Occup Med (Lond). 2008;58(3):187-90.
- 945. Atroshi I, Hofer M, Larsson G-U, Ornstein E, Johnsson R, Ranstam J. Open compared with 2-portal endoscopic carpal tunnel release: a 5-year follow-up of a randomized controlled trial. *J Hand Surg Am*. 2009;34(2):266-72.
- 946. Wong KC, Hung LK, Ho PC, Wong JM. Carpal tunnel release. A prospective, randomised study of endoscopic versus limited-open methods. *J Bone Joint Surg Br*. 2003;85(6):863-8.
- 947. Bessette L, Keller RB, Liang MH, Simmons BP, Fossel AH, Katz JN. Patients' preferences and their relationship with satisfaction following carpal tunnel release. *J Hand Surg [Am]*. 1997;22(4):613-20.
- 948. Ejiri S, Kikuchi S, Maruya M, Sekiguchi Y, Kawakami R, Konno S. Short-term results of endoscopic (Okutsu method) versus palmar incision open carpal tunnel release: a prospective randomized controlled trial. *Fukushima J Med Sci.* 2012;58(1):49-59.
- 949. Kang HJ, Koh IH, Lee TJ, Choi YR. Endoscopic carpal tunnel release is preferred over mini-open despite similar outcome: a randomized trial. *Clin Orthop Relat Res*. 2013;471(5):1548-54.
- 950. Larsen MB, Sorensen AI, Crone KL, Weis T, Boeckstyns ME. Carpal tunnel release: a randomized comparison of three surgical methods. *J Hand Surg Eur Vol.* 2013;38(6):646-50.
- 951. Tarallo M, Fino P, Sorvillo V, Parisi P, Scuderi N. Comparative analysis between minimal access versus traditional accesses in carpal tunnel syndrome: a perspective randomised study. *J Plast Reconstr Aesthet Surg.* 2014;67(2):237-43.
- 952. Aslani HR, Alizadeh K, Eajazi A, et al. Comparison of carpal tunnel release with three different techniques. *Clin Neurol Neurosurg*. 2012;114(7):965-8.
- 953. Menovsky T, Bartels RH, van Lindert EL, Grotenhuis JA. Skin closure in carpal tunnel surgery: a prospective comparative study between nylon, polyglactin 910 and stainless steel sutures. *Hand Surg.* 2004;9(1):35-8.
- 954. Foulkes GD, Atkinson RE, Beuchel C, Doyle JR, Singer DI. Outcome following epineurotomy in carpal tunnel syndrome: a prospective, randomized clinical trial. *J Hand Surg [Am]*. 1994;19(4):539-47.
- 955. Crnkovic T, Bilic R, Trkulja V, Cesarik M, Gotovac N, Kolundzic R. The effect of epineurotomy on the median nerve volume after the carpal tunnel release: a prospective randomised double-blind controlled trial. *Int Orthop*. 2012;36(9):1885-92.
- 956. Dias JJ, Bhowal B, Wildin CJ, Thompson JR. Carpal tunnel decompression. Is lengthening of the flexor retinaculum better than simple division? *J Hand Surg* [*Br*]. 2004;29(3):271-6.
- 957. Citron ND, Bendall SP. Local symptoms after open carpal tunnel release. A randomized prospective trial of two incisions. J Hand Surg [Br]. 1997;22(3):317-21.
- 958. Provinciali L, Giattini A, Splendiani G, Logullo F. Usefulness of hand rehabilitation after carpal tunnel surgery. Muscle Nerve. 2000;23(2):211-6.
- 959. Macaire P, Singelyn F, Narchi P, Paqueron X. Ultrasound- or nerve stimulation-guided wrist blocks for carpal tunnel release: a randomized prospective comparative study. *Reg Anesth Pain Med*. 2008;33(4):363-8.
- 960. Chandra PS, Singh PK, Goyal V, Chauhan AK, Thakkur N, Tripathi M. Early versus delayed endoscopic surgery for carpal tunnel syndrome: prospective randomized study. *World Neurosurg*. 2013;79(5-6):767-72.
- 961. Bruser P, Richter M, Larkin G, Lefering R. The operative treatment of carpal tunnel syndrome and its relevance to endoscopic release. *Eur J Plast Surg.* 1999;2280-4.
- 962. Cellocco P, Rossi C, Bizzarri F, Patrizio L, Costanzo G. Mini-open blind procedure versus limited open technique for carpal tunnel release: a 30-month follow-up study. *J Hand Surg [Am]*. 2005;30(3):493-9.
- 963. Finsen V, Andersen K, Russwurm H. No advantage from splinting the wrist after open carpal tunnel release. A randomized study of 82 wrists. *Acta Orthop Scand*. 1999;70(3):288-92.

- 964. Mackenzie DJ, Hainer R, Wheatley MJ. Early recovery after endoscopic vs. short-incision open carpal tunnel release. Ann Plast Surg. 2000;44(6):601-4.
- 965. Nitz AJ, Dobner JJ. Upper extremity tourniquet effects in carpal tunnel release. J Hand Surg [Am]. 1989;14(3):499-504.
- 966. Hansen TB, Kirkeby L, Fisker H, Larsen K. Randomised controlled study of two different techniques of skin suture in endoscopic release of carpal tunnel. *Scand J Plast Reconstr Surg Hand Surg*. 2009;43(6):335-8.
- 967. Heidarian A, Abbasi H, Hasanzadeh Hoseinabadi M, Hajialibeyg A, Kalantar Motamedi SM, Seifirad S. Comparison of Knifelight Surgery versus Conventional Open Surgery in the Treatment of Carpal Tunnel Syndrome. *Iran Red Crescent Med J.* 2013;15(5):385-8.
- 968. Ucar BY, Demirtas A, Bulut M, Azboy I, Ucar D. Carpal tunnel decompression: two different mini-incision techniques. *Eur Rev Med Pharmacol Sci.* 2012;16(4):533-8.
- 969. Tian Y, Zhao H, Wang T. Prospective comparison of endoscopic and open surgical methods for carpal tunnel syndrome. *Chin Med Sci J.* 2007;22(2):104-7.
- 970. Delaunay L, Chelly JE. Blocks at the wrist provide effective anesthesia for carpal tunnel release. *Can J Anaesth*. 2001;48(7):656-60.
- 971. Waegeneers S, Haentjens P, Wylock P. Operative treatment of carpal tunnel syndrome. Acta Orthop Belg. 1993;59(4):367-70.
- 972. Rivera JJ, Villecco DJ, Dehner BK, Burkard JF, Osborne LA, Pellegrini JE. The efficacy of ketorolac as an adjunct to the Bier block for controlling postoperative pain following nontraumatic hand and wrist surgery. *AANA J.* 2008;76(5):341-5.
- 973. Peng PW, Coleman MM, McCartney CJ, et al. Comparison of anesthetic effect between 0.375% ropivacaine versus 0.5% lidocaine in forearm intravenous regional anesthesia. *Reg Anesth Pain Med*. 2002;27(6):595-9.
- 974. Alayurt S, Memis D, Pamukcu Z. The addition of sufertanil, tramadol or clonidine to lignocaine for intravenous regional anaesthesia. *Anaesth Intensive Care*. 2004;32(1):22-7.
- 975. Bernard J-M, Macaire P. Dose-range effects of clonidine added to lidocaine for brachial plexus block. Anesthesiology. 1997;87(2):277-84.
- 976. Bigat Z, Boztug N, Hadimioglu N, Cete N, Coskunfirat N, Ertok E. Does dexamethasone improve the quality of intravenous regional anesthesia and analgesia? A randomized, controlled clinical study. *Anesth Analg.* 2006;102(2):605-9.
- 977. Bigat Z, Karsli B, Boztug N, Cete N, Ertok E. Comparison of the effect of low-dose ropivacaine and lidocaine in intravenous regional anaesthesia : a randomised, doubleblind clinical study. *Clin Drug Investig*. 2005;25(3):209-14.
- 978. Lawrence TM, Desai VV. Topical anaesthesia to reduce pain associated with carpal tunnel surgery. J Hand Surg Br. 2002;27(5):462-4.
- 979. Nabhan A, Steudel WI, Dedeman L, Al-Khayat J, Ishak B. Subcutaneous local anesthesia versus intravenous regional anesthesia for endoscopic carpal tunnel release: a randomized controlled trial. *J Neurosurg*. 2011;114(1):240-4.
- 980. Patil S, Ramakrishnan M, Stothard J. Local anaesthesia for carpal tunnel decompression: a comparison of two techniques. J Hand Surg Br. 2006;31(6):683-6.
- 981. Reuben SS, Duprat KM. Comparison of wound infiltration with ketorolac versus intravenous regional anesthesia with ketorolac for postoperative analgesia following ambulatory hand surgery. *Reg Anesth.* 1996;21(6):565-8.
- 982. Braithwaite BD, Robinson GJ, Burge PD. Haemostasis during carpal tunnel release under local anaesthesia: a controlled comparison of a tourniquet and adrenaline infiltration. *J Hand Surg Br.* 1993;18(2):184-6.
- 983. Lee HJ, Cho YJ, Gong HS, Rhee SH, Park HS, Baek GH. The effect of buffered lidocaine in local anesthesia: a prospective, randomized, double-blind study. *J Hand Surg Am.* 2013;38(5):971-5.
- 984. Ozer H, Solak S, Oguz T, Ocguder A, Colakoglu T, Babacan A. Alkalinisation of local anaesthetics prescribed for pain relief after surgical decompression of carpal tunnel syndrome. *J Orthop Surg (Hong Kong)*. 2005;13(3):285-9.
- 985. Sorensen AM, Dalsgaard J, Hansen TB. Local anaesthesia versus intravenous regional anaesthesia in endoscopic carpal tunnel release: a randomized controlled trial. J Hand Surg Eur Vol. 2013;38(5):481-4.
- 986. Watts AC, Gaston P, Hooper G. Randomized trial of buffered versus plain lidocaine for local anaesthesia in open carpal tunnel decompression. *J Hand Surg Br*. 2004;29(1):30-1.

- 987. Watts AC, McEachan J. The use of a fine-gauge needle to reduce pain in open carpal tunnel decompression: a randomized controlled trial. *J Hand Surg Br*. 2005;30(6):615-7.
- 988. Yiannakopoulos CK. Carpal ligament decompression under local anaesthesia: the effect of lidocaine warming and alkalinisation on infiltration pain. *J Hand Surg Br*. 2004;29(1):32-4.
- 989. Heuser A, Kourtev H, Winter S, et al. Telerehabilitation using the Rutgers Master II glove following carpal tunnel release surgery: proof-of-concept. *IEEE Trans Neural Syst Rehabil Eng.* 2007;15(1):43-9.
- 990. Melhorn J. Understanding the types of carpal tunnel syndrome. J Workers Comp. 1998;752-73.
- 991. Chung KC, Zimmerman NB, Travis MT. Wrist arthrography versus arthroscopy: a comparative study of 150 cases. J Hand Surg Am. 1996;21(4):591-4.
- 992. Golimbu C, Firooznia H, Melone Jr C, Rafii M, Weinreb J, Leber C. Tears of the triangular fibrocartilage of the wrist: MR imaging. *Radiology*. 1989;173(3):731-3.
- 993. Potter HG, Asnis-Ernberg L, Weiland AJ, Hotchkiss RN, Peterson MG, McCORMACK RR. The Utility of High-Resolution Magnetic Resonance Imaging in the Evaluation of the Triangular Fibrocartilage Complex of the Wrist*. *The Journal of Bone & Joint Surgery*. 1997;79(11):1675-84.
- 994. Schers TJ, van Heusden HA. Evaluation of chronic wrist pain: Arthroscopy superior to arthrography: comparison in 39 patients. Acta Orthop. 1995;66(6):540-2.
- 995. Skahen JR, Palmer AK, Levinsohn EM, Buckingham SC, Szeverenyi NM. Magnetic resonance imaging of the triangular fibrocartilage complex. *J Hand Surg Am*. 1990;15(4):552-7.
- 996. Slutsky DJ. Distal radioulnar joint arthroscopy and the volar ulnar portal. Tech Hand Up Extrem Surg. 2007;11(1):38-44.
- 997. Sahin G, Dogan BE, Demirtas M. Virtual MR arthroscopy of the wrist joint: a new intraarticular perspective. Skeletal Radiol. 2004;33(1):9-14.
- 998. Park MJ, Jagadish A, Yao J. The rate of triangular fibrocartilage injuries requiring surgical intervention. Orthopedics. 2010;33(11):806.
- 999. Palmer AK. Triangular fibrocartilage disorders: injury patterns and treatment. Arthroscopy. 1990;6(2):125-32.
- 1000. Estrella EP, Hung LK, Ho PC, Tse WL. Arthroscopic repair of triangular fibrocartilage complex tears. Arthroscopy. 2007;23(7):729-37, 37 e1.
- 1001. Corso SJ, Savoie FH, Geissler WB, Whipple TL, Jiminez W, Jenkins N. Arthroscopic repair of peripheral avulsions of the triangular fibrocartilage complex of the wrist: a multicenter study. *Arthroscopy*. 1997;13(1):78-84.
- 1002. de Araujo W, Poehling GG, Kuzma GR. New Tuohy needle technique for triangular fibrocartilage complex repair: preliminary studies. Arthroscopy. 1996;12(6):699-703.
- 1003. Ruch DS, Yang CC, Smith BP. Results of acute arthroscopically repaired triangular fibrocartilage complex injuries associated with intra-articular distal radius fractures. *Arthroscopy*. 2003;19(5):511-6.
- 1004. Westkaemper JG, Mitsionis G, Giannakopoulos PN, Sotereanos DG. Wrist arthroscopy for the treatment of ligament and triangular fibrocartilage complex injuries. *Arthroscopy*. 1998;14(5):479-83.
- 1005. Hermansdorfer JD, Kleinman WB. Management of chronic peripheral tears of the triangular fibrocartilage complex. J Hand Surg Am. 1991;16(2):340-6.
- 1006. Minami A, Kato H. Ulnar shortening for triangular fibrocartilage complex tears associated with ulnar positive variance. J Hand Surg Am. 1998;23(5):904-8.
- 1007. Daniels M, Reichman J, Brezis M. Mannitol treatment for acute compartment syndrome. Nephron. 1998;79(4):492-3.
- 1008. Woo WW, Man SY, Lam PK, Rainer TH. Randomized double-blind trial comparing oral paracetamol and oral nonsteroidal antiinflammatory drugs for treating pain after musculoskeletal injury. *Ann Emerg Med.* 2005;46(4):352-61.
- 1009. Bouachour G, Cronier P, Gouello JP, Toulemonde JL, Talha A, Alquier P. Hyperbaric oxygen therapy in the management of crush injuries: a randomized double-blind placebo-controlled clinical trial. *J Trauma*. 1996;41(2):333-9.
- 1010. Botte MJ, Gelberman RH. Acute compartment syndrome of the forearm. Hand Clin. 1998;14(3):391-403.
- 1011. Friedrich JB, Shin AY. Management of forearm compartment syndrome. Hand Clin. 2007;23(2):245-54, vii.
- 1012. Gelberman RH, Zakaib GS, Mubarak SJ, Hargens AR, Akeson WH. Decompression of forearm compartment syndromes. Clin Orthop Relat Res. 1978(134):225-9.
- 1013. Mubarak SJ, Pedowitz RA, Hargens AR. Compartment syndromes. *Curr Orthop*. 1989;336-40.
- 1014. Ortiz JA, Jr., Berger RA. Compartment syndrome of the hand and wrist. *Hand Clin.* 1998;14(3):405-18.
- 1015. Weinstein SM, Herring SA. Nerve problems and compartment syndromes in the hand, wrist, and forearm. Clin Sports Med. 1992;11(1):161-88.

- 1016. Gourgiotis S, Villias C, Germanos S, Foukas A, Ridolfini MP. Acute limb compartment syndrome: a review. J Surg Educ. 2007;64(3):178-86.
- 1017. Hayakawa H, Aldington DJ, Moore RA. Acute traumatic compartment syndrome: a systematic review of results of fasciotomy. Trauma. 2009;11(1):5-35.
- 1018. Kalyani BS, Fisher BE, Roberts CS, Giannoudis PV. Compartment syndrome of the forearm: a systematic review. J Hand Surg Am. 2011;36(3):535-43.
- 1019. Wall CJ, Lynch J, Harris IA, et al. Clinical practice guidelines for the management of acute limb compartment syndrome following trauma. ANZ J Surg. 2010;80(3):151-6.
- 1020. Hashizume H, Asahara H, Nishida K, Inoue H, Konishiike T. Histopathology of Kienbock's disease. Correlation with magnetic resonance and other imaging techniques. *J* Hand Surg Br. 1996;21(1):89-93.
- 1021. Imaeda T, Nakamura R, Miura T, Makino N. Magnetic resonance imaging in Kienbock's disease. J Hand Surg Br. 1992;17(1):12-9.
- 1022. Kato H, Usui M, Minami A. Long-term results of Kienbock's disease treated by excisional arthroplasty with a silicone implant or coiled palmaris longus tendon. *J Hand Surg Am.* 1986;11(5):645-53.
- 1023. Lichtman DM, Alexander AH, Mack GR, Gunther SF. Kienbock's disease--update on silicone replacement arthroplasty. J Hand Surg Am. 1982;7(4):343-7.
- 1024. Lichtman DM, Mack GR, MacDonald RI, Gunther SF, Wilson JN. Kienbock's disease: the role of silicone replacement arthroplasty. *J Bone Joint Surg Am*. 1977;59(7):899-908.
- 1025. Horita K, Ikuta Y, Murakami T, Ochi M, Mochizuki Y. An experimental study on the bone-core tendon ball replacement for the treatment of Kienböck's disease. J Jpn Soc Surg Hand. 1990;7767-71.
- 1026. Minami A, Kimura T, Suzuki K. Long-term results of Kienbock's disease treated by triscaphe arthrodesis and excisional arthroplasty with a coiled palmaris longus tendon. J Hand Surg Am. 1994;19(2):219-28.
- 1027. Rhee SK, Kim HM, Bahk WJ, Kim YW. A comparative study of the surgical procedures to treat advanced Kienbock's disease. J Korean Med Sci. 1996;11(2):171-8.
- 1028. Sakai A, Toba N, Oshige T, Menuki K, Hirasawa H, Nakamura T. Kienbock disease treated by excisional arthroplasty with a palmaris longus tendon ball: a comparative study of cases with or without bone core. *Hand Surg.* 2004;9(2):145-9.
- 1029. Ueba Y, Nosaka K, Seto Y, Ikeda N, Nakamura T. An operative procedure for advanced Kienbock's disease. Excision of the lunate and subsequent replacement with a tendon-ball implant. *J Orthop Sci*. 1999;4(3):207-15.
- 1030. Yajima H, Ono H, Tamai S. Temporary internal fixation of the scaphotrapezio-trapezoidal joint for the treatment of Kienbock's disease: a preliminary study. *J Hand Surg Am.* 1998;23(3):402-10.
- 1031. Zelouf DS, Ruby LK. External fixation and cancellous bone grafting for Kienbock's disease: a preliminary report. J Hand Surg Am. 1996;21(5):746-53.
- 1032. Meier R, Van Griensven M, Krimmer H. Scaphotrapeziotrapezoid (STT)-arthrodesis in Kienböck's disease. *The Journal of Hand Surgery: British & European Volume*. 2004;29(6):580-4.
- 1033. Watson HK, Ryu J, DiBella A. An approach to Kienböck's disease: triscaphe arthrodesis. J Hand Surg Am. 1985;10(2):179-87.
- 1034. Nakamura R, Imaeda T, Miura T. Radial shortening for Kienböck's disease: factors affecting the operative result. *Journal of Hand Surgery (British and European Volume)*. 1990;15(1):40-5.
- 1035. Takahara M, Watanabe T, Tsuchida H, Yamahara S, Kikuchi N, Ogino T. Long-term follow-up of radial shortening osteotomy for Kienbock disease. Surgical technique. J Bone Joint Surg Am. 2009;91 Suppl 2184-90.
- 1036. Soejima O, Iida H, Komine S, Kikuta T, Naito M. Lateral closing wedge osteotomy of the distal radius for advanced stages of Kienböck's disease. *J Hand Surg Am.* 2002;27(1):31-6.
- 1037. Watson HK, Wollstein R, Joseph E, Manzo R, Weinzweig J, Ashmead D. Scaphotrapezoid arthrodesis: a follow-up study. J Hand Surg Am. 2003;28(3):397-404.
- 1038. Begley B, Engber W. Proximal row carpectomy in advanced Kienböck's disease. J Hand Surg. 1994;19(6):1016-8.
- 1039. Culp R, McGuigan F, Turner M, Lichtman D, Osterman A, McCarroll H. Proximal row carpectomy: a multicenter study. J Hand Surg Am. 1993;18(1):19-25.
- 1040. Diao E, Andrews A, Beall M. Proximal row carpectomy. Hand Clin. 2005;21(4):553-9.
- 1041. Mehrpour SR, Kamrani RS, Aghamirsalim MR, Sorbi R, Kaya A. Treatment of Kienbock disease by lunate core decompression. J Hand Surg Am. 2011;36(10):1675-7.

- 1042. Rodrigues-Pinto R, Freitas D, Costa LD, et al. Clinical and radiological results following radial osteotomy in patients with Kienbock's disease: four- to 18-year follow-up. J Bone Joint Surg Br. 2012;94(2):222-6.
- 1043. Lu LJ, Gong X, Wang KL. Vascularized capitate transposition for advanced Kienbock disease: application of 40 cases and their anatomy. *Ann Plast Surg.* 2006;57(6):637-41.
- 1044. Taljanovic MS, Karantanas A, Griffith JF, DeSilva GL, Rieke JD, Sheppard JE. Imaging and treatment of scaphoid fractures and their complications. *Semin Musculoskelet Radiol*. 2012;16(2):159-73.
- 1045. Guly HR. Injuries initially misdiagnosed as sprained wrist (beware the sprained wrist). Emerg Med J. 2002;19(1):41-2.
- 1046. Michlovitz S, Hun L, Erasala GN, Hengehold DA, Weingand KW. Continuous low-level heat wrap therapy is effective for treating wrist pain. *Arch Phys Med Rehabil*. 2004;85(9):1409-16.
- 1047. Muckle D. Comparative study of ibuprofen and aspirin in soft-tissue injuries. *Rheumatology*. 1974;13(3):141-7.
- 1048. Muckle D. A double-blind trial of flurbiprofen and aspirin in soft-tissue trauma. *Rheumatology*. 1977;16(1):58-61.
- 1049. Kleinbaum Y, Heyman Z, Ganel A, Blankstein A. Sonographic imaging of mallet finger. Ultraschall Med. 2005;26(3):223-6.
- 1050. Bianchi S. Ultrasound of the peripheral nerves. Joint Bone Spine. 2008;75(6):643-9.
- 1051. Auchincloss JM. Mallet-finger injuries: a prospective, controlled trial of internal and external splintage. Hand. 1982;14(2):168-73.
- 1052. Garberman SF, Diao E, Peimer CA. Mallet finger: results of early versus delayed closed treatment. J Hand Surg [Am]. 1994;19(5):850-2.
- 1053. Kinninmonth AW, Holburn F. A comparative controlled trial of a new perforated splint and a traditional splint in the treatment of mallet finger. *J Hand Surg [Br]*. 1986;11(2):261-2.
- 1054. Warren R, Kay N, Ferguson D. Mallet finger: comparison between operative and conservative management in those cases failing to be cured by splintage. *Journal of Hand Surgery (British and European Volume)*. 1988;13(2):159-60.
- 1055. Hong E. Hand injuries in sports medicine. Primary Care: Clinics in Office Practice. 2005;32(1):91-103.
- 1056. Smit JM, Beets MR, Zeebregts CJ, Rood A, Welters CF. Treatment options for mallet finger: a review. Plast Reconstr Surg. 2010;126(5):1624-9.
- 1057. Betts-Symonds GW, Hodgkinson V, Densley G, Hogan D. Functional bracing--5. The development of a functional brace for the treatment of mallet fingers. *Nurs Times*. 1982;78(49):2080-2.
- 1058. Chan DY. Management of simple finger injuries: the splinting regime. *Hand Surg.* 2002;7(2):223-30.
- 1059. Valdes K, Naughton N, Algar L. Conservative treatment of mallet finger: A systematic review. J Hand Ther. 2015;28(3):237-45; quiz 46.
- 1060. Handoll HH, Vaghela MV. Interventions for treating mallet finger injuries. Cochrane Database Syst Rev. 2004(3):CD004574.
- 1061. O'Brien LJ, Bailey MJ. Single blind, prospective, randomized controlled trial comparing dorsal aluminum and custom thermoplastic splints to stack splint for acute mallet finger. *Arch Phys Med Rehabil*. 2011;92(2):191-8.
- 1062. Pike J, Mulpuri K, Metzger M, Ng G, Wells N, Goetz T. Blinded, prospective, randomized clinical trial comparing volar, dorsal, and custom thermoplastic splinting in treatment of acute mallet finger. J Hand Surg Am. 2010;35(4):580-8.
- 1063. Tocco S, Boccolari P, Landi A, et al. Effectiveness of cast immobilization in comparison to the gold-standard self-removal orthotic intervention for closed mallet fingers: a randomized clinical trial. *J Hand Ther*. 2013;26(3):191-200; quiz 1.
- 1064. Toker S, Turkmen F, Pekince O, Korucu I, Karalezli N. Extension Block Pinning Versus Hook Plate Fixation for Treatment of Mallet Fractures. *J Hand Surg Am.* 2015;40(8):1591-6.
- 1065. Gruber JS, Bot AG, Ring D. A prospective randomized controlled trial comparing night splinting with no splinting after treatment of mallet finger. *Hand (N Y)*. 2014;9(2):145-50.
- 1066. Tarbhai K, Hannah S, von Schroeder HP. Trigger finger treatment: a comparison of 2 splint designs. J Hand Surg Am. 2012;37(2):243-9, 9 e1.
- 1067. Akhtar S, Bradley MJ, Quinton DN, Burke FD. Management and referral for trigger finger/thumb. Br Med J. 2005;331(7507):30-3.
- 1068. Colbourn J, Heath N, Manary S, Pacifico D. Effectiveness of splinting for the treatment of trigger finger. J Hand Ther. 2008;21(4):336-43.

- 1069. Murphy D, Failla JM, Koniuch MP. Steroid versus placebo injection for trigger finger. J Hand Surg [Am]. 1995;20(4):628-31.
- 1070. Lambert MA, Morton RJ, Sloan JP. Controlled study of the use of local steroid injection in the treatment of trigger finger and thumb. J Hand Surg [Br]. 1992;17(1):69-70.
- 1071. Peters-Veluthamaningal C, Winters JC, Groenier KH, Jong BM. Corticosteroid injections effective for trigger finger in adults in general practice: a double-blinded randomised placebo controlled trial. *Ann Rheum Dis.* 2008;67(9):1262-6.
- 1072. Taras JS, Raphael JS, Pan WT, Movagharnia F, Sotereanos DG. Corticosteroid injections for trigger digits: is intrasheath injection necessary? *J Hand Surg [Am]*. 1998;23(4):717-22.
- 1073. Kazuki K, Egi T, Okada M, Takaoka K. Clinical outcome of extrasynovial steroid injection for trigger finger. Hand Surg. 2006;11(1-2):1-4.
- 1074. Kamhin M, Engel J, Heim M. The fate of injected trigger fingers. The Hand. 1983(2):218-20.
- 1075. Akhtar S, Burke FD. Study to outline the efficacy and illustrate techniques for steroid injection for trigger finger and thumb. Postgrad Med J. 2006;82(973):763-6.
- 1076. Benson LS, Ptaszek AJ. Injection versus surgery in the treatment of trigger finger. J Hand Surg [Am]. 1997;22(1):138-44.
- 1077. Clark DD, Ricker JH, MacCollum MS. The efficacy of local steroid injection in the treatment of stenosing tenovaginitis. Plast Reconstr Surg. 1973;51(2):179-80.
- 1078. Fleisch SB, Spindler KP, Lee DH. Corticosteroid injections in the treatment of trigger finger: a level I and II systematic review. J Am Acad Orthop Surg. 2007;15(3):166-71.
- 1079. Goldfarb CA, Gelberman RH, McKeon K, Chia B, Boyer MI. Extra-articular steroid injection: early patient response and the incidence of flare reaction. *J Hand Surg Am*. 2007;32(10):1513-20.
- 1080. Marks MR, Gunther SF. Efficacy of cortisone injection in treatment of trigger fingers and thumbs. J Hand Surg [Am]. 1989;14(4):722-7.
- 1081. Newport ML, Lane LB, Stuchin SA. Treatment of trigger finger by steroid injection. J Hand Surg [Am]. 1990;15(5):748-50.
- 1082. Sato ES, Gomes Dos Santos JB, Belloti JC, Albertoni WM, Faloppa F. Treatment of trigger finger: randomized clinical trial comparing the methods of corticosteroid injection, percutaneous release and open surgery. *Rheumatology (Oxford)*. 2012;51(1):93-9.
- 1083. Zyluk A, Jagielski G. Percutaneous A1 pulley release vs steroid injection for trigger digit: the results of a prospective, randomized trial. *J Hand Surg Eur Vol.* 2011;36(1):53-6.
- 1084. Callegari L, Spano E, Bini A, Valli F, Genovese E, Fugazzola C. Ultrasound-guided injection of a corticosteroid and hyaluronic acid: a potential new approach to the treatment of trigger finger. *Drugs R D*. 2011;11(2):137-45.
- 1085. Pataradool K, Buranapuntaruk T. Proximal phalanx injection for trigger finger: randomized controlled trial. *Hand Surg.* 2011;16(3):313-7.
- 1086. Ring D, Lozano-Calderon S, Shin R, Bastian P, Mudgal C, Jupiter J. A prospective randomized controlled trial of injection of dexamethasone versus triamcinolone for idiopathic trigger finger. *J Hand Surg Am.* 2008;33(4):516-22; discussion 23-4.
- 1087. Shakeel H, Ahmad TS. Steroid injection versus NSAID injection for trigger finger: a comparative study of early outcomes. J Hand Surg Am. 2012;37(7):1319-23.
- 1088. Taras JS, Raphael JS, Pan WT, Movagharnia F, Sotereanos DG. Corticosteroid injections for trigger digits: is intrasheath injection necessary? *J Hand Surg Am*. 1998;23(4):717-22.
- 1089. Cecen GS, Gulabi D, Saglam F, Tanju NU, Bekler HI. Corticosteroid injection for trigger finger: blinded or ultrasound-guided injection? Arch Orthop Trauma Surg. 2015;135(1):125-31.
- 1090. Jianmongkol S, Kosuwon W, Thammaroj T. Intra-tendon sheath injection for trigger finger: the randomized controlled trial. Hand Surg. 2007;12(2):79-82.
- 1091. Gilberts EC, Beekman WH, Stevens HJ, Wereldsma JC. Prospective randomized trial of open versus percutaneous surgery for trigger digits. *J Hand Surg [Am]*. 2001;26(3):497-500.
- 1092. Maneerit J, Sriworakun C, Budhraja N, Nagavajara P. Trigger thumb: results of a prospective randomised study of percutaneous release with steroid injection versus steroid injection alone. *J Hand Surg [Br]*. 2003;28(6):586-9.
- 1093. Gilberts EC, Wereldsma JC. Long-term results of percutaneous and open surgery for trigger fingers and thumbs. Int Surg. 2002;87(1):48-52.
- 1094. Lorthioir J. Surgical treatment of trigger-finger by a subcutaneous method. J Bone Joint Surg Am. 1958;40(4):793-5.

- 1095. Tanaka J, Muraji M, Negoro H, Yamashita H, Nakano T, Nakano K. Subcutaneous release of trigger thumb and fingers in 210 fingers. Journal of Hand Surgery (British and European Volume). 1990;15(4):463-5.
- 1096. Dierks U, Hoffmann R, Meek MF. Open versus percutaneous release of the A1-pulley for stenosing tendovaginitis: a prospective randomized trial. *Tech Hand Up Extrem* Surg. 2008;12(3):183-7.
- 1097. Bamroongshawgasame T. A comparison of open and percutaneous pulley release in trigger digits. J Med Assoc Thai. 2010;93(2):199-204.
- 1098. Cebesoy O, Kose KC, Baltaci ET, Isik M. Percutaneous release of the trigger thumb: is it safe, cheap and effective? Int Orthop. 2007;31(3):345-9.
- 1099. Topper SM, Jones DE, Klajnbart JO, Friedel SP. Trigger finger: the effect of partial release of the first annular pulley on triggering. Am J Orthop. 1997;26(10):675-7.
- 1100. Fu YC, Huang PJ, Tien YC, Lu YM, Fu HH, Lin GT. Revision of incompletely released trigger fingers by percutaneous release: results and complications. *J Hand Surg Am.* 2006;31(8):1288-91.
- 1101. Yiannakopoulos CK, Ignatiadis IA. Transdermal anaesthesia for percutaneous trigger finger release. Hand Surg. 2006;11(3):159-62.
- 1102. Chao M, Wu S, Yan T. The effect of miniscalpel-needle versus steroid injection for trigger thumb release. J Hand Surg Eur Vol. 2009;34(4):522-5.
- 1103. Pegoli L, Cavalli E, Cortese P, Parolo C, Pajardi G. A comparison of endoscopic and open trigger finger release. *Hand Surg.* 2008;13(3):147-51.
- 1104. Costa CR, Morrison WB, Carrino JA. MRI features of intersection syndrome of the forearm. AJR Am J Roentgenol. 2003;181(5):1245-9.
- 1105. de Lima JE, Kim HJ, Albertotti F, Resnick D. Intersection syndrome: MR imaging with anatomic comparison of the distal forearm. Skeletal Radiol. 2004;33(11):627-31.
- 1106. Lee RP, Hatem SF, Recht MP. Extended MRI findings of intersection syndrome. *Skeletal Radiol*. 2009;38(2):157-63.
- 1107. Chien AJ, Jacobson JA, Martel W, Kabeto MU, Marcantonio DR. Focal radial styloid abnormality as a manifestation of de Quervain tenosynovitis. *AJR Am J Roentgenol*. 2001;177(6):1383-6.
- 1108. Nieuwenhuis WP, Krabben A, Stomp W, et al. Evaluation of magnetic resonance imaging-detected tenosynovitis in the hand and wrist in early arthritis. *Arthritis Rheumatol*. 2015;67(4):869-76.
- 1109. Parellada AJ, Gopez AG, Morrison WB, et al. Distal intersection tenosynovitis of the wrist: a lesser-known extensor tendinopathy with characteristic MR imaging features. *Skeletal Radiol*. 2007;36(3):203-8.
- 1110. Hadidy A, Hadidi S, Haroun A, et al. DeQuervain's tenosynovitis imaging: ultrasonography veruss magnetic resonance imaging. *J Bahrain Med Society*. 2009;21(4):328-33.
- 1111. Steinberg D. Intersection Syndrome. Available at: http://www.emedicine.com/orthoped/topic407.htm. *Emedicine*. 2008.
- 1112. Menendez ME, Thornton E, Kent S, Kalajian T, Ring D. A prospective randomized clinical trial of prescription of full-time versus as-desired splint wear for de Quervain tendinopathy. *Int Orthop*. 2015;39(8):1563-9.
- 1113. Mardani-Kivi M, Karimi Mobarakeh M, Bahrami F, Hashemi-Motlagh K, Saheb-Ekhtiari K, Akhoondzadeh N. Corticosteroid injection with or without thumb spica cast for de Quervain tenosynovitis. *J Hand Surg Am.* 2014;39(1):37-41.
- 1114. Mehdinasab SA, Alemohammad SA. Methylprednisolone acetate injection plus casting versus casting alone for the treatment of de Quervain's tenosynovitis. *Arch Iran Med*. 2010;13(4):270-4.
- 1115. Jirarattanaphochai K, Saengnipanthkul S, Vipulakorn K, Jianmongkol S, Chatuparisute P, Jung S. Treatment of de Quervain disease with triamcinolone injection with or without nimesulide. A randomized, double-blind, placebo-controlled trial. *J Bone Joint Surg Am.* 2004;86-A(12):2700-6.
- 1116. Mazieres B, Rouanet S, Guillon Y, Scarsi C, Reiner V. Topical ketoprofen patch in the treatment of tendinitis: a randomized, double blind, placebo controlled study. *J Rheumatol.* 2005;32(8):1563-70.
- 1117. May JJ, Lovell G, Hopkins WG. Effectiveness of 1% diclofenac gel in the treatment of wrist extensor tenosynovitis in long distance kayakers. *J Sci Med Sport*. 2007;10(1):59-65.
- 1118. Anderson M, Tichenor CJ. A patient with de Quervain's tenosynovitis: a case report using an Australian approach to manual therapy. Phys Ther. 1994;74(4):314-26.
- 1119. Brosseau L, Casimiro L, Milne S, et al. Deep transverse friction massage for treating tendinitis. Cochrane Database Syst Rev. 2002(1):CD003528.

- 1120. Hadianfard M, Ashraf A, Fakheri M, Nasiri A. Efficacy of acupuncture versus local methylprednisolone acetate injection in De Quervain's tenosynovitis: a randomized controlled trial. *J Acupunct Meridian Stud.* 2014;7(3):115-21.
- 1121. Avci S, Yilmaz C, Sayli U. Comparison of nonsurgical treatment measures for de Quervain's disease of pregnancy and lactation. J Hand Surg Am. 2002;27(2):322-4.
- 1122. Kosuwon W. Treatment of de quervain tenosynovitis: A prospective randomized controlled study comparing the results of steroid injection with and without immobilization in a splint. *Journal of Clinical Epidemiology*. 1996;49(Suppl 1):S5.
- 1123. Lane LB, Boretz RS, Stuchin SA. Treatment of de Quervain's disease:role of conservative management. J Hand Surg Br. 2001;26(3):258-60.
- 1124. Lapidus PW, Guidotti FP. Stenosing tenovaginitis of the wrist and fingers. Clin Orthop Relat Res. 1972;8387-90.
- 1125. Peters-Veluthamaningal C, van der Windt DA, Winters JC, Meyboom-de Jong B. Corticosteroid injection for de Quervain's tenosynovitis. *Cochrane Database Syst Rev.* 2009(3):CD005616.
- 1126. Peters-Veluthamaningal C, Winters JC, Groenier KH, Meyboom-DeJong B. Randomised controlled trial of local corticosteroid injections for de Quervain's tenosynovitis in general practice. *BMC Musculoskelet Disord*. 2009;10131.
- 1127. Richie CA, 3rd, Briner WW, Jr. Corticosteroid injection for treatment of de Quervain's tenosynovitis: a pooled quantitative literature evaluation. *J Am Board Fam Pract.* 2003;16(2):102-6.
- 1128. Anderson BC, Manthey R, Brouns MC. Treatment of De Quervain's tenosynovitis with corticosteroids. A prospective study of the response to local injection. *Arthritis Rheum*. 1991;34(7):793-8.
- 1129. Sakai N. Selective corticosteroid injection into the extensor pollicis brevis tenosynovium for de Quervain's disease. Orthopedics. 2002;25(1):68-70.
- 1130. Jeyapalan K, Choudhary S. Ultrasound-guided injection of triamcinolone and bupivacaine in the management of de Quervain's disease. *Skeletal Radiol*. 2009;38(11):1099-103.
- 1131. Rankin ME, Rankin EA. Injection therapy for management of stenosing tenosynovitis (de Quervain's disease) of the wrist. J Natl Med Assoc. 1998;90(8):474-6.
- 1132. Witt J, Pess G, Gelberman RH. Treatment of de Quervain tenosynovitis. A prospective study of the results of injection of steroids and immobilization in a splint. J Bone Joint Surg Am. 1991;73(2):219-22.
- 1133. Zingas C, Failla JM, Van Holsbeeck M. Injection accuracy and clinical relief of de Quervain's tendinitis. J Hand Surg Am. 1998;23(1):89-96.
- 1134. Weiss AP, Akelman E, Tabatabai M. Treatment of de Quervain's disease. J Hand Surg Am. 1994;19(4):595-8.
- 1135. Kume K, Amano K, Yamada S, Kuwaba N, Ohta H. In de Quervain's with a separate EPB compartment, ultrasound-guided steroid injection is more effective than a clinical injection technique: a prospective open-label study. *J Hand Surg Eur Vol.* 2012;37(6):523-7.
- 1136. Sawaizumi T, Nanno M, Ito H. De Quervain's disease: efficacy of intra-sheath triamcinolone injection. Int Orthop. 2007;31(2):265-8.
- 1137. Williams JG. Surgical management of traumatic non-infective tenosynovitis of the wrist extensors. J Bone Joint Surg Br. 1977;59-B(4):408-10.
- 1138. Witmer B, DiBenedetto M, Kang CG. An improved approach to the evaluation of the deep motor branch of the ulnar nerve. *Electromyogr Clin Neurophysiol*. 2002;42(8):485-93.
- 1139. Alaranta H, Seppalainen AM. Neuropathy and the automatic analysis of electromyographic signals from vibration exposed workers. *Scand J Work Environ Health*. 1977;3(3):128-34.
- 1140. Chatterjee DS, Barwick DD, Petrie A. Exploratory electromyography in the study of vibration-induced white finger in rock drillers. Br J Ind Med. 1982;39(1):89-97.
- 1141. Lander L, Lou W, House R. Nerve conduction studies and current perception thresholds in workers assessed for hand-arm vibration syndrome. *Occup Med (Lond)*. 2007;57(4):284-9.
- 1142. Hirata M, Sakakibara H. Sensory nerve conduction velocities of median, ulnar and radial nerves in patients with vibration syndrome. *Int Arch Occup Environ Health*. 2007;80(4):273-80.
- 1143. Aszmann O, Dellon AL. Decompression of multiple peripheral nerves in the treatment of diabetic neuropathy: a prospective, blinded study. *Acta Chirurgica Austriaca*. 2001;33(3):117-20.

- 1144. Dellon AL. Treatment of symptomatic diabetic neuropathy by surgical decompression of multiple peripheral nerves. *Plast Reconstr Surg.* 1992;89(4):689-97; discussion 98-9.
- 1145. Corwin HM. Compression neuropathies of the upper extremity. Clin Occup Environ Med. 2006;5(2):333-52, viii.
- 1146. Spindler HA, Dellon AL. Nerve conduction studies in the superficial radial nerve entrapment syndrome. *Muscle Nerve*. 1990;13(1):1-5.
- 1147. Verhaar J, Spaans F. Radial tunnel syndrome. An investigation of compression neuropathy as a possible cause. J Bone Joint Surg Am. 1991;73(4):539-44.
- 1148. Braidwood A. Superficial radial neuropathy. Journal of Bone & Joint Surgery, British Volume. 1975;57(3):380-3.
- 1149. Kleinert JM, Mehta S. Radial nerve entrapment. Orthop Clin North Am. 1996;27(2):305-15.
- 1150. Rinkel WD, Schreuders TA, Koes BW, Huisstede BM. Current evidence for effectiveness of interventions for cubital tunnel syndrome, radial tunnel syndrome, instability, or bursitis of the elbow: a systematic review. *Clin J Pain*. 2013;29(12):1087-96.
- 1151. Calder KM, Gabriel DA, McLean L. Differences in EMG spike shape between individuals with and without non-specific arm pain. *J Neurosci Methods*. 2009;178(1):148-56.
- 1152. Huellner MW, Burkert A, Strobel K, et al. Imaging non-specific wrist pain: interobserver agreement and diagnostic accuracy of SPECT/CT, MRI, CT, bone scan and plain radiographs. *PLoS One*. 2013;8(12):e85359.
- 1153. van Eijsden-Besseling M, Staal J, van Attekum A, de Bie R, van den Heuvel W. No difference between postural exercises and strength and fitness exercises for early, nonspecific, work-related upper limb disorders in visual display unit workers: a randomised trial. *Aust J Physiother*. 2008;54(2):95-101.
- 1154. Andersen LL, Jakobsen MD, Pedersen MT, Mortensen OS, Sjogaard G, Zebis MK. Effect of specific resistance training on forearm pain and work disability in industrial technicians: cluster randomised controlled trial. *BMJ Open*. 2012;2(1):e000412.
- 1155. Tiel-van Buul M, van Beek E, Borm J, Gubler F, Broekhuizen A, van Royen E. The value of radiographs and bone scintigraphy in suspected scaphoid fracture. A statistical analysis. *J Hand Surg Br.* 1993;18(3):403-6.
- 1156. Leslie I, Dickson R. The fractured carpal scaphoid. Natural history and factors influencing outcome. Journal of Bone & Joint Surgery, British Volume. 1981;63(2):225-30.
- 1157. Ilica AT, Ozyurek S, Kose O, Durusu M. Diagnostic accuracy of multidetector computed tomography for patients with suspected scaphoid fractures and negative radiographic examinations. *Jpn J Radiol*. 2011;29(2):98-103.
- 1158. Mallee W, Doornberg JN, Ring D, van Dijk CN, Maas M, Goslings JC. Comparison of CT and MRI for diagnosis of suspected scaphoid fractures. *J Bone Joint Surg Am*. 2011;93(1):20-8.
- 1159. Memarsadeghi M, Breitenseher MJ, Schaefer-Prokop C, et al. Occult scaphoid fractures: comparison of multidetector CT and MR imaging--initial experience. *Radiology*. 2006;240(1):169-76.
- 1160. Smith ML, Bain GI, Chabrel N, Turner P, Carter C, Field J. Using computed tomography to assist with diagnosis of avascular necrosis complicating chronic scaphoid nonunion. *J Hand Surg Am.* 2009;34(6):1037-43.
- 1161. Temple CL, Ross DC, Bennett JD, Garvin GJ, King GJ, Faber KJ. Comparison of sagittal computed tomography and plain film radiography in a scaphoid fracture model. *J* Hand Surg Am. 2005;30(3):534-42.
- 1162. Fotiadou A, Patel A, Morgan T, Karantanas AH. Wrist injuries in young adults: the diagnostic impact of CT and MRI. Eur J Radiol. 2011;77(2):235-9.
- 1163. Herneth AM, Siegmeth A, Bader TR, et al. Scaphoid fractures: evaluation with high-spatial-resolution US initial results. Radiology. 2001;220(1):231-5.
- 1164. Patel NK, Davies N, Mirza Z, Watson M. Cost and clinical effectiveness of MRI in occult scaphoid fractures: a randomised controlled trial. *Emerg Med J*. 2013;30(3):202-7.
- 1165. Querellou S, Arnaud L, Williams T, et al. Role of SPECT/CT compared with MRI in the diagnosis and management of patients with wrist trauma occult fractures. *Clin Nucl Med.* 2014;39(1):8-13.
- 1166. Kumar S, O'Connor A, Despois M, Galloway H. Use of early magnetic resonance imaging in the diagnosis of occult scaphoid fractures: the CAST Study (Canberra Area Scaphoid Trial). *N Z Med J*. 2005;118(1209):U1296.
- 1167. Carpenter CR, Pines JM, Schuur JD, Muir M, Calfee RP, Raja AS. Adult scaphoid fracture. Acad Emerg Med. 2014;21(2):101-21.

- 1168. Ganel A, Engel J, Oster Z, Farine I. Bone scanning in the assessment of fractures of the scaphoid. J Hand Surg Am. 1979;4(6):540-3.
- 1169. Murphy D, Eisenhauer M, Powe J, Pavlofsky W. Can a day 4 bone scan accurately determine the presence or absence of scaphoid fracture? *Annals Emerg Med.* 1995;26(4):434-8.
- 1170. Tiel-van Buul M, van Beek E, Broekhuizen A, Bakker A, Bos K, van Royen E. Radiography and scintigraphy of suspected scaphoid fracture. A long-term study in 160 patients. *J Bone Joint Surg Br.* 1993;75(1):61-5.
- 1171. Brismar J. Skeletal scintigraphy of the wrist in suggested scaphoid fracture. Acta Radiologica. 1988;29(1):101-7.
- 1172. Brooks S, Cicuttini FM, Lim S, Taylor D, Stuckey SL, Wluka AE. Cost effectiveness of adding magnetic resonance imaging to the usual management of suspected scaphoid fractures. *Br J Sports Med*. 2005;39(2):75-9.
- 1173. Bergh TH, Steen K, Lindau T, et al. Costs analysis and comparison of usefulness of acute MRI and 2 weeks of cast immobilization for clinically suspected scaphoid fractures. *Acta Orthop*. 2015;86(3):303-9.
- 1174. Bhat M, McCarthy M, Davis TR, Oni JA, Dawson S. MRI and plain radiography in the assessment of displaced fractures of the waist of the carpal scaphoid. *J Bone Joint Surg Br.* 2004;86(5):705-13.
- 1175. Breitenseher MJ, Trattnig S, Gabler C, et al. MRI in radiologically occult scaphoid fractures. Initial experiences with 1.0 Tesla (whole body-middle field equipment) versus 0.2 Tesla (dedicated low-field equipment). *Radiologe*. 1997;37(10):812-8.
- 1176. Brydie A, Raby N. Early MRI in the management of clinical scaphoid fracture. Br J Radiol. 2003;76(905):296-300.
- 1177. Cook PA, Yu JS, Wiand W, Cook AJ, 2nd, Coleman CR, Cook AJ. Suspected scaphoid fractures in skeletally immature patients: application of MRI. *J Comput Assist Tomogr.* 1997;21(4):511-5.
- 1178. De Zwart A, Beeres F, Ring D, et al. MRI as a reference standard for suspected scaphoid fractures. Br J Radiol. 2012;85(1016):1098-101.
- 1179. Fowler C, Sullivan B, Williams LA, McCarthy G, Savage R, Palmer A. A comparison of bone scintigraphy and MRI in the early diagnosis of the occult scaphoid waist fracture. *Skeletal Radiol*. 1998;27(12):683-7.
- 1180. Fox MG, Gaskin CM, Chhabra AB, Anderson MW. Assessment of scaphoid viability with MRI: a reassessment of findings on unenhanced MR images. *AJR Am J Roentgenol*. 2010;195(4):W281-6.
- 1181. Gabler C, Kukla C, Breitenseher MJ, Trattnig S, Vecsei V. Diagnosis of occult scaphoid fractures and other wrist injuries. Are repeated clinical examinations and plain radiographs still state of the art? *Langenbecks Arch Surg*. 2001;386(2):150-4.
- 1182. Low G, Raby N. Can follow-up radiography for acute scaphoid fracture still be considered a valid investigation? *Clin Radiol.* 2005;60(10):1106-10.
- 1183. Ng AW, Griffith JF, Taljanovic MS, Li A, Tse WL, Ho PC. Is dynamic contrast-enhanced MRI useful for assessing proximal fragment vascularity in scaphoid fracture delayed and non-union? *Skeletal Radiol*. 2013;42(7):983-92.
- 1184. Tibrewal S, Jayakumar P, Vaidya S, Ang SC. Role of MRI in the diagnosis and management of patients with clinical scaphoid fracture. Int Orthop. 2012;36(1):107-10.
- 1185. Unay K, Gokcen B, Ozkan K, Poyanli O, Eceviz E. Examination tests predictive of bone injury in patients with clinically suspected occult scaphoid fracture. *Injury*. 2009;40(12):1265-8.
- 1186. Beeres FJ, Hogervorst M, Kingma LM, Le Cessie S, Coerkamp EG, Rhemrev SJ. Observer variation in MRI for suspected scaphoid fractures. *Br J Radiol*. 2008;81(972):950-4.
- 1187. Tiel-van Buul M, Roolker W, Verbeeten B, Broekhuizen A. Magnetic resonance imaging versus bone scintigraphy in suspected scaphoid fracture. *Eur J Nucl Med.* 1996;23(8):971-5.
- 1188. Bretlau T, Christensen OM, Edstrom P, Thomsen HS, Lausten GS. Diagnosis of scaphoid fracture and dedicated extremity MRI. Acta Orthop Scand. 1999;70(5):504-8.
- 1189. Hunter JC, Escobedo EM, Wilson AJ, Hanel DP, Zink-Brody GC, Mann FA. MR imaging of clinically suspected scaphoid fractures. *AJR Am J Roentgenol*. 1997;168(5):1287-93.
- 1190. Jorgsholm P, Thomsen NO, Besjakov J, Abrahamsson SO, Bjorkman A. The benefit of magnetic resonance imaging for patients with posttraumatic radial wrist tenderness. *J Hand Surg Am.* 2013;38(1):29-33.

- 1191. Kitsis C, Taylor M, Chandey J, et al. Imaging the problem scaphoid. *Injury*. 1998;29(7):515-20.
- 1192. Kusano N, Churei Y, Shiraishi E, Kusano T. Diagnosis of occult carpal scaphoid fracture: a comparison of magnetic resonance imaging and computed tomography techniques. *Tech Hand Up Extrem Surg.* 2002;6(3):119-23.
- 1193. Lozano-Calderon S, Blazar P, Zurakowski D, Lee SG, Ring D. Diagnosis of scaphoid fracture displacement with radiography and computed tomography. *J Bone Joint Surg* Am. 2006;88(12):2695-703.
- 1194. Raby N. Magnetic resonance imaging of suspected scaphoid fractures using a low field dedicated extremity MR system. *Clin Radiol.* 2001;56(4):316-20.
- 1195. Larribe M, Gay A, Freire V, Bouvier C, Chagnaud C, Souteyrand P. Usefulness of dynamic contrast-enhanced MRI in the evaluation of the viability of acute scaphoid fracture. *Skeletal Radiol*. 2014;43(12):1697-703.
- 1196. Gaebler C, Kukla C, Breitenseher M, Trattnig S, Mittlboeck M, Vecsei V. Magnetic resonance imaging of occult scaphoid fractures. J Trauma. 1996;41(1):73-6.
- 1197. Schmitt R, Frohner S, van Schoonhoven J, Lanz U, Golles A. Idiopathic osteonecrosis of the scaphoid (Preiser's disease)--MRI gives new insights into etiology and pathology. *Eur J Radiol*. 2011;77(2):228-34.
- 1198. Senevirathna S, Rajeev A, Newby M. The value of delayed MRI scans in the assessment of acute wrist injuries. Acta Orthop Belg. 2013;79(3):275-9.
- 1199. Sharifi MD, Moghaddam HZ, Zakeri H, Ebrahimi M, Saeedian H, Hashemian AM. The Accuracy of Pain Measurement in Diagnosis of Scaphoid Bone Fractures in Patients with Magnetic Resonance Imaging: Report of 175 Cases. *Med Arch.* 2015;69(3):161-4.
- 1200. Fusetti C, Poletti PA, Pradel PH, et al. Diagnosis of occult scaphoid fracture with high-spatial-resolution sonography: a prospective blind study. *J Trauma*. 2005;59(3):677-81.
- 1201. Hauger O, Bonnefoy O, Moinard M, Bersani D, Diard F. Occult fractures of the waist of the scaphoid: early diagnosis by high-spatial-resolution sonography. *AJR Am J Roentgenol*. 2002;178(5):1239-45.
- 1202. Zhong-Gang Y, Jian-Bing Z, Shi-Lian K, Xiao-Gang W. Diagnosing suspected scaphoid fractures: a systematic review and meta-analysis. *Clin Orthop Relat Res.* 2010;468(3):723-34.
- 1203. Adey L, Souer JS, Lozano-Calderon S, Palmer W, Lee SG, Ring D. Computed tomography of suspected scaphoid fractures. J Hand Surg Am. 2007;32(1):61-6.
- 1204. Hannemann PF, Brouwers L, van der Zee D, et al. Multiplanar reconstruction computed tomography for diagnosis of scaphoid waist fracture union: a prospective cohort analysis of accuracy and precision. *Skeletal Radiol*. 2013;42(10):1377-82.
- 1205. Rhemrev SJ, van Leerdam RH, Beeres FJ, Arndt JW, Meylaerts SA. Bone scintigraphy in patients with clinical suspicion of a scaphoid fracture. *Eur J Emerg Med*. 2010;17(2):124-5.
- 1206. Nguyen Q, Chaudhry S, Sloan R, Bhoora I, Willard C. The clinical scaphoid fracture: early computed tomography as a practical approach. *Ann R Coll Surg Engl.* 2008;90(6):488-91.
- 1207. Biondetti P, Vannier M, Gilula L, Knapp R. Wrist: coronal and transaxial CT scanning. Radiology. 1987;163(1):149-51.
- 1208. Pennes D, Jonsson K, Buckwalter K. Direct coronal CT of the scaphoid bone. Radiology. 1989;171(3):870-1.
- 1209. Clementson M, Jorgsholm P, Besjakov J, Bjorkman A, Thomsen N. Union of scaphoid waist fractures assessed by CT scan. J Wrist Surg. 2015;4(1):49-55.
- 1210. Hannemann PF, van Wezenbeek MR, Kolkman KA, et al. CT scan-evaluated outcome of pulsed electromagnetic fields in the treatment of acute scaphoid fractures: a randomised, multicentre, double-blind, placebo-controlled trial. *Bone Joint J.* 2014;96-B(8):1070-6.
- 1211. Cruickshank J, Meakin A, Breadmore R, et al. Early computerized tomography accurately determines the presence or absence of scaphoid and other fractures. *Emerg Med Australas*. 2007;19(3):223-8.
- 1212. Mallee W, Wang J, Poolman R, et al. Computed tomography versus magnetic resonance imaging versus bone scintigraphy for clinically suspected scaphoid fractures in patients with negative plain radiographs. *Cochrane Database Syst Rev.* 2015;6:CD010023.
- 1213. Stordahl A, Schjoth A, Woxholt G, Fjermeros H. Bone scanning of fractures of the scaphoid. *J Hand Surg Br.* 1984;9(2):189-90.
- 1214. Rolfe EB, Garvie NW, Khan MA, Ackery DM. Isotope bone imaging in suspected scaphoid trauma. Br J Radiol. 1981;54(645):762-7.
- 1215. Nielsen PT, Hedeboe J, Thommesen P. Bone scintigraphy in the evaluation of fracture of the carpal scaphoid bone. Acta Orthop Scand. 1983;54(2):303-6.

- 1216. O'Carroll PF, Doyle J, Duffy G. Radiography and scintigraphy in the diagnosis of carpal scaphoid fractures. *Ir J Med Sci.* 1982;151(7):211-3.
- 1217. Beeres FJ, Hogervorst M, den Hollander P, Rhemrev S. Outcome of routine bone scintigraphy in suspected scaphoid fractures. Injury. 2005;36(10):1233-6.
- 1218. Beeres FJ, Hogervorst M, Rhemrev SJ, den Hollander P, Jukema GN. A prospective comparison for suspected scaphoid fractures: bone scintigraphy versus clinical outcome. *Injury*. 2007;38(7):769-74.
- 1219. Hiscox C, LaMothe J, White N, Bromley M, Oddone Paolucci E, Hildebrand K. Diagnosis of occult scaphoid fractures: a randomized, controlled trial comparing bone scans to radiographs for diagnosis. *CJEM*. 2014;16(4):296-303.
- 1220. Murphy DG, Eisenhauer MA, Powe J, Pavlofsky W. Can a day 4 bone scan accurately determine the presence or absence of scaphoid fracture? *Ann Emerg Med.* 1995;26(4):434-8.
- 1221. Symes TH, Stothard J. A systematic review of the treatment of acute fractures of the scaphoid. J Hand Surg Eur Vol. 2011;36(9):802-10.
- 1222. Dias J, Wildin C, Bhowal B, Thompson J. Should acute scaphoid fractures be fixed? *The Journal of Bone & Joint Surgery*. 2005;87(10):2160-8.
- 1223. Alshryda S, Shah A, Odak S, Al-Shryda J, Ilango B, Murali S. Acute fractures of the scaphoid bone: systematic review and meta-analysis. the surgeon. 2012;10(4):218-29.
- 1224. Hambidge J, Desai V, Schranz P, Compson J, Davis T, Barton N. Acute fractures of the scaphoid. Treatment by cast immobilisation with the wrist in flexion or extension? J Bone Joint Surg Br. 1999;81(1):91-2.
- 1225. Lawton JN, Nicholls MA, Charoglu CP. Immobilization for scaphoid fracture: forearm rotation in long arm thumb-spica versus Munster thumb-spica casts. *Orthopedics*. 2007;30(8):612-4.
- 1226. Clay NR, Dias JJ, Costigan PS, Gregg PJ, Barton NJ. Need the thumb be immobilised in scaphoid fractures? A randomised prospective trial. *J Bone Joint Surg Br*. 1991;73(5):828-32.
- 1227. Gellman H, Caputo R, Carter V, Aboulafia A, McKay M. Comparison of short and long thumb-spica casts for non-displaced fractures of the carpal scaphoid. *J Bone Joint Surg Am.* 1989;71(3):354-7.
- 1228. Saeden B, Tornkvist H, Ponzer S, Hoglund M. Fracture of the carpal scaphoid. A prospective, randomised 12-year follow-up comparing operative and conservative treatment. *J Bone Joint Surg Br.* 2001;83(2):230-4.
- 1229. Skirven T, Trope J. Complications of immobilization. Hand Clin. 1994;10(1):53-61.
- 1230. Schramm JM, Nguyen M, Wongworawat MD, Kjellin I. Does thumb immobilization contribute to scaphoid fracture stability? Hand (NY). 2008;3(1):41-3.
- 1231. Cohen AP, Shaw DL. Focused rigidity casting: a prospective randomised study. JR Coll Surg Edinb. 2001;46(5):265-70.
- 1232. London P. The broken scaphoid bone: the case against pessimism. J Bone Joint Surg Br. 1961;43(2):237-44.
- 1233. Sjolin SU, Andersen JC. Clinical fracture of the carpal scaphoid--supportive bandage or plaster cast immobilization? J Hand Surg [Br]. 1988;13(1):75-6.
- 1234. Gumucio CA, Fernando B, Young VL, Gilula LA, Kraemer BA. Management of scaphoid fractures: a review and update. South Med J. 1989;82(11):1377-88.
- 1235. Christodoulou AG, Colton CL. Scaphoid fractures in children. J Pediatr Orthop. 1986;6(1):37-9.
- 1236. Cooney WP, Dobyns JH, Linscheid RL. Fractures of the scaphoid: a rational approach to management. Clin Orthop Relat Res. 1980(149):90-7.
- 1237. Szabo RM, Manske D. Displaced fractures of the scaphoid. Clin Orthop Relat Res. 1988(230):30-8.
- 1238. Buijze GA, Goslings JC, Rhemrev SJ, et al. Cast immobilization with and without immobilization of the thumb for nondisplaced and minimally displaced scaphoid waist fractures: a multicenter, randomized, controlled trial. *J Hand Surg Am*. 2014;39(4):621-7.
- 1239. Dias JJ, Dhukaram V, Abhinav A, Bhowal B, Wildin CJ. Clinical and radiological outcome of cast immobilisation versus surgical treatment of acute scaphoid fractures at a mean follow-up of 93 months. *J Bone Joint Surg Br*. 2008;90(7):899-905.
- 1240. Adolfsson L, Lindau T, Arner M. Acutrak screw fixation versus cast immobilisation for undisplaced scaphoid waist fractures. J Hand Surg [Br]. 2001;26(3):192-5.
- 1241. Bond CD, Shin AY, McBride MT, Dao KD. Percutaneous screw fixation or cast immobilization for nondisplaced scaphoid fractures. *J Bone Joint Surg Am*. 2001;83-A(4):483-8.
- 1242. Dias JJ, Wildin CJ, Bhowal B, Thompson JR. Should acute scaphoid fractures be fixed? A randomized controlled trial. J Bone Joint Surg Am. 2005;87(10):2160-8.

- 1243. Toby EB, Butler TE, McCormack TJ, Jayaraman G. A comparison of fixation screws for the scaphoid during application of cyclical bending loads. *J Bone Joint Surg Am.* 1997;79(8):1190-7.
- 1244. Vinnars B, Ekenstam FA, Gerdin B. Comparison of direct and indirect costs of internal fixation and cast treatment in acute scaphoid fractures: a randomized trial involving 52 patients. *Acta Orthop*. 2007;78(5):672-9.
- 1245. Braga-Silva J, Peruchi FM, Moschen GM, Gehlen D, Padoin AV. A comparison of the use of distal radius vascularised bone graft and non-vascularised iliac crest bone graft in the treatment of non-union of scaphoid fractures. *J Hand Surg Eur Vol.* 2008;33(5):636-40.
- 1246. Caporrino FA, Dos Santos JB, Penteado FT, de Moraes VY, Belloti JC, Faloppa F. Dorsal vascularized grafting for scaphoid nonunion: a comparison of two surgical techniques. *J Orthop Trauma*. 2014;28(3):e44-8.
- 1247. Garg B, Goyal T, Kotwal P, Sankineani S, Tripathy S. Local distal radius bone graft versus iliac crest bone graft for scaphoid nonunion: a comparative study. *Musculoskeletal Surg.* 2013;97(2):109-14.
- 1248. Raju PK, Kini SG. Fixation techniques for non-union of the scaphoid. J Orthop Surg (Hong Kong). 2011;19(1):80-4.
- 1249. Ribak S, Medina CE, Mattar R, Jr., Ulson HJ, Etchebehere M. Treatment of scaphoid nonunion with vascularised and nonvascularised dorsal bone grafting from the distal radius. *Int Orthop*. 2010;34(5):683-8.
- 1250. Drac P, Cizmar I, Manak P, et al. Comparison of the results and complications of palmar and dorsal miniinvasive approaches in the surgery of scaphoid fractures. A prospective randomized study. *Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub*. 2014;158(2):277-81.
- 1251. Jeon IH, Micic ID, Oh CW, Park BC, Kim PT. Percutaneous screw fixation for scaphoid fracture: a comparison between the dorsal and the volar approaches. *J Hand Surg Am.* 2009;34(2):228-36 e1.
- 1252. Parvizi J, Vegari D. Pulsed low-intensity ultrasound for fracture healing. Foot Ankle Clin. 2005;10(4):595-608, vii.
- 1253. Pounder NM, Harrison AJ. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. *Ultrasonics*. 2008;48(4):330-8.
- 1254. Riboh JC, Leversedge FJ. The use of low-intensity pulsed ultrasound bone stimulators for fractures of the hand and upper extremity. J Hand Surg Am. 2012;37(7):1456-61.
- 1255. Rubin C, Bolander M, Ryaby JP, Hadjiargyrou M. The use of low-intensity ultrasound to accelerate the healing of fractures. J Bone Joint Surg Am. 2001;83-A(2):259-70.
- 1256. Siska PA, Gruen GS, Pape HC. External adjuncts to enhance fracture healing: what is the role of ultrasound? *Injury*. 2008;39(10):1095-105.
- 1257. Barry M. Low intensity pulsed ultrasound (LIPUS) for promoting fracture healing. Evidence-based Review. ACC Research: Evidence-Based Healthcare Review. 20151-37.
- 1258. Ricardo M. The effect of ultrasound on the healing of muscle-pediculated bone graft in scaphoid non-union. Int Orthop. 2006;30(2):123-7.
- 1259. Bilic R, Simic P, Jelic M, et al. Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis. Int Orthop. 2006;30(2):128-34.
- 1260. Batrick N, Hashemi K, Freij R. Treatment of uncomplicated subungual haematoma. Emerg Med J. 2003;20(1):65.
- 1261. Bonisteel PS. Practice tips. Trephining subungual hematomas. Can Fam Physician. 2008;54(5):693.
- 1262. Brown RE. Acute nail bed injuries. Hand Clin. 2002;18(4):561-75.
- 1263. Farrington GH. Subungual Haematoma--an Evaluation of Treatment. Br Med J. 1964;1(5385):742-4.
- 1264. Hart RG, Kleinert HE. Fingertip and nail bed injuries. *Emerg Med Clin North Am.* 1993;11(3):755-65.
- 1265. Meek S, White M. Subungual haematomas: is simple trephining enough? J Accid Emerg Med. 1998;15(4):269-71.
- 1266. Newmeyer WL, Kilgore ES, Jr. Common injuries of the fingernail and nail bed. Am Fam Physician. 1977;16(4):93-5.
- 1267. Palamarchuk HJ, Kerzner M. An improved approach to evacuation of subungual hematoma. J Am Podiatr Med Assoc. 1989;79(11):566-8.
- 1268. Roser SE, Gellman H. Comparison of nail bed repair versus nail trephination for subungual hematomas in children. J Hand Surg Am. 1999;24(6):1166-70.
- 1269. Salter SA, Ciocon DH, Gowrishankar TR, Kimball AB. Controlled nail trephination for subungual hematoma. Am J Emerg Med. 2006;24(7):875-7.
- 1270. Wang QC, Johnson BA. Fingertip injuries. Am Fam Physician. 2001;63(10):1961-6.
- 1271. Dean B, Becker G, Little C. The management of the acute traumatic subungual haematoma: a systematic review. Hand Surg. 2012;17(1):151-4.
- 1272. Ciocon D, Gowrishankar TR, Herndon T, Kimball AB. How low should you go: novel device for nail trephination. *Dermatol Surg*. 2006;32(6):828-33.

- 1273. Kaya TI, Tursen U, Baz K, Ikizoglu G. Extra-fine insulin syringe needle: an excellent instrument for the evacuation of subungual hematoma. *Dermatol Surg*. 2003;29(11):1141-3.
- 1274. Suprock MD, Hood JM, Lubahn JD. Role of antibiotics in open fractures of the finger. J Hand Surg Am. 1990;15(5):761-4.
- 1275. Stevenson J, McNaughton G, Riley J. The use of prophylactic flucloxacillin in treatment of open fractures of the distal phalanx within an accident and emergency department: a double-blind randomized placebo-controlled trial. *J Hand Surg Br.* 2003;28(5):388-94.
- 1276. Sloan JP, Dove AF, Maheson M, Cope AN, Welsh KR. Antibiotics in open fractures of the distal phalanx? J Hand Surg Br. 1987;12(1):123-4.
- 1277. Centers for Disease Control and Prevention. The pre-travel consultation. Routine vaccine-preventable diseases. 2009. wwwn.cdc.gov/travel/yellowbook/2010/chapter-2/tetanus.aspx.
- 1278. Hardy MA. Principles of metacarpal and phalangeal fracture management: a review of rehabilitation concepts. J Orthop Sports Phys Ther. 2004;34(12):781-99.
- 1279. Chalmer J, Blakeway M, Adams Z, Milan SJ. Conservative interventions for treating hyperextension injuries of the proximal interphalangeal joints of the fingers. *Cochrane Database Syst Rev.* 2013(2):CD009030.
- 1280. DaCruz DJ, Slade RJ, Malone W. Fractures of the distal phalanges. J Hand Surg Br. 1988;13(3):350-2.
- 1281. Carpenter S, Rohde RS. Treatment of phalangeal fractures. Hand Clin. 2013;29(4):519-34.
- 1282. Baratz ME, Divelbiss B. Fixation of phalangeal fractures. Hand Clin. 1997;13(4):541-55.
- 1283. Knoop K, Trott A, Syverud S. Comparison of digital versus metacarpal blocks for repair of finger injuries. Ann Emerg Med. 1994;23(6):1296-300.
- 1284. Williams JG, Lalonde DH. Randomized comparison of the single-injection volar subcutaneous block and the two-injection dorsal block for digital anesthesia. *Plast Reconstr Surg.* 2006;118(5):1195-200.
- 1285. Yin ZG, Zhang JB, Kan SL, Wang P. A comparison of traditional digital blocks and single subcutaneous palmar injection blocks at the base of the finger and a metaanalysis of the digital block trials. J Hand Surg [Br]. 2006;31(5):547-55.
- 1286. Cummings AJ, Tisol WB, Meyer LE. Modified transthecal digital block versus traditional digital block for anesthesia of the finger. J Hand Surg Am. 2004;29(1):44-8.
- 1287. Hill RG, Jr., Patterson JW, Parker JC, Bauer J, Wright E, Heller MB. Comparison of transthecal digital block and traditional digital block for anesthesia of the finger. *Ann Emerg Med.* 1995;25(5):604-7.
- 1288. Keramidas EG, Rodopoulou SG, Tsoutsos D, Miller G, Ioannovich J. Comparison of transthecal digital block and traditional digital block for anesthesia of the finger. *Plast Reconstr Surg.* 2004;114(5):1131-4; discussion 5-6.
- 1289. Low CK, Vartany A, Engstrom JW, Poncelet A, Diao E. Comparison of transthecal and subcutaneous single-injection digital block techniques. *J Hand Surg Am*. 1997;22(5):901-5.
- 1290. Low CK, Wong HP, Low YP. Comparison between single injection transthecal and subcutaneous digital blocks. J Hand Surg Br. 1997;22(5):582-4.
- 1291. Maitra A, Burdett-Smith P. The conservative management of proximal phalangeal fractures of the hand in an accident and emergency department. *J Hand Surg Br*. 1992;17(3):332-6.
- 1292. Papaloizos MY, Le Moine P, Prues-Latour V, Borisch N, Della Santa DR. Proximal fractures of the fifth metacarpal: a retrospective analysis of 25 operated cases. *J Hand Surg Br.* 2000;25(3):253-7.
- 1293. McKerrell J, Bowen V, Johnston G, Zondervan J. Boxer's fractures--conservative or operative management? *J Trauma*. 1987;27(5):486-90.
- 1294. Braakman M, Oderwald EE, Haentjens MH. Functional taping of fractures of the 5th metacarpal results in a quicker recovery. Injury. 1998;29(1):5-9.
- 1295. Harding IJ, Parry D, Barrington RL. The use of a moulded metacarpal brace versus neighbour strapping for fractures of the little finger metacarpal neck. *J Hand Surg [Br]*. 2001;26(3):261-3.
- 1296. Kuokkanen HO, Mulari-Keranen SK, Niskanen RO, Haapala JK, Korkala OL. Treatment of subcapital fractures of the fifth metacarpal bone: a prospective randomised comparison between functional treatment and reposition and splinting. *Scand J Plast Reconstr Surg Hand Surg*. 1999;33(3):315-7.
- 1297. Statius Muller MG, Poolman RW, van Hoogstraten MJ, Steller EP. Immediate mobilization gives good results in boxer's fractures with volar angulation up to 70 degrees: a prospective randomized trial comparing immediate mobilization with cast immobilization. *Arch Orthop Trauma Surg.* 2003;123(10):534-7.

- 1298. Hofmeister EP, Kim J, Shin AY. Comparison of 2 methods of immobilization of fifth metacarpal neck fractures: a prospective randomized study. *J Hand Surg Am.* 2008;33(8):1362-8.
- 1299. Kim JK, Kim DJ. Antegrade intramedullary pinning versus retrograde intramedullary pinning for displaced fifth metacarpal neck fractures. *Clin Orthop Relat Res.* 2015;473(5):1747-54.
- 1300. Konradsen L, Nielsen PT, Albrecht-Beste E. Functional treatment of metacarpal fractures 100 randomized cases with or without fixation. *Acta Orthop Scand*. 1990;61(6):531-4.
- 1301. Krukhaug Y, Ugland S, Lie SA, Hove LM. External fixation of fractures of the distal radius: a randomized comparison of the Hoffman compact II non-bridging fixator and the Dynawrist fixator in 75 patients followed for 1 year. *Acta Orthop*. 2009;80(1):104-8.
- 1302. McMahon PJ, Woods DA, Burge PD. Initial treatment of closed metacarpal fractures. A controlled comparison of compression glove and splintage. *J Hand Surg Br*. 1994;19(5):597-600.
- 1303. Randall T, Portney L, Harris BA. Effects of joint mobilization on joint stiffness and active motion of the metacarpal-phalangeal joint. *J Orthop Sports Phys Ther*. 1992;16(1):30-6.
- 1304. Winter M, Balaguer T, Bessiere C, Carles M, Lebreton E. Surgical treatment of the boxer's fracture: transverse pinning versus intramedullary pinning. *J Hand Surg Eur Vol.* 2007;32(6):709-13.
- 1305. Poolman RW, Goslings JC, Lee JB, Statius Muller M, Steller EP, Struijs PA. Conservative treatment for closed fifth (small finger) metacarpal neck fractures. *Cochrane Database Syst Rev.* 2005(3):CD003210.
- 1306. Arafa M, Haines J, Noble J, Carden D. Immediate mobilization of fractures of the neck of the fifth metacarpal. Injury. 1986;17(4):277-8.
- 1307. Breddam M, Hansen TB. Subcapital fractures of the fourth and fifth metacarpals treated without splinting and reposition. *Scand J Plast Reconstr Surg Hand Surg*. 1995;29(3):269-70.
- 1308. Ford DJ, Ali MS, Steel WM. Fractures of the fifth metacarpal neck: is reduction or immobilisation necessary? J Hand Surg Br. 1989;14(2):165-7.
- 1309. Jones AR. Reduction of angulated metacarpal fractures with a custom fracture-brace. J South Orthop Assoc. 1995;4(4):269-76.
- 1310. Trabelsi A, Dusserre F, Asencio G, Bertin R. Orthopedic treatment of fifth metacarpal neck fractures: prospective study. Chir Main. 2001;20(3):226-30.
- 1311. Toronto R, Donovan PJ, Macintyre J. An alternative method of treatment for metacarpal fractures in athletes. Clin J Sport Med. 1996;6(1):4-8.
- 1312. Kanatli U, Kazimoglu C, Ugurlu M, Esen E. Evaluation of functional results in conservatively treated boxer's fractures. Acta Orthop Traumatol Turc. 2002;36(5):429-31.
- 1313. Kjaer-Petersen K, Jurik AG, Petersen LK. Intra-articular fractures at the base of the fifth metacarpal. A clinical and radiographical study of 64 cases. *J Hand Surg Br*. 1992;17(2):144-7.
- 1314. Horton TC, Hatton M, Davis TR. A prospective randomized controlled study of fixation of long oblique and spiral shaft fractures of the proximal phalanx: closed reduction and percutaneous Kirschner wiring versus open reduction and lag screw fixation. *J Hand Surg Br.* 2003;28(1):5-9.
- 1315. Sletten IN, Hellund JC, Olsen B, Clementsen S, Kvernmo HD, Nordsletten L. Conservative treatment has comparable outcome with bouquet pinning of little finger metacarpal neck fractures: a multicentre randomized controlled study of 85 patients. *J Hand Surg Eur Vol.* 2015;40(1):76-83.
- 1316. Hansen FV, Staunstrup H, Mikkelsen S. A comparison of 3 and 5 weeks immobilization for older type 1 and 2 Colles' fractures. *Journal of Hand Surgery (British and European Volume)*. 1998;23(3):400-1.
- 1317. Sorensen JS, Freund KG, Kejla G. Functional fracture bracing in metacarpal fractures: the Galveston metacarpal brace versus a plaster-of-Paris bandage in a prospective study. *J Hand Ther*. 1993;6(4):263-5.
- 1318. Strub B, Schindele S, Sonderegger J, Sproedt J, von Campe A, Gruenert JG. Intramedullary splinting or conservative treatment for displaced fractures of the little finger metacarpal neck? A prospective study. *J Hand Surg Eur Vol*. 2010;35(9):725-9.
- 1319. Braakman M, Verburg AD, Oderwald EE. Are routine radiographs during conservative treatment of fractures of the fourth and fifth metacarpals useful? *Acta Orthop Belg*. 1996;62(3):151-5.
- 1320. Saunders SR. Physical therapy management of hand fractures. Phys Ther. 1989;69(12):1065-76.

- 1321. Freeland A. Hand fractures: repair, reconstruction, and rehabilitation: Churchill Livingstone; 2000.
- 1322. Eccles MV. Hand volumetrics. Br J Phys Med. 1956;19(1):5-8.
- 1323. Feehan LM, Bassett K. Is there evidence for early mobilization following an extraarticular hand fracture? J Hand Ther. 2004;17(2):300-8.
- 1324. Bombaci H, Polat A, Deniz G, Akinci O. The value of plain X-rays in predicting TFCC injury after distal radial fractures. J Hand Surg Eur Vol. 2008;33(3):322-6.
- 1325. Metz VM, Gilula LA. Imaging techniques for distal radius fractures and related injuries. Orthop Clin North Am. 1993;24(2):217-28.
- 1326. Spence LD, Savenor A, Nwachuku I, Tilsley J, Eustace S. MRI of fractures of the distal radius: comparison with conventional radiographs. *Skeletal Radiol*. 1998;27(5):244-9.
- 1327. Harness NG, Ring D, Zurakowski D, Harris GJ, Jupiter JB. The influence of three-dimensional computed tomography reconstructions on the characterization and treatment of distal radial fractures. *J Bone Joint Surg Am.* 2006;88(6):1315-23.
- 1328. Catalano LW, 3rd, Barron OA, Glickel SZ. Assessment of articular displacement of distal radius fractures. Clin Orthop Relat Res. 2004(423):79-84.
- 1329. Katz MA, Beredjiklian PK, Bozentka DJ, Steinberg DR. Computed tomography scanning of intra-articular distal radius fractures: does it influence treatment? *J Hand Surg Am.* 2001;26(3):415-21.
- 1330. Avery DM, 3rd, Matullo KS. Distal radial traction radiographs: interobserver and intraobserver reliability compared with computed tomography. *J Bone Joint Surg Am*. 2014;96(7):582-8.
- 1331. Adolphson P, Abbaszadegan H, Jonsson U, Dalen N, Sjoberg HE, Kalen S. No effects of piroxicam on osteopenia and recovery after Colles' fracture. A randomized, double-blind, placebo-controlled, prospective trial. *Arch Orthop Trauma Surg.* 1993;112(3):127-30.
- 1332. Barrington R. Single-blind study of diflunisal versus mefenamic acid in the treatment of pain after Colles' fracture. Curr Med Res Opin. 1980;6(9):630-3.
- 1333. Davis TR, Ackroyd CE. Non-steroidal anti-inflammatory agents in the management of Colles' fractures. Br J Clin Pract. 1988;42(5):184-9.
- 1334. Thomas AP, Brooks S. The use of an oral prostaglandin inhibitor following splintage in fractures of the distal radius--a prospective trial. *Injury*. 1986;17(3):179-81.
- 1335. Christensen OM, Christiansen TG, Krasheninnikoff M, Hansen FF. Length of immobilisation after fractures of the distal radius. Int Orthop. 1995;19(1):26-9.
- 1336. Davis TR, Buchanan JM. A controlled prospective study of early mobilization of minimally displaced fractures of the distal radial metaphysis. *Injury*. 1987;18(4):283-5.
- 1337. Dias JJ, Wray CC, Jones JM, Gregg PJ. The value of early mobilisation in the treatment of Colles' fractures. J Bone Joint Surg Br. 1987;69(3):463-7.
- 1338. McAuliffe TB, Hilliar KM, Coates CJ, Grange WJ. Early mobilisation of Colles' fractures. A prospective trial. J Bone Joint Surg Br. 1987;69(5):727-9.
- 1339. Millett PJ, Rushton N. Early mobilization in the treatment of Colles' fracture: a 3 year prospective study. Injury. 1995;26(10):671-5.
- 1340. Vang Hansen F, Staunstrup H, Mikkelsen S. A comparison of 3 and 5 weeks immobilization for older type 1 and 2 Colles' fractures. J Hand Surg [Br]. 1998;23(3):400-1.
- 1341. Earnshaw SA, Aladin A, Surendran S, Moran CG. Closed reduction of colles fractures: comparison of manual manipulation and finger-trap traction: a prospective, randomized study. *J Bone Joint Surg Am*. 2002;84-A(3):354-8.
- 1342. Lagerstrom C, Nordgren B, Olerud C. Evaluation of grip strength measurements after Colles' fracture: a methodological study. Scand J Rehabil Med. 1999;31(1):49-54.
- 1343. Lagerstrom C, Nordgren B, Rahme H. Recovery of isometric grip strength after Colles' fracture: a prospective two-year study. Scand J Rehabil Med. 1999;31(1):55-62.
- 1344. Abbaszadegan H, Conradi P, Jonsson U. Fixation not needed for undisplaced Codes' fracture. Acta Orthop. 1989;60(1):60-2.
- 1345. Ledingham WM, Wytch R, Goring CC, Mathieson AB, Wardlaw D. On immediate functional bracing of Colles' fracture. *Injury*. 1991;22(3):197-201.
- 1346. Moir J, Murali S, Ashcroft G, Wardlaw D, Matheson A. A new functional brace for the treatment of Colles' fractures. *Injury*. 1995;26(9):587-93.
- 1347. O'Connor D, Mullett H, Doyle M, Mofidi A, Kutty S, O'Sullivan M. Minimally displaced Colles' fractures: a prospective randomized trial of treatment with a wrist splint or a plaster cast. *J Hand Surg [Br]*. 2003;28(1):50-3.
- 1348. Stewart HD, Innes AR, Burke FD. Functional cast-bracing for Colles' fractures. A comparison between cast-bracing and conventional plaster casts. *J Bone Joint Surg Br*. 1984;66(5):749-53.
- 1349. Wilson C, Venner RM. Colles' fracture. Immobilisation in pronation or supination? J R Coll Surg Edinb. 1984;29(2):109-11.
- 1350. Cohen MS, Frillman T. Distal radius fractures: a prospective randomized comparison of fibreglass tape with QuickCast. Injury. 1997;28(4):305-9.

- 1351. Grafstein E, Stenstrom R, Christenson J, et al. A prospective randomized controlled trial comparing circumferential casting and splinting in displaced Colles fractures. *CJEM*. 2010;12(3):192-200.
- 1352. Moroni A, Vannini F, Faldini C, Pegreffi F, Giannini S. Cast vs external fixation: a comparative study in elderly osteoporotic distal radial fracture patients. *Scand J Surg*. 2004;93(1):64-7.
- 1353. Wong TC, Chiu Y, Tsang WL, Leung WY, Yam SK, Yeung SH. Casting versus percutaneous pinning for extra-articular fractures of the distal radius in an elderly Chinese population: a prospective randomised controlled trial. *J Hand Surg Eur Vol.* 2010;35(3):202-8.
- 1354. Arora R, Lutz M, Deml C, Krappinger D, Haug L, Gabl M. A prospective randomized trial comparing nonoperative treatment with volar locking plate fixation for displaced and unstable distal radial fractures in patients sixty-five years of age and older. *J Bone Joint Surg Am.* 2011;93(23):2146-53.
- 1355. Bong MR, Egol KA, Leibman M, Koval KJ. A comparison of immediate postreduction splinting constructs for controlling initial displacement of fractures of the distal radius: a prospective randomized study of long-arm versus short-arm splinting. *J Hand Surg Am.* 2006;31(5):766-70.
- 1356. Bunger C, Solund K, Rasmussen P. Early results after Colles' fracture: functional bracing in supination vs dorsal plaster immobilization. *Arch Orthop Trauma Surg*. 1984;103(4):251-6.
- 1357. Gupta A. The treatment of Colles' fracture. Immobilisation with the wrist dorsiflexed. J Bone Joint Surg Br. 1991;73(2):312-5.
- 1358. Rosetzsky A. Colles' fractures treated by plaster and polyurethane braces: a controlled clinical study. J Trauma. 1982;22(11):910-3.
- 1359. Sarmiento A, Zagorski JB, Sinclair WF. Functional bracing of Colles' fractures: a prospective study of immobilization in supination vs. pronation. *Clin Orthop Relat Res.* 1980(146):175-83.
- 1360. Tumia N, Wardlaw D, Hallett J, Deutman R, Mattsson SA, Sanden B. Aberdeen Colles' fracture brace as a treatment for Colles' fracture. A multicentre, prospective, randomised, controlled trial. *J Bone Joint Surg Br.* 2003;85(1):78-82.
- 1361. Wahlstrom O. Treatment of Colles' fracture. A prospective comparison of three different positions of immobilization. Acta Orthop Scand. 1982;53(2):225-8.
- 1362. Wik TS, Aurstad AT, Finsen V. Colles' fracture: dorsal splint or complete cast during the first 10 days? Injury. 2009;40(4):400-4.
- 1363. Uzzaman K, Awal K, Alam M. Closed reduction and percutaneous Kirschner wire fixation combined with plaster cast versus conventional plaster cast immobilization in the treatment of Colles' fracture a prospective randomized comparative study. *J Dhaka Med College*. 2008;17(2).
- 1364. Ismatullah. Efficacy of plaster casting versus external fixation in comminuted distal radius fractures. J Postgrad Med Inst. 2012;26(3):311-6.
- 1365. Gupta H. A randomized controlled trial comparing results of closed reduction and plaster immobilization versus external fixator in unstable fractures of distal radius. J College of Med Sci. 2011;7(4).
- 1366. Kongsholm J, Olerud C. Reduction of Colles' fractures without anaesthesia using a new dynamic bone alignment system. *Injury*. 1987;18(2):133-6.
- 1367. Kongsholm J, Olerud C. Neurological complications of dynamic reduction of Colles' fractures without anesthesia compared with traditional manipulation after local infiltration anesthesia. *J Orthop Trauma*. 1987;1(1):43-7.
- 1368. Kelly A, Warwick D, Crichlow T, Bannister G. Is manipulation of moderately displaced Colles' fracture worthwhile? A prospective randomized trial. *Injury*. 1997;28(4):283-7.
- 1369. van der Linden W, R. Ericson. Colles' fracture. How should its displacement be measured and how should it be immobilized? J Bone Joint Surg Am. 1981;63(8):1285-8.
- 1370. Cobb AG, Houghton GR. Local anaesthetic infiltration versus Bier's block for Colles' fractures. Br Med J (Clin Res Ed). 1985;291(6510):1683-4.
- 1371. Kendall JM, Allen P, Younge P, Meek SM, McCabe SE. Haematoma block or Bier's block for Colles' fracture reduction in the accident and emergency department--which is best? J Accid Emerg Med. 1997;14(6):352-6.
- 1372. Abbaszadegan H, Jonsson U. Regional anesthesia preferable for Colles' fracture. Controlled comparison with local anesthesia. Acta Orthop Scand. 1990;61(4):348-9.
- 1373. Singh G, Manglik R, et al. Analgesia for the reduction of Colles fracture. A comparison of hematoma block and intravenous sedation. *Online J Curr Clin Trials*. 1992;Doc No 23.
- 1374. Haasio J. Cubital nerve block vs haematoma block for the manipulation of Colles' fracture. Ann Chir Gynaecol. 1990;79(3):168-71.

- 1375. Fathi M, Moezzi M, Abbasi S, Farsi D, Zare MA, Hafezimoghadam P. Ultrasound-guided hematoma block in distal radial fracture reduction: a randomised clinical trial. *Emerg Med J*. 2015;32(6):474-7.
- 1376. Wahlstrom O. Stimulation of fracture healing with electromagnetic fields of extremely low frequency (EMF of ELF). Clin Orthop Relat Res. 1984(186):293-301.
- 1377. Cheing GL, Wan JW, Kai Lo S. Ice and pulsed electromagnetic field to reduce pain and swelling after distal radius fractures. J Rehabil Med. 2005;37(6):372-7.
- 1378. Lazovic M, Kocic M, Dimitrijevic L, Stankovic I, Spalevic M, Ciric T. Pulsed electromagnetic field during cast immobilization in postmenopausal women with Colles' fracture. *Srp Arh Celok Lek*. 2012;140(9-10):619-24.
- 1379. Christensen OM, Kunov A, Hansen FF, Christiansen TC, Krasheninnikoff M. Occupational therapy and Colles' fractures. Int Orthop. 2001;25(1):43-5.
- 1380. Watt CF, Taylor NF, Baskus K. Do Colles' fracture patients benefit from routine referral to physiotherapy following cast removal? *Arch Orthop Trauma Surg*. 2000;120(7-8):413-5.
- 1381. Pasila M, Karaharju EO, Lepisto PV. Role of physical therapy in recovery of function after Colles' fracture. Arch Phys Med Rehabil. 1974;55(3):130-4.
- 1382. Oskarsson GV, A. Hjall, et al. Physiotherapy: an overestimated factor in after-treatment of fractures in the distal radius? Arch Orthop Trauma Surg. 1997;116373-5.
- 1383. Filipova V, Lonzaric D, Jesensek Papez B. Efficacy of combined physical and occupational therapy in patients with conservatively treated distal radius fracture: randomized controlled trial. *Wien Klin Wochenschr*. 2015;127 Suppl 5282-7.
- 1384. Kay S, Haensel N, Stiller K. The effect of passive mobilisation following fractures involving the distal radius: a randomised study. Aust J Physiother. 2000;46(2):93-101.
- 1385. Wakefield AE, McQueen MM. The role of physiotherapy and clinical predictors of outcome after fracture of the distal radius. J Bone Joint Surg Br. 2000;82(7):972-6.
- 1386. Kay S, McMahon M, Stiller K. An advice and exercise program has some benefits over natural recovery after distal radius fracture: a randomised trial. *Aust J Physiother*. 2008;54(4):253-9.
- 1387. Valdes K, Naughton N, Burke CJ. Therapist-supervised hand therapy versus home therapy with therapist instruction following distal radius fracture. *J Hand Surg Am*. 2015;40(6):1110-6 e1.
- 1388. Magnus CR, Arnold CM, Johnston G, et al. Cross-education for improving strength and mobility after distal radius fractures: a randomized controlled trial. *Arch Phys Med Rehabil*. 2013;94(7):1247-55.
- 1389. Pring DJ, Barber L, Williams DJ. Bipolar fixation of fractures of the distal end of the radius: a comparative study. Injury. 1988;19(3):145-8.
- 1390. Young CF, Nanu AM, Checketts RG. Seven-year outcome following Colles' type distal radial fracture. A comparison of two treatment methods. *J Hand Surg [Br]*. 2003;28(5):422-6.
- 1391. Kreder HJ, Agel J, McKee MD, Schemitsch EH, Stephen D, Hanel DP. A randomized, controlled trial of distal radius fractures with metaphyseal displacement but without joint incongruity: closed reduction and casting versus closed reduction, spanning external fixation, and optional percutaneous K-wires. *J Orthop Trauma*. 2006;20(2):115-21.
- 1392. McQueen MM, Hajducka C, Court-Brown CM. Redisplaced unstable fractures of the distal radius: a prospective randomised comparison of four methods of treatment. J Bone Joint Surg Br. 1996;78(3):404-9.
- 1393. Merchan EC, Breton AF, Galindo E, Peinado JF, Beltran J. Plaster cast versus Clyburn external fixation for fractures of the distal radius in patients under 45 years of age. Orthop Rev. 1992;21(10):1203-9.
- 1394. Howard PW, Stewart HD, Hind RE, Burke FD. External fixation or plaster for severely displaced comminuted Colles' fractures? A prospective study of anatomical and functional results. *J Bone Joint Surg Br.* 1989;71(1):68-73.
- 1395. Jenkins N, Jones D, Mintowt-Czyz W. External fixation and recovery of function following fractures of the distal radius in young adults. *Injury*. 1988;19(4):235-8.
- 1396. Jenkins NH, Jones DG, Johnson SR, Mintowt-Czyz WJ. External fixation of Colles' fractures. An anatomical study. J Bone Joint Surg Br. 1987;69(2):207-11.
- 1397. Kapoor H, Agarwal A, Dhaon BK. Displaced intra-articular fractures of distal radius: a comparative evaluation of results following closed reduction, external fixation and open reduction with internal fixation. *Injury*. 2000;31(2):75-9.
- 1398. Stein H, Volpin G, Horesh Z, Hoerer D. Cast or external fixation for fracture of the distal radius: a prospective study of 126 cases. Acta Orthop. 1990;61(5):453-6.

- 1399. Abbaszadegan H, Jonsson U. External fixation or plaster cast for severely displaced Colles' fractures? Prospective 1-year study of 46 patients. *Acta Orthop Scand*. 1990;61(6):528-30.
- 1400. Roumen RM, Hesp WL, Bruggink ED. Unstable Colles' fractures in elderly patients. A randomised trial of external fixation for redisplacement. *J Bone Joint Surg Br*. 1991;73(2):307-11.
- 1401. Ludvigsen TC, Johansen S, Svenningsen S, Saetermo R. External fixation versus percutaneous pinning for unstable Colles' fracture. Equal outcome in a randomized study of 60 patients. *Acta Orthop Scand*. 1997;68(3):255-8.
- 1402. Pritchett JW. External fixation or closed medullary pinning for unstable Colles fractures? J Bone Joint Surg Br. 1995;77(2):267-9.
- 1403. Strohm PC, Muller CA, Boll T, Pfister U. Two procedures for Kirschner wire osteosynthesis of distal radial fractures. A randomized trial. *J Bone Joint Surg Am.* 2004;86-A(12):2621-8.
- 1404. Allain J, le Guilloux P, Le Mouel S, Goutallier D. Trans-styloid fixation of fractures of the distal radius. A prospective randomized comparison between 6- and 1-week postoperative immobilization in 60 fractures. *Acta Orthop Scand*. 1999;70(2):119-23.
- 1405. Sanchez-Sotelo J, Munuera L, Madero R. Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS. J Bone Joint Surg Br. 2000;82(6):856-63.
- 1406. Schmalholz A. Bone cement for redislocated Colles' fracture. A prospective comparison with closed treatment. Acta Orthop Scand. 1989;60(2):212-7.
- 1407. Kopylov P, Runnqvist K, Jonsson K, Aspenberg P. Norian SRS versus external fixation in redisplaced distal radial fractures. A randomized study in 40 patients. *Acta Orthop Scand.* 1999;70(1):1-5.
- 1408. Schmalholz A. External skeletal fixation versus cement fixation in the treatment of redislocated Colles' fracture. Clin Orthop Relat Res. 1990(254):236-41.
- 1409. Kopylov P, Aspenberg P, Yuan X, Ryd L. Radiostereometric analysis of distal radial fracture displacement during treatment: a randomized study comparing Norian SRS and external fixation in 23 patients. *Acta Orthop Scand*. 2001;72(1):57-61.
- 1410. Ekenstam Fa, Jakobsson OP, Wadin K. Repair of the triangular ligament in Colles' fracture: no effect in a prospective randomized study. Acta Orthop. 1989;60(4):393-6.
- 1411. Hahnloser D, Platz A, Amgwerd M, Trentz O. Internal fixation of distal radius fractures with dorsal dislocation: pi-plate or two 1/4 tube plates? A prospective randomized study. *J Trauma*. 1999;47(4):760-5.
- 1412. Abramo A, Kopylov P, Geijer M, Tagil M. Open reduction and internal fixation compared to closed reduction and external fixation in distal radial fractures: a randomized study of 50 patients. *Acta Orthop*. 2009;80(4):478-85.
- 1413. Atroshi I, Brogren E, Larsson GU, Kloow J, Hofer M, Berggren AM. Wrist-bridging versus non-bridging external fixation for displaced distal radius fractures: a randomized assessor-blind clinical trial of 38 patients followed for 1 year. *Acta Orthop*. 2006;77(3):445-53.
- 1414. Cassidy C, Jupiter JB, Cohen M, et al. Norian SRS cement compared with conventional fixation in distal radial fractures. A randomized study. *J Bone Joint Surg Am*. 2003;85-A(11):2127-37.
- 1415. Egol K, Walsh M, Tejwani N, McLaurin T, Wynn C, Paksima N. Bridging external fixation and supplementary Kirschner-wire fixation versus volar locked plating for unstable fractures of the distal radius: a randomised, prospective trial. *J Bone Joint Surg Br.* 2008;90(9):1214-21.
- 1416. Grewal R, MacDermid JC, King GJ, Faber KJ. Open reduction internal fixation versus percutaneous pinning with external fixation of distal radius fractures: a prospective, randomized clinical trial. *J Hand Surg Am.* 2011;36(12):1899-906.
- 1417. Grewal R, Perey B, Wilmink M, Stothers K. A randomized prospective study on the treatment of intra-articular distal radius fractures: open reduction and internal fixation with dorsal plating versus mini open reduction, percutaneous fixation, and external fixation. *J Hand Surg Am*. 2005;30(4):764-72.
- 1418. Jeyam M, Andrew JG, Muir LT, McGovern A. Controlled trial of distal radial fractures treated with a resorbable bone mineral substitute. *J Hand Surg Br.* 2002;27(2):146-9.
- 1419. Karantana A, Downing ND, Forward DP, et al. Surgical treatment of distal radial fractures with a volar locking plate versus conventional percutaneous methods: a randomized controlled trial. *J Bone Joint Surg Am.* 2013;95(19):1737-44.

- 1420. Kreder HJ, Hanel DP, Agel J, et al. Indirect reduction and percutaneous fixation versus open reduction and internal fixation for displaced intra-articular fractures of the distal radius: a randomised, controlled trial. *J Bone Joint Surg Br.* 2005;87(6):829-36.
- 1421. Krishnan J, Wigg AE, Walker RW, Slavotinek J. Intra-articular fractures of the distal radius: a prospective randomised controlled trial comparing static bridging and dynamic non-bridging external fixation. *J Hand Surg Br.* 2003;28(5):417-21.
- 1422. Leung F, Tu YK, Chew WY, Chow SP. Comparison of external and percutaneous pin fixation with plate fixation for intra-articular distal radial fractures. A randomized study. *J Bone Joint Surg Am.* 2008;90(1):16-22.
- 1423. Rozental TD, Blazar PE, Franko OI, Chacko AT, Earp BE, Day CS. Functional outcomes for unstable distal radial fractures treated with open reduction and internal fixation or closed reduction and percutaneous fixation. A prospective randomized trial. *J Bone Joint Surg Am*. 2009;91(8):1837-46.
- 1424. Wei DH, Raizman NM, Bottino CJ, Jobin CM, Strauch RJ, Rosenwasser MP. Unstable distal radial fractures treated with external fixation, a radial column plate, or a volar plate. A prospective randomized trial. *J Bone Joint Surg Am.* 2009;91(7):1568-77.
- 1425. Wong AS, Jebson PJ, Murray PM, Trigg SD. The use of routine wrist radiography is not useful in the evaluation of patients with a ganglion cyst of the wrist. *Hand*. 2007;2(3):117-9.
- 1426. Sakamoto A, Oda Y, Iwamoto Y. Intraosseous Ganglia: a series of 17 treated cases. Biomed Res Int. 2013;2013462730.
- 1427. Anderson S, Steinbach L, Stauffer E, Voegelin E. MRI for differentiating ganglion and synovitis in the chronic painful wrist. Am J Roentgenology. 2006;186(3):812-8.
- 1428. Cardinal E, Buckwalter KA, Braunstein EM, Mih AD. Occult dorsal carpal ganglion: comparison of US and MR imaging. Radiology. 1994;193(1):259-62.
- 1429. Goldsmith S, Yang SS. Magnetic resonance imaging in the diagnosis of occult dorsal wrist ganglions. J Hand Surg Eur Vol. 2008;33(5):595-9.
- 1430. Vo P, Wright T, Hayden F, Dell P, Chidgey L. Evaluating dorsal wrist pain: MRI diagnosis of occult dorsal wrist ganglion. J Hand Surg Am. 1995;20(4):667-70.
- 1431. Osterwalder JJ, Widrig R, Stober R, Gachter A. Diagnostic validity of ultrasound in patients with persistent wrist pain and suspected occult ganglion. *J Hand Surg Am*. 1997;22(6):1034-40.
- 1432. Dias J, Dhukaram V, Kumar P. The natural history of untreated dorsal wrist ganglia and patient reported outcome 6 years after intervention. *The Journal of Hand Surgery: European Volume*. 2007;32(5):502-8.
- 1433. Latif A, Ansar A, Butt MQ. Treatment of ganglions; a five year experience. J Pak Med Assoc. 2014;64(11):1278-81.
- 1434. Stephen AB, Lyons AR, Davis TR. A prospective study of two conservative treatments for ganglia of the wrist. J Hand Surg Br. 1999;24(1):104-5.
- 1435. Korman J, Pearl R, Hentz VR. Efficacy of immobilization following aspiration of carpal and digital ganglions. J Hand Surg Am. 1992;17(6):1097-9.
- 1436. Richman J, Gelberman R, Engber W, Salamon P, Bean D. Ganglions of the wrist and digits: results of treatment by aspiration and cyst wall puncture. *J Hand Surg Am*. 1987;12(6):1041-3.
- 1437. Paul AS, Sochart DH. Improving the results of ganglion aspiration by the use of hyaluronidase. J Hand Surg [Br]. 1997;22(2):219-21.
- 1438. Dogo D, Hassan A, Babayo U. Treatment of ganglion using hypertonic saline as sclerosant. West African journal of medicine. 2003;22(1):13-4.
- 1439. Park S, Iida T, Yoshimura K, Kawasaki Y. Phenol cauterization for ganglions of the hand, wrist, and foot: a preliminary report. Ann Plast Surg. 2002;48(6):582-5.
- 1440. Khan PS, Hayat H. Surgical excision versus aspiration combined with intralesional triamcinolone acetonide injection plus wrist immobilization therapy in the treatment of dorsal wrist ganglion; a randomized controlled trial. *J Hand Microsurg*. 2011;3(2):55-7.
- 1441. Head L, Gencarelli JR, Allen M, Boyd KU. Wrist ganglion treatment: systematic review and meta-analysis. J Hand Surg Am. 2015;40(3):546-53 e8.
- 1442. Tadjerbashi K, Rosales RS, Atroshi I. Intervention randomized controlled trials involving wrist and shoulder arthroscopy: a systematic review. *BMC Musculoskelet Disord*. 2014;15252.
- 1443. Kang L, Akelman E, Weiss AP. Arthroscopic versus open dorsal ganglion excision: a prospective, randomized comparison of rates of recurrence and of residual pain. J Hand Surg Am. 2008;33(4):471-5.
- 1444. Rocchi L, Canal A, Fanfani F, Catalano F. Articular ganglia of the volar aspect of the wrist: arthroscopic resection compared with open excision. A prospective randomised study. *Scand J Plast Reconstr Surg Hand Surg*. 2008;42(5):253-9.
- 1445. Varley GW, Needoff M, Davis TR, Clay NR. Conservative management of wrist ganglia. Aspiration versus steroid infiltration. J Hand Surg Br. 1997;22(5):636-7.

- 1446. Jagers Op Akkerhuis M, Van Der Heijden M, Brink P. Hyaluronidase versus surgical excision of ganglia: a prospective, randomized clinical trial. *J Hand Surg Br.* 2002;27(3):256-8.
- 1447. Balazs GC, Donohue MA, Drake ML, Ipsen D, Nanos GP, 3rd, Tintle SM. Outcomes of Open Dorsal Wrist Ganglion Excision in Active-Duty Military Personnel. *J Hand Surg Am.* 2015;40(9):1739-47.
- 1448. Brammer AJ, Taylor W, Lundborg G. Sensorineural stages of the hand-arm vibration syndrome. Scand J Work Environ Health. 1987;13(4):279-83.
- 1449. Gemne G, Pyykkö I, Taylor W, Pelmear PL. The Stockholm Workshop scale for the classification of cold-induced Raynaud's phenomenon in the hand-arm vibration syndrome (revision of the Taylor-Pelmear scale). *Scand J Work Environ Health*. 1987275-8.
- 1450. Kao DS, Yan J-G, Zhang L-L, Kaplan RE, Riley DA, Matloub HS. Serological Tests for Diagnosis and Staging of hand–arm vibration syndrome (HAVS). *Hand*. 2008;3(2):129-34.
- 1451. Youakim S. The validity of Raynaud's phenomenon symptoms in HAVS cases. Occup Med. 2008;58(6):431-5.
- 1452. Laskar S, Harada N. Different conditions of cold water immersion test for diagnosing hand-arm vibration syndrome. *Environmental health and preventive medicine*. 2005;10(6):351-9.
- 1453. Lindsell C. Test battery for assessing vascular disturbances of fingers. Environ Health Prev Med. 2005;10(6):341-50.
- 1454. Bovenzi M. Finger thermometry in the assessment of subjects with vibration-induced white finger. Scand J Work Environ Health. 1987348-51.
- 1455. International Organization for Standardization. ISO 14835-1:2005 Mechanical Vibration and Shock Cold Provocation Tests for the Assessment of Peripheral Vascular Function Part 1: Measurement and Evaluation of Finger Skin Temperature. Geneve: ISO; 2005.
- 1456. International Organization for Standardization. ISO 14835-2:2005 Mechanical Vibration and Shock Cold Provocation Tests for the Assessment of Peripheral Vascular Function Part 2: Measurement and Evaluation of Finger Systolic Blood Pressure. Geneve: ISO; 2005.
- 1457. Thompson A, House R, Manno M. Assessment of the hand-arm vibration syndrome: thermometry, plethysmography and the Stockholm Workshop Scale. *Occup Med* (*Lond*). 2008;58(3):223-4.
- 1458. Poole K, Elms J, Mason H. The diagnostic value of finger systolic blood pressure and cold-provocation testing for the vascular component of hand-arm vibration syndrome in health surveillance. *Occupational medicine*. 2004;54(8):520-7.
- 1459. Poole K, Elms J, Mason H. Cold-provocation testing for the vascular component of hand-arm vibration syndrome in health surveillance. *Industrial health*. 2006;44(4):577-83.
- 1460. Harada N, Mahbub M. Diagnosis of vascular injuries caused by hand-transmitted vibration. Int Arch Occup Environ Health. 2008;81(5):507-18.
- 1461. Proud G, Burke F, Lawson I, McGeoch K, Miles J. Cold provocation testing and hand–arm vibration syndrome—an audit of the results of the Department of Trade and Industry scheme for the evaluation of miners. *British journal of surgery*. 2003;90(9):1076-9.
- 1462. Jankovic S, Stankovic S, Borjanovic S, Tenjovic L, Bogdanovic M. Cold stress dynamic thermography for evaluation of vascular disorders in hand-arm vibration syndrome. Journal of occupational health. 2008;50(5):423-5.
- 1463. Nasu Y, Kurozawa Y, Fujiwara Y, et al. Multicenter study on finger systolic blood pressure test for diagnosis of vibration-induced white finger. *Intl Arch Occup Environ Health* 2008;81(5):639-44.
- 1464. McGeoch K, Lawson I, Burke F, Proud G, Miles J. Use of sensorineural tests in a large volume of medico-legal compensation claims for HAVS. *Occupational medicine*. 2004;54(8):528-34.
- 1465. Coughlin PA, Bonser R, Turton EP, Kent PJ, Kester RC. A comparison between two methods of aesthesiometric assessment in patients with hand-arm vibration syndrome. Occup Med (Lond). 2001;51(4):272-7.
- 1466. Coughlin PA, Chetter IC, Kent PJ, Kester RC. The analysis of sensitivity, specificity, positive predictive value and negative predictive value of cold provocation thermography in the objective diagnosis of the hand-arm vibration syndrome. *Occup Med (Lond)*. 2001;51(2):75-80.
- 1467. Lawson IJ, Nevell DA. Review of objective tests for the hand-arm vibration syndrome. Occup Med (Lond). 1997;47(1):15-20.

- 1468. Lindsell CJ, Griffin MJ. Thermal thresholds, vibrotactile thresholds and finger systolic blood pressures in dockyard workers exposed to hand-transmitted vibration. *Int Arch Occup Environ Health*. 1999;72(6):377-86.
- 1469. Bogadi-Sare A, Zavalic M. Diagnostic value of finger thermometry and photoplethysmography in the assessment of hand-arm vibration syndrome. *Int Arch Occup Environ Health*. 1994;66(2):137-40.
- 1470. Kurozawa Y, Nasu Y, Nose T. Diagnostic value of finger systolic blood pressure in the assessment of vasospastic reactions in the finger skin of vibration-exposed subjects after finger and body cooling. *Scand J Work Environ Health*. 1991;17(3):184-9.
- 1471. Kanazuka M, Shigekiyo T, Toibana N, Saito S. Increase in plasma thrombomodulin level in patients with vibration syndrome. *Thromb Res.* 1996;82(1):51-6.
- 1472. Kennedy G, Khan F, McLaren M, Belch JJ. Endothelial activation and response in patients with hand arm vibration syndrome. Eur J Clin Invest. 1999;29(7):577-81.
- 1473. Letz R, Cherniack MG, Gerr F, Hershman D, Pace P. A cross sectional epidemiological survey of shipyard workers exposed to hand-arm vibration. *British journal of industrial medicine*. 1992;49(1):53-62.
- 1474. Nowak J, Barregård L, Benthin G, Granung G, Wennmalm Å. Thromboxane metabolite excretion in patients with hand-arm vibration syndrome. *Clinical Physiology*. 1996;16(4):361-7.
- 1475. Blankenship RB, Baker T. Imaging modalities in wounds and superficial skin infections. Emergency medicine clinics of North America. 2007;25(1):223-34.
- 1476. Fornage BD, Schernberg FL. Sonographic diagnosis of foreign bodies of the distal extremities. AJR Am J Roentgenol. 1986;147(3):567-9.
- 1477. Soubeyrand M, Biau D, Jomaah N, Pradel C, Dumontier C, Nourissat G. Penetrating volar injuries of the hand: diagnostic accuracy of US in depicting soft-tissue lesions. *Radiology*. 2008;249(1):228-35.
- 1478. Tahmasebi M, Zareizadeh H, Motamedfar A. Accuracy of ultrasonography in detecting radiolucent soft-tissue foreign bodies. *Indian J Radiol Imaging*. 2014;24(2):196-200.
- 1479. Wu TS, Roque PJ, Green J, et al. Bedside ultrasound evaluation of tendon injuries. Am J Emerg Med. 2012;30(8):1617-21.
- 1480. Banerjee B, Das R. Sonographic detection of foreign bodies of the extremities. *The British journal of radiology*. 1991;64(758):107-12.
- 1481. Crawford R, Matheson A. Clinical value of ultrasonography in the detection and removal of radiolucent foreign bodies. Injury. 1989;20(6):341-3.
- 1482. Gilbert F, Campbell R, Bayliss A. The role of ultrasound in the detection of non-radiopaque foreign bodies. Clin Radiol. 1990;41(2):109-12.
- 1483. Hill R, Conron R, Greissinger P, Heller M. Ultrasound for the detection of foreign bodies in human tissue. Ann Emerg Med. 1997;29(3):353-6.
- 1484. Levine W, Leslie B. The use of ultrasonography to detect a radiolucent foreign body in the hand: a case report. J Hand Surg Am. 1993;18(2):218-20.
- 1485. Moscati R, Mayrose J, Reardon R, Janicke D, Jehle D. A multicenter comparison of tap water versus sterile saline for wound irrigation. *Academic Emergency Medicine*. 2007;14(5):404-9.
- 1486. Bansal B, Wiebe R, Perkins S, Abramo T. Tap water for irrigation of lacerations. Am J Emerg Med. 2002;20(5):469-72.
- 1487. Gravett A, Sterner S, Clinton JE, Ruiz E. A trial of povidone-iodine in the prevention of infection in sutured lacerations. Ann Emerg Med. 1987;16(2):167-71.
- 1488. Dire D, Welsh A. A comparison of wound irrigation solutions used in the emergency department. Ann Emerg Med. 1990;19(6):704-8.
- 1489. Chisholm CD, Cordell WH, Rogers K, Woods JR. Comparison of a new pressurized saline canister versus syringe irrigation for laceration cleansing in the emergency department. *Ann Emerg Med.* 1992;21(11):1364-7.
- 1490. Perelman VS, Francis GJ, Rutledge T, Foote J, Martino F, Dranitsaris G. Sterile versus nonsterile gloves for repair of uncomplicated lacerations in the emergency department: a randomized controlled trial. *Ann Emerg Med.* 2004;43(3):362-70.
- 1491. Chale S, Singer AJ, Marchini S, McBride MJ, Kennedy D. Digital versus local anesthesia for finger lacerations: a randomized controlled trial. *Acad Emerg Med*. 2006;13(10):1046-50.
- 1492. Robson AK, Bloom PA. Suturing of digital lacerations: digital block or local infiltration? Ann R Coll Surg Engl. 1990;72(6):360-1.
- 1493. Pryor GJ, Kilpatrick WR, Opp DR. Local anesthesia in minor lacerations: topical TAC vs lidocaine infiltration. Ann Emerg Med. 1980;9(11):568-71.
- 1494. Kuhn M, Rossi SO, Plummer JL, Raftos J. Topical anaesthesia for minor lacerations: MAC versus TAC. Med J Aust. 1996;164(5):277-80.
- 1495. Vinci RJ, Fish SS. Efficacy of topical anesthesia in children. Arch Pediatr Adolesc Med. 1996;150(5):466-9.

- 1496. Ernst AA, Marvez-Valls E, Nick TG, Weiss SJ. LAT (lidocaine-adrenaline-tetracaine) versus TAC (tetracaine-adrenaline-cocaine) for topical anesthesia in face and scalp lacerations. *Am J Emerg Med.* 1995;13(2):151-4.
- 1497. Schilling CG, Bank DE, Borchert BA, Klatzko MD, Uden DL. Tetracaine, epinephrine (adrenalin), and cocaine (TAC) versus lidocaine, epinephrine, and tetracaine (LET) for anesthesia of lacerations in children. *Ann Emerg Med.* 1995;25(2):203-8.
- 1498. Zempsky WT, Karasic RB. EMLA versus TAC for topical anesthesia of extremity wounds in children. Ann Emerg Med. 1997;30(2):163-6.
- 1499. Singer AJ, Stark MJ. LET versus EMLA for pretreating lacerations: a randomized trial. Acad Emerg Med. 2001;8(3):223-30.
- 1500. Ernst AA, Marvez-Valls E, Nick TG, Wahle M. Comparison trial of four injectable anesthetics for laceration repair. Acad Emerg Med. 1996;3(3):228-33.
- 1501. Quinn J, Cummings S, Callaham M, Sellers K. Suturing versus conservative management of lacerations of the hand: randomised controlled trial. *Bmj*. 2002;325(7359):299.
- 1502. Jones JS, Gartner M, Drew G, Pack S. The shorthand vertical mattress stitch: evaluation of a new suture technique. Am J Emerg Med. 1993;11(5):483-5.
- 1503. Alam M, Posten W, Martini MC, Wrone DA, Rademaker AW. Aesthetic and functional efficacy of subcuticular running epidermal closures of the trunk and extremity: a rater-blinded randomized control trial. *Arch Dermatol*. 2006;142(10):1272-8.
- 1504. Singer AJ, Gulla J, Hein M, Marchini S, Chale S, Arora BP. Single-layer versus double-layer closure of facial lacerations: a randomized controlled trial. *Plast Reconstr Surg.* 2005;116(2):363-8; discussion 9-70.
- 1505. Durani P, McGrouther DA, Ferguson MW. Current scales for assessing human scarring: a review. J Plast Reconstr Aesthet Surg. 2009;62(6):713-20.
- 1506. Karounis H, Gouin S, Eisman H, Chalut D, Pelletier H, Williams B. A randomized, controlled trial comparing long-term cosmetic outcomes of traumatic pediatric lacerations repaired with absorbable plain gut versus nonabsorbable nylon sutures. *Acad Emerg Med.* 2004;11(7):730-5.
- 1507. Mouzas GL, Yeadon A. Does the choice of suture material affect the incidence of wound infection? A comparison of dexon (polyglycolic acid) sutures with other commonly used sutures in an accident and emergency department. *Br J Surg.* 1975;62(12):952-5.
- 1508. Al-Abdullah T, Plint AC, Fergusson D. Absorbable versus nonabsorbable sutures in the management of traumatic lacerations and surgical wounds: a meta-analysis. *Pediatr Emerg Care*. 2007;23(5):339-44.
- 1509. Su BW, Solomons M, Barrow A, et al. Device for zone-II flexor tendon repair. A multicenter, randomized, blinded, clinical trial. J Bone Joint Surg Am. 2005;87(5):923-35.
- 1510. Orlinsky M, Goldberg RM, Chan L, Puertos A, Slajer HL. Cost analysis of stapling versus suturing for skin closure. Am J Emerg Med. 1995;13(1):77-81.
- 1511. Barnett P, Jarman FC, Goodge J, Silk G, Aickin R. Randomised trial of histoacryl blue tissue adhesive glue versus suturing in the repair of paediatric lacerations. *J Paediatr Child Health*. 1998;34(6):548-50.
- 1512. Bruns TB, Robinson BS, Smith RJ, et al. A new tissue adhesive for laceration repair in children. J Pediatr. 1998;132(6):1067-70.
- 1513. Bruns TB, Simon HK, McLario DJ, Sullivan KM, Wood RJ, Anand KJ. Laceration repair using a tissue adhesive in a children's emergency department. *Pediatrics*. 1996;98(4 Pt 1):673-5.
- 1514. Handschel JG, Depprich RA, Dirksen D, Runte C, Zimmermann A, Kubler NR. A prospective comparison of octyl-2-cyanoacrylate and suture in standardized facial wounds. *Int J Oral Maxillofac Surg*. 2006;35(4):318-23.
- 1515. Holger JS, Wandersee SC, Hale DB. Cosmetic outcomes of facial lacerations repaired with tissue-adhesive, absorbable, and nonabsorbable sutures. *Am J Emerg Med.* 2004;22(4):254-7.
- 1516. Hollander JE, Singer AJ. Application of tissue adhesives: rapid attainment of proficiency. Stony Brook Octylcyanoacrylate Study Group. *Acad Emerg Med.* 1998;5(10):1012-7.
- 1517. Quinn J, Wells G, Sutcliffe T, et al. A randomized trial comparing octylcyanoacrylate tissue adhesive and sutures in the management of lacerations. *JAMA*. 1997;277(19):1527-30.
- 1518. Quinn J, Wells G, Sutcliffe T, et al. Tissue adhesive versus suture wound repair at 1 year: randomized clinical trial correlating early, 3-month, and 1-year cosmetic outcome. *Ann Emerg Med.* 1998;32(6):645-9.
- 1519. Shamiyeh A, Schrenk P, Stelzer T, Wayand WU. Prospective randomized blind controlled trial comparing sutures, tape, and octylcyanoacrylate tissue adhesive for skin closure after phlebectomy. *Dermatol Surg.* 2001;27(10):877-80.

- 1520. Simon HK, McLario DJ, Bruns TB, Zempsky WT, Wood RJ, Sullivan KM. Long-term appearance of lacerations repaired using a tissue adhesive. *Pediatrics*. 1997;99(2):193-5.
- 1521. Simon HK, Zempsky WT, Bruns TB, Sullivan KM. Lacerations against Langer's lines: to glue or suture? J Emerg Med. 1998;16(2):185-9.
- 1522. Singer AJ, Quinn JV, Clark RE, Hollander JE, Group TS. Closure of lacerations and incisions with octylcyanoacrylate: a multicenter randomized controlled trial. *Surgery*. 2002;131(3):270-6.
- 1523. Singer AJ, Quinn JV, Thode HC, Jr., Hollander JE. Determinants of poor outcome after laceration and surgical incision repair. *Plast Reconstr Surg*. 2002;110(2):429-35; discussion 36-7.
- 1524. Sinha S, Naik M, Wright V, Timmons J, Campbell AC. A single blind, prospective, randomized trial comparing n-butyl 2-cyanoacrylate tissue adhesive (Indermil) and sutures for skin closure in hand surgery. *J Hand Surg [Br]*. 2001;26(3):264-5.
- 1525. Toriumi DM, O'Grady K, Desai D, Bagal A. Use of octyl-2-cyanoacrylate for skin closure in facial plastic surgery. Plast Reconstr Surg. 1998;102(6):2209-19.
- 1526. Goktas N, Karcioglu O, Coskun F, Karaduman S, Menderes A. Comparison of tissue adhesive and suturing in the repair of lacerations in the emergency department. *Eur J Emerg Med.* 2002;9(2):155-8.
- 1527. Mattick A, Clegg G, Beattie T, Ahmad T. A randomised, controlled trial comparing a tissue adhesive (2-octylcyanoacrylate) with adhesive strips (Steristrips) for paediatric laceration repair. *Emerg Med J.* 2002;19(5):405-7.
- 1528. Zempsky WT, Grem C, Nichols J, Parrotti D. Prospective comparison of cosmetic outcomes of simple facial lacerations closed with Steri-Strips or Dermabond. *Academic Emergency Medicine*. 2001;8(5):438.
- 1529. Quinn J, Drzewiecki A, Li M, et al. A randomized, controlled trial comparing a tissue adhesive with suturing in the repair of pediatric facial lacerations. *Ann Emerg Med.* 1993;22(7):1130-5.
- 1530. Osmond MH, Quinn JV, Sutcliffe T, Jarmuske M, Klassen TP. A randomized, clinical trial comparing butylcyanoacrylate with octylcyanoacrylate in the management of selected pediatric facial lacerations. *Acad Emerg Med.* 1999;6(3):171-7.
- 1531. Singer AJ, Giordano P, Fitch JL, Gulla J, Ryker D, Chale S. Evaluation of a new high-viscosity octylcyanoacrylate tissue adhesive for laceration repair: a randomized, clinical trial. *Acad Emerg Med*. 2003;10(10):1134-7.
- 1532. Kundra RK, Newman S, Saithna A, Lewis AC, Srinivasan S, Srinivasan K. Absorbable or non-absorbable sutures? A prospective, randomised evaluation of aesthetic outcomes in patients undergoing elective day-case hand and wrist surgery. *Ann R Coll Surg Engl.* 2010;92(8):665-7.
- 1533. Moazzam A, Gordon DJ. Cross-suturing as an aid to wound closure: a prospective randomised trial using the forearm flap donor site as a model. *Br J Plast Surg*. 2003;56(7):695-700.
- 1534. Sener A, Demircan A, Keles A, Bildik F, Karakurt K. Comparison of local infiltration anesthesia and peripheral nerve block: a randomized prospective study in hand lacerations. *Turk J Med Sci.* 2015;45(3):694-9.
- 1535. Bernard L, Doyle J, Friedlander SF, Eichenfield LF, Gibbs NF, Cunningham BB. A prospective comparison of octyl cyanoacrylate tissue adhesive (dermabond) and suture for the closure of excisional wounds in children and adolescents. *Arch Dermatol.* 2001;137(9):1177-80.
- 1536. MacGregor FB, McCombe AW, King PM, Macleod DA. Skin stapling of wounds in the accident department. Injury. 1989;20(6):347-8.
- 1537. Sutton R, Pritty P. Use of sutures or adhesive tapes for primary closure of pretibial lacerations. Br Med J (Clin Res Ed). 1985;290(6482):1627.
- 1538. Howell J, Chisholm C. Outpatient wound preparation and care: a national survey. Ann Emerg Med. 1992;21(8):976-81.
- 1539. Hinman CD, Maibach H. Effect of air exposure and occlusion on experimental human skin wounds. *Nature*. 1963;200377-8.
- 1540. Jones J. Winter's concept of moist wound healing: a review of the evidence and impact on clinical practice. Journal of wound care. 2005;14(6):273-6.
- 1541. Winter G. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. 1962.
- 1542. Heal C, Buettner P, Raasch B, et al. Can sutures get wet? Prospective randomised controlled trial of wound management in general practice. *Bmj*. 2006;332(7549):1053-6.
- 1543. DeBoard RH, Rondeau DF, Kang CS, Sabbaj A, McManus JG. Principles of basic wound evaluation and management in the emergency department. *Emerg Med Clin North* Am. 2007;25(1):23-39.

- 1544. Roberts AH, Roberts FE, Hall RI, Thomas IH. A prospective trial of prophylactic povidone iodine in lacerations of the hand. J Hand Surg [Br]. 1985;10(3):370-4.
- 1545. Roberts AH, Teddy PJ. A prospective trial of prophylactic antibiotics in hand lacerations. Br J Surg. 1977;64(6):394-6.
- 1546. Lindsey D, Nava C, Marti M. Effectiveness of penicillin irrigation in control of infection in sutured lacerations. J Trauma. 1982;22(3):186-9.
- 1547. Morgan WJ, Hutchison D, Johnson HM. The delayed treatment of wounds of the hand and forearm under antibiotic cover. Br J Surg. 1980;67(2):140-1.
- 1548. Thirlby RC, Blair AJ, 3rd, Thal ER. The value of prophylactic antibiotics for simple lacerations. Surg Gynecol Obstet. 1983;156(2):212-6.
- 1549. Dire DJ, Coppola M, Dwyer DA, Lorette JJ, Karr JL. Prospective evaluation of topical antibiotics for preventing infections in uncomplicated soft-tissue wounds repaired in the ED. *Academic Emergency Medicine*. 1995;2(1):4-10.
- 1550. Brakenbury PH, Muwanga C. A comparative double blind study of amoxycillin/clavulanate vs placebo in the prevention of infection after animal bites. *Arch Emerg Med.* 1989;6(4):251-6.
- 1551. Dire DJ, Hogan DE, Walker JS. Prophylactic oral antibiotics for low-risk dog bite wounds. *Pediatr Emerg Care*. 1992;8(4):194-9.
- 1552. Elenbaas RM, McNabney WK, Robinson WA. Prophylactic oxacillin in dog bite wounds. Ann Emerg Med. 1982;11(5):248-51.
- 1553. Rosen RA. The use of antibiotics in the initial management of recent dog-bite wounds. Am J Emerg Med. 1985;3(1):19-23.
- 1554. Jones DA, Stanbridge TN. A clinical trial using co-trimoxazole in an attempt to reduce wound infection rates in dog bite wounds. Postgrad Med J. 1985;61(717):593-4.
- 1555. Elenbaas RM, McNabney WK, Robinson WA. Evaluation of prophylactic oxacillin in cat bite wounds. Ann Emerg Med. 1984;13(3):155-7.
- 1556. Talan DA, Citron DM, Abrahamian FM, Moran GJ, Goldstein EJ. Bacteriologic analysis of infected dog and cat bites. Emergency Medicine Animal Bite Infection Study Group. *N Engl J Med.* 1999;340(2):85-92.
- 1557. Maimaris C, Quinton DN. Dog-bite lacerations: a controlled trial of primary wound closure. Arch Emerg Med. 1988;5(3):156-61.
- 1558. Buurke JH, Grady JH, de Vries J, Baten CT. Usability of thenar eminence orthoses: report of a comparative study. Clin Rehabil. 1999;13(4):288-94.
- 1559. Weiss S, LaStayo P, Mills A, Bramlet D. Prospective analysis of splinting the first carpometacarpal joint: an objective, subjective, and radiographic assessment. *Journal of Hand Therapy*. 2000;13(3):218-27.
- 1560. Zhang W, Doherty M, Leeb B, et al. EULAR evidence based recommendations for the management of hand osteoarthritis: report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). *Annals of the rheumatic diseases*. 2007;66(3):377-88.
- 1561. Berggren M, A. Joost-Davidsson, J. Lindstrand, G. Nylander, B. Povlsen. Reduction in the need for operation after conservative treatment of osteoarthritis of the first carpometacarpal joint: a seven year prospective study. *Scand J Plast Reconstr Surg Hand Surg*. 2001;35(4):415-7.
- 1562. Estes JP, Bochenek C, Fassler P. Osteoarthritis of the fingers. J Hand Ther. 2000;13(2):108-23.
- 1563. Glickel SZ. Clinical assessment of the thumb trapeziometacarpal joint. Hand Clin. 2001;17(2):185-95.
- 1564. Poole JU, Pellegrini VD. Arthritis of the thumb basal joint complex. Journal of Hand Therapy. 2000;13(2):91-107.
- 1565. Rogers MW, Wilder FV. The effects of strength training among persons with hand osteoarthritis: a two-year follow-up study. J Hand Ther. 2007;20(3):244-9; quiz 50.
- 1566. Rogers MW, Wilder FV. Exercise and hand osteoarthritis symptomatology: a controlled crossover trial. J Hand Ther. 2009;22(1):10-7; discussion 9-20; quiz 18.
- 1567. Stamm TA, Machold KP, Smolen JS, et al. Joint protection and home hand exercises improve hand function in patients with hand osteoarthritis: a randomized controlled trial. *Arthritis Rheum.* 2002;47(1):44-9.
- 1568. Rannou F, Dimet J, Boutron I, et al. Splint for base-of-thumb osteoarthritis: a randomized trial. Ann Intern Med. 2009;150(10):661-9.
- 1569. Weiss S, Lastayo P, Mills A, Bramlet D. Splinting the degenerative basal joint: custom-made or prefabricated neoprene? J Hand Ther. 2004;17(4):401-6.
- 1570. Wajon A, Ada L. No difference between two splint and exercise regimens for people with osteoarthritis of the thumb: a randomised controlled trial. *Aust J Physiother*. 2005;51(4):245-9.
- 1571. Bani MA, Arazpour M, Kashani RV, Mousavi ME, Hutchins SW. Comparison of custom-made and prefabricated neoprene splinting in patients with the first carpometacarpal joint osteoarthritis. *Disabil Rehabil Assist Technol*. 2013;8(3):232-7.
- 1572. Becker SJ, Bot AG, Curley SE, Jupiter JB, Ring D. A prospective randomized comparison of neoprene vs thermoplast hand-based thumb spica splinting for trapeziometacarpal arthrosis. *Osteoarthritis Cartilage*. 2013;21(5):668-75.

- 1573. Villafane JH, Cleland JA, Fernandez-de-Las-Penas C. The effectiveness of a manual therapy and exercise protocol in patients with thumb carpometacarpal osteoarthritis: a randomized controlled trial. *J Orthop Sports Phys Ther*. 2013;43(4):204-13.
- 1574. Carreira A, Jones A, Natour J. Assessment of the effectiveness of a functional splint for osteoarthritis of the trapeziometacarpal joint of the dominant hand: a randomized controlled study. *J Rehabil Med.* 2010;42469-74.
- 1575. Ronningen A, Kjeken I. Effect of an intensive hand exercise programme in patients with rheumatoid arthritis. Scand J Occup Ther. 2008;15(3):173-83.
- 1576. Adams J, Boucas SB, Hislop K, et al. The effectiveness and efficacy of splints for thumb base osteoarthritis: A pilot randomized controlled trial. *Rheumatology (United Kingdom)*; 2014:i41-i2.
- 1577. Boustedt C, Nordenskiold U, Lundgren Nilsson A. Effects of a hand-joint protection programme with an addition of splinting and exercise: one year follow-up. *Clin Rheumatol*. 2009;28(7):793-9.
- 1578. Berenbaum F, Grifka J, Brown J, et al. Efficacy of lumiracoxib in osteoarthritis: a review of nine studies. Journal of international medical research. 2005;33(1):21-41.
- 1579. Garner SE, Fidan DD, Frankish R, Maxwell L. Rofecoxib for osteoarthritis. Cochrane Database Syst Rev. 2005(1):CD005115.
- 1580. Jagtap SA, Lahoti S, Anwaruddin K, Ram S, Ballary C, Desai A. Evaluation of efficacy, safety and tolerability of valdecoxib in osteo-arthritis patients--an Indian study. J Indian Med Assoc. 2002;100(11):673-4.
- 1581. Towheed T. Systematic review of therapies for osteoarthritis of the hand. Osteoarthritis and Cartilage. 2005;13(6):455-62.
- 1582. Lisse JR, Perlman M, Johansson G, et al. Gastrointestinal tolerability and effectiveness of rofecoxib versus naproxen in the treatment of osteoarthritis: a randomized, controlled trial. *Ann Intern Med.* 2003;139(7):539-46.
- 1583. Niccoli L, Bellino S, Cantini F. Renal tolerability of three commonly employed non-steroidal anti-inflammatory drugs in elderly patients with osteoarthritis. *Clinical and experimental rheumatology*. 2002;20(2):201-7.
- 1584. Pope J, McCrea K, Stevens A, Ouimet J. Treatment of osteoarthritis of the hip and knee: a comparison of NSAID use in patients for whom surgery was and was not recommended. *Clinical and experimental rheumatology*. 2003;22(2):171-6.
- 1585. Amadio P, Cummings D. Evaluation of acetaminophen in the management of osteoarthritis of the knee. *CURRENT THERAPEUTIC RESEARCH-CLINICAL AND EXPERIMENTAL*. 1983;34(1):59-66.
- 1586. Pincus T, Koch G, Lei H, et al. Patient preference for Placebo, aAetaminophen (Paracetamol) or Celecoxib Efficacy Studies (PACES): two randomised, double blind, placebo controlled, crossover clinical trials in patients with knee or hip osteoarthritis. *Ann Rheum Dis*. 2004;63(8):931-9.
- 1587. Boureau F, Schneid H, Zeghari N, Wall R, Bourgeois P. The IPSO study: ibuprofen, paracetamol study in osteoarthritis. A randomised comparative clinical study comparing the efficacy and safety of ibuprofen and paracetamol analgesic treatment of osteoarthritis of the knee or hip. *Ann Rheum Dis.* 2004;63(9):1028-34.
- 1588. Bradley JD, Brandt KD, Katz BP, Kalasinski LA, Ryan SI. Comparison of an antiinflammatory dose of ibuprofen, an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee. *N Engl J Med.* 1991;325(2):87-91.
- 1589. Case JP, Baliunas AJ, Block JA. Lack of efficacy of acetaminophen in treating symptomatic knee osteoarthritis: a randomized, double-blind, placebo-controlled comparison trial with diclofenac sodium. *Arch Intern Med.* 2003;163(2):169-78.
- 1590. Geba GP, Weaver AL, Polis AB, Dixon ME, Schnitzer TJ. Efficacy of rofecoxib, celecoxib, and acetaminophen in osteoarthritis of the knee: a randomized trial. *Jama*. 2002;287(1):64-71.
- 1591. Golden H, Moskowitz R, Minic M. Analgesic efficacy and safety of nonprescription doses of naproxen sodium compared with acetaminophen in the treatment of osteoarthritis of the knee. *Am J Therapeutics*. 2004;11(2):85-94.
- 1592. Pincus T, Koch GG, Sokka T, et al. A randomized, double-blind, crossover clinical trial of diclofenac plus misoprostol versus acetaminophen in patients with osteoarthritis of the hip or knee. *Arthritis Rheum*. 2001;44(7):1587-98.
- 1593. Temple AR, Benson GD, Zinsenheim JR, Schweinle JE. Multicenter, randomized, double-blind, active-controlled, parallel-group trial of the long-term (6-12 months) safety of acetaminophen in adult patients with osteoarthritis. *Clin Ther*. 2006;28(2):222-35.
- 1594. Towheed TE, Maxwell L, Judd MG, Catton M, Hochberg MC, Wells G. Acetaminophen for osteoarthritis. Cochrane Database Syst Rev. 2006(1):CD004257.

- 1595. Miceli-Richard C, Le Bars M, Schmidely N, Dougados M. Paracetamol in osteoarthritis of the knee. Ann Rheum Dis. 2004;63(8):923-30.
- 1596. Agrawal NM, Caldwell J, Kivitz AJ, et al. Comparison of the upper gastrointestinal safety of Arthrotec® 75 and nabumetone in osteoarthritis patients at high risk for developing nonsteroidal anti-inflammatory drug-induced gastrointestinal ulcers. *Clin Ther*. 1999;21(4):659-74.
- 1597. Bocanegra TS, Weaver AL, Tindall EA, et al. Diclofenac/misoprostol compared with diclofenac in the treatment of osteoarthritis of the knee or hip: a randomized, placebo controlled trial. Arthrotec Osteoarthritis Study Group. *J Rheumatol*. 1998;25(8):1602-11.
- 1598. Fenton C, Keating GM, Wagstaff AJ. Valdecoxib: a review of its use in the management of osteoarthritis, rheumatoid arthritis, dysmenorrhoea and acute pain. *Drugs*. 2004;64(11):1231-61.
- 1599. Melo Gomes J, Roth S, Zeeh J, Bruyn G, Woods E, Geis G. Double-blind comparison of efficacy and gastroduodenal safety of diclofenac/misoprostol, piroxicam, and naproxen in the treatment of osteoarthritis. *Ann Rheum Dis.* 1993;52(12):881-5.
- 1600. Agrawal NM, Aziz K. Prevention of gastrointestinal complications associated with nonsteroidal antiinflammatory drugs. J Rheumatol Suppl. 1998;5117-20.
- 1601. Desai J, Sanyal S, Goo T, et al. Primary prevention of adverse gastroduodenal effects from short-term use of non-steroidal anti-inflammatory drugs by omeprazole 20 mg in healthy subjects: a randomized, double-blind, placebo-controlled study. *Digestive Dis Sci.* 2008;53(8):2059-65.
- 1602. Goldstein J, Cryer B, Amer F, Hunt B. Celecoxib plus aspirin versus naproxen and lansoprazole plus aspirin: a randomized, double-blind, endoscopic trial. *Clin Gastroenterology Hepatology*. 2007;5(10):1167-74.
- 1603. Hawkey C, Weinstein W, Stricker K, et al. Clinical trial: comparison of the gastrointestinal safety of lumiracoxib with traditional nonselective nonsteroidal antiinflammatory drugs early after the initiation of treatment–findings from the Therapeutic Arthritis Research and Gastrointestinal Event Trial. *Alimentary pharmacology & therapeutics*. 2008;27(9):838-45.
- 1604. Lazzaroni M, Bianchi Porro G. Non-steroidal anti-inflammatory drug gastropathy: clinical results with H2 antagonists and proton pump inhibitors. *Ital J Gastroenterol Hepatol*. 1999;31 Suppl 1S73-8.
- 1605. Lazzaroni M, Porro GB. Management of NSAID-Induced Gastrointestinal Toxicity. Drugs. 2009;69(1):51-69.
- 1606. Niwa Y, Nakamura M, Ohmiya N, et al. Efficacy of rebamipide for diclofenac-induced small-intestinal mucosal injuries in healthy subjects: a prospective, randomized, double-blinded, placebo-controlled, cross-over study. *J Gastroenterology*. 2008;43(4):270-6.
- 1607. Bianchi Porro G. Peptic ulcer therapy with cimetidine versus tripotassium dicitrato bismuthate in rheumatoid arthritis patients undergoing chronic NSAID treatment. *Alimentary Pharmacology Thera*. 1998;12(4):343-7.
- 1608. Yeomans N, Lanas A, Labenz J, et al. Efficacy of esomeprazole (20 mg once daily) for reducing the risk of gastroduodenal ulcers associated with continuous use of lowdose aspirin. *Am J Gastroenterology*. 2008;103(10):2465-73.
- 1609. Levi F, Louarn CL, Reinberg A. Timing optimizes sustained-release indomethacin treatment of osteoarthritis. Clinical Pharmacology & Therapeutics. 1985;37(1):77-84.
- 1610. Stengaard-Pedersen K, Ekesbo R, Karvonen A-L, Lyster M. Celecoxib 200 mg qd is efficacious in the management of osteoarthritis of the knee or hip regardless of the time of dosing. *Rheumatology*. 2004;43(5):592-5.
- 1611. Graham DY, Agrawal NM, Campbell DR, et al. Ulcer prevention in long-term users of nonsteroidal anti-inflammatory drugs: results of a double-blind, randomized, multicenter, active-and placebo-controlled study of misoprostol vs lansoprazole. *Archives of Internal Medicine*. 2002;162(2):169-75.
- 1612. Antman E, Bennett J, Daugherty A, Furberg C, Roberts H, Taubert KA. Use of nonsteroidal antiinflammatory drugs an update for clinicians: a scientific statement from the American Heart Association. *Circulation*. 2007;115(12):1634-42.
- 1613. Towheed T. Pennsaid therapy for osteoarthritis of the knee: a systematic review and metaanalysis of randomized controlled trials. J Rheumatol. 2006;33(3):567-73.
- 1614. Pope JE, Prashker M, Anderson J. The efficacy and cost effectiveness of N of 1 studies with diclofenac compared to standard treatment with nonsteroidal antiinflammatory drugs in osteoarthritis. *J Rheumatol*. 2004;31(1):140-9.
- 1615. Grifka JK, Zacher J, Brown JP, et al. Efficacy and tolerability of lumiracoxib versus placebo in patients with osteoarthritis of the hand. *Clin Exp Rheumatol*. 2004;22(5):589-96.

- 1616. Barthel HR, Peniston JH, Clark MB, Gold MS, Altman RD. Correlation of pain relief with physical function in hand osteoarthritis: randomized controlled trial post hoc analysis. *Arthritis Res Ther.* 2010;12(1):R7.
- 1617. Smith AS, Dore CJ, Dennis L, Julius A, Mackworth-Young CG. A randomised controlled trial of subcutaneous sodium salicylate therapy for osteoarthritis of the thumb. *Postgrad Med J*. 2010;86(1016):341-5.
- 1618. Widrig R, Suter A, Saller R, Melzer J. Choosing between NSAID and arnica for topical treatment of hand osteoarthritis in a randomised, double-blind study. *Rheumatol Int*. 2007;27(6):585-91.
- 1619. Gabay C, Medinger-Sadowski C, Gascon D, Kolo F, Finckh A. Symptomatic effects of chondroitin 4 and chondroitin 6 sulfate on hand osteoarthritis: a randomized, double-blind, placebo-controlled clinical trial at a single center. *Arthritis Rheum*. 2011;63(11):3383-91.
- 1620. Rothacker D, Difigilo C, Lee I. A clinical trial of topical 10% trolamine salicylate in osteoarthritis. Curr Ther Res. 1994;55(5):584-97.
- 1621. Rothacker DQ, Lee I, Littlejohn TW, 3rd. Effectiveness of a single topical application of 10|x% trolamine salicylate cream in the symptomatic treatment of osteoarthritis. *J Clin Rheumatol*. 1998;4(1):6-12.
- 1622. Zacher J, Altman R, Bellamy N, et al. Topical diclofenac and its role in pain and inflammation: an evidence-based review. Curr Med Res Opin. 2008;24(4):925-50.
- 1623. Altman RD, Dreiser RL, Fisher CL, Chase WF, Dreher DS, Zacher J. Diclofenac sodium gel in patients with primary hand osteoarthritis: a randomized, double-blind, placebo-controlled trial. *J Rheumatol*. 2009;36(9):1991-9.
- 1624. McCarthy GM, McCarty DJ. Effect of topical capsaicin in the therapy of painful osteoarthritis of the hands. J Rheumatol. 1992;19(4):604-7.
- 1625. Schnitzer T, Morton C, Coker S. Topical capsaicin therapy for osteoarthritis pain: Achieving a maintenance regimen. *Seminars in Arthritis and Rheumatism*. 1994;23(6, Supplement 3):34-40.
- 1626. Garfinkel MS, Schumacher HR, Jr., Husain A, Levy M, Reshetar RA. Evaluation of a yoga based regimen for treatment of osteoarthritis of the hands. *J Rheumatol*. 1994;21(12):2341-3.
- 1627. Rovetta G, Monteforte P, Molfetta G, Balestra V. Chondroitin sulfate in erosive osteoarthritis of the hands. Int J Tissue React. 2002;24(1):29-32.
- 1628. Randall C, Randall H, Dobbs F, Hutton C, Sanders H. Randomized controlled trial of nettle sting for treatment of base-of-thumb pain. J R Soc Med. 2000;93(6):305-9.
- 1629. Reeves KD, Hassanein K. Randomized, prospective, placebo-controlled double-blind study of dextrose prolotherapy for osteoarthritic thumb and finger (DIP, PIP, and trapeziometacarpal) joints: evidence of clinical efficacy. *J Altern Complement Med.* 2000;6(4):311-20.
- 1630. Shin K, Kim JW, Moon KW, et al. The efficacy of diacerein in hand osteoarthritis: a double-blind, randomized, placebo-controlled study. Clin Ther. 2013;35(4):431-9.
- 1631. Mathieux R, Marotte H, Battistini L, Sarrazin A, Berthier M, Miossec P. Early occupational therapy programme increases hand grip strength at 3 months: results from a randomised, blind, controlled study in early rheumatoid arthritis. *Ann Rheum Dis*. 2009;68(3):400-3.
- 1632. Verbruggen G, Goemaere S, Veys EM. Systems to assess the progression of finger joint osteoarthritis and the effects of disease modifying osteoarthritis drugs. *Clin Rheumatol*. 2002;21(3):231-43.
- 1633. Bellamy N, Campbell J, Haraoui B, et al. Dimensionality and clinical importance of pain and disability in hand osteoarthritis: Development of the Australian/Canadian (AUSCAN) Osteoarthritis Hand Index. *Osteoarthritis and Cartilage*. 2002;10(11):855-62.
- 1634. Bellamy N, Campbell J, Haraoui B, et al. Clinimetric properties of the AUSCAN Osteoarthritis Hand Index: an evaluation of reliability, validity and responsiveness. Osteoarthritis and Cartilage. 2002;10(11):863-9.
- 1635. Brosseau L, Robinson V, Wells G, et al. Low level laser therapy (Classes I, II and III) for treating osteoarthritis. The Cochrane Library. 2004.
- 1636. Brosseau L, Wells G, Marchand S, et al. Randomized controlled trial on low level laser therapy (LLLT) in the treatment of osteoarthritis (OA) of the hand. *Lasers Surg Med.* 2005;36(3):210-9.
- 1637. Day R, Brooks P, Conaghan P, Petersen M. A double blind, randomized, multicenter, parallel group study of the effectiveness and tolerance of intraarticular hyaluronan in osteoarthritis of the knee. *J Rheumatol*. 2004;31(4):775-82.
- 1638. Fuchs S, Mönikes R, Wohlmeiner A, Heyse T. Intra-articular hyaluronic acid compared with corticoid injections for the treatment of rhizarthrosis. *Osteoarthritis and Cartilage*. 2006;14(1):82-8.

- 1639. Heyworth BE, Lee JH, Kim PD, Lipton CB, Strauch RJ, Rosenwasser MP. Hylan versus corticosteroid versus placebo for treatment of basal joint arthritis: a prospective, randomized, double-blinded clinical trial. *J Hand Surg [Am]*. 2008;33(1):40-8.
- 1640. Jalava S, Saario R. Treatment of finger joints with local steroids. A double-blind study. Scand J Rheumatol. 1983;12(1):12-4.
- 1641. Meenagh GK, Patton J, Kynes C, Wright GD. A randomised controlled trial of intra-articular corticosteroid injection of the carpometacarpal joint of the thumb in osteoarthritis. *Ann Rheum Dis.* 2004;63(10):1260-3.
- 1642. Roux C, Fontas E, Breuil V, Brocq O, Albert C, Euller-Ziegler L. Injection of intra-articular sodium hyaluronidate (Sinovial®) into the carpometacarpal joint of the thumb (CMC1) in osteoarthritis. A prospective evaluation of efficacy. *Joint Bone Spine*. 2007;74(4):368-72.
- 1643. Stahl S, Karsh-Zafrir I, Ratzon N, Rosenberg N. Comparison of intraarticular injection of depot corticosteroid and hyaluronic acid for treatment of degenerative trapeziometacarpal joints. *J Clin Rheumatol*. 2005;11(6):299-302.
- 1644. Stolzer BL, Eisenbeis CH, Jr., Barr JH, Jr., Crittenden JO, Margolis HM. Intra-articular injections of adrenocorticosteroids in patients with arthritis. Pa Med J. 1962;6511-4.
- 1645. Wollstein R, Chaimsky G, Carlson L, Watson HK, Wollstein G, Saleh J. Evaluating short-term pain after steroid injection. Am J Orthop. 2007;36(3):128-31.
- 1646. Wenham CY, Hensor EM, Grainger AJ, et al. A randomized, double-blind, placebo-controlled trial of low-dose oral prednisolone for treating painful hand osteoarthritis. *Rheumatology (Oxford)*. 2012;51(12):2286-94.
- 1647. Bahadir C, Onal B, Dayan VY, Gurer N. Comparison of therapeutic effects of sodium hyaluronate and corticosteroid injections on trapeziometacarpal joint osteoarthritis. *Clin Rheumatol.* 2009;28(5):529-33.
- 1648. Figen Ayhan F, Ustun N. The evaluation of efficacy and tolerability of Hylan G-F 20 in bilateral thumb base osteoarthritis: 6 months follow-up. *Clin Rheumatol*. 2009;28(5):535-41.
- 1649. Monfort J, Rotes-Sala D, Segales N, et al. Comparative efficacy of intra-articular hyaluronic acid and corticoid injections in osteoarthritis of the first carpometacarpal joint: results of a 6-month single-masked randomized study. *Joint Bone Spine*. 2015;82(2):116-21.
- 1650. Spolidoro Paschoal Nde O, Natour J, Machado F, de Oliveira H, Furtado R. Effectiveness of Triamcinolone Hexacetonide Intraarticular Injection in Interphalangeal Joints: A 12-week Randomized Controlled Trial in Patients with Hand Osteoarthritis. *J Rheumatol*. 2015;42(10):1869-77.
- 1651. Jahangiri A, Moghaddam FR, Najafi S. Hypertonic dextrose versus corticosteroid local injection for the treatment of osteoarthritis in the first carpometacarpal joint: a double-blind randomized clinical trial. *J Orthop Sci.* 2014;19(5):737-43.
- 1652. Atroshi I, Axelsson G, Nilsson E-L. Osteotomy versus tendon arthroplasty in trapeziometacarpal arthrosis 17 patients followed for 1 year. Acta Orthop. 1998;69(3):287-90.
- 1653. Belcher HJ, Nicholl JE. A comparison of trapeziectomy with and without ligament reconstruction and tendon interposition. J Hand Surg [Br]. 2000;25(4):350-6.
- 1654. Davis T, Brady O, Barton N, Lunn P, Burke F. Trapeziectomy Alone, with Tendon Interposition or with Ligament Reconstruction? A randomized prospetive study. *Journal of Hand Surgery (British and European Volume)*. 1997;22(6):689-94.
- 1655. Field J, Buchanan D. To suspend or not to suspend: a randomised single blind trial of simple trapeziectomy versus trapeziectomy and flexor carpi radialis suspension. J Hand Surg Eur Vol. 2007;32(4):462-6.
- 1656. Gibbons C, Gosal H, Choudri A, Magnussen P. Trapeziectomy for basal thumb joint osteoarthritis: 3-to 19-year follow-up. Int Orthop. 1999;23(4):216-8.
- 1657. Horlock N, Belcher HJ. Early versus late mobilisation after simple excision of the trapezium. J Bone Joint Surg Br. 2002;84(8):1111-5.
- 1658. Manske PR. Commentary: Excision of the trapezium. J Hand Surg Am. 2004;29(6):1078-9.
- 1659. Nilsson A, Liljensten E, Bergström C, Sollerman C. Results from a degradable TMC joint spacer (Artelon) compared with tendon arthroplasty. *J Hand Surg Am*. 2005;30(2):380-9.
- 1660. Tagil M, Kopylov P. Swanson versus APL arthroplasty in the treatment of osteoarthritis of the trapeziometacarpal joint: a prospective and randomized study in 26 patients. *J Hand Surg [Br]*. 2002;27(5):452-6.
- 1661. Wajon A, Ada L, Edmunds I. Surgery for thumb (trapeziometacarpal joint) osteoarthritis. Cochrane Database Syst Rev. 2005(4):CD004631.
- 1662. De Smet L, Sioen W, Spaepen D, van Ransbeeck H. Treatment of basal joint arthritis of the thumb: trapeziectomy with or without tendon interposition/ligament reconstruction. *Hand Surg.* 2004;9:5-9.

- 1663. De Smet L, Vanfleteren L, Sioen W, Spaepen D, Van Ransbeeck H. Ligament reconstruction/tendon interposition arthroplasty for thumb basal joint osteoarthritis preliminary results of a prospective outcome study. *Acta Orthop Belg.* 2002;68(1):20-3.
- 1664. Vandenbroucke J, De Schrijver F, De Smet L, Fabry G. Simple trapezectomy for treatment of trapeziometacarpal osteoarthritis of the thumb. *Clin Rheumatol*. 1997;16(3):239-42.
- 1665. Young BT, Rayan GM. Arthroplasty for trapeziometacarpal arthrosis. J Okla State Med Assoc. 1998;91(2):53-9.
- 1666. Chung KC, Burns PB, Wilgis EF, et al. A multicenter clinical trial in rheumatoid arthritis comparing silicone metacarpophalangeal joint arthroplasty with medical treatment. *J Hand Surg Am.* 2009;34(5):815-23.
- 1667. Kenniston J, Bozentka D. Treatment of advanced carpometacarpal joint disease: arthrodesis. Hand Clin. 2008;24(3):285-94.
- 1668. Pettersson K, Wagnsjo P, Hulin E. Replacement of proximal interphalangeal joints with new ceramic arthroplasty: a prospective series of 20 proximal interphalangeal joint replacements. *Scand J Plast Reconstr Surg Hand Surg*. 2006;40(5):291-6.
- 1669. Davis T, Pace A. Trapeziectomy for trapeziometacarpal joint osteoarthritis: is ligament reconstruction and temporary stabilisation of the pseudarthrosis with a Kirschner wire important? *Journal of Hand Surgery (European Volume)*. 2009;34(3):312-21.
- 1670. Davis TR, Brady O, Dias JJ. Excision of the trapezium for osteoarthritis of the trapeziometacarpal joint: a study of the benefit of ligament reconstruction or tendon interposition. *J Hand Surg [Am]*. 2004;29(6):1069-77.
- 1671. Delaney R, Trail IA, Nuttall D. A comparative study of outcome between the Neuflex and Swanson metacarpophalangeal joint replacements. *J Hand Surg [Br]*. 2005;30(1):3-7.
- 1672. McArthur P, Milner R. A prospective randomized comparison of Sutter and Swanson silastic spacers. *Journal of Hand Surgery (British and European Volume)*. 1998;23(5):574-7.
- 1673. Moller K, Sollerman C, Geijer M, Kopylov P, Tagil M. Avanta versus Swanson silicone implants in the MCP joint--a prospective, randomized comparison of 30 patients followed for 2 years. *J Hand Surg [Br]*. 2005;30(1):8-13.
- 1674. Sollerman C, Geijer M. Polyurethane versus silicons for endoprosthetic replacement of the metacarpophalangeal joints in rheumatoid arthritis. *Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery*. 1996;30(2):145-50.
- 1675. Kriegs-Au G, Petje G, Fojtl E, Ganger R, Zachs I. Ligament reconstruction with or without tendon interposition to treat primary thumb carpometacarpal osteoarthritis. A prospective randomized study. *J Bone Joint Surg Am.* 2004;86-A(2):209-18.
- 1676. Ulrich-Vinther M, Puggaard H, Lange B. Prospective 1-year follow-up study comparing joint prosthesis with tendon interposition arthroplasty in treatment of trapeziometacarpal osteoarthritis. *J Hand Surg [Am]*. 2008;33(8):1369-77.
- 1677. Prosser R, Hancock MJ, Nicholson L, Merry C, Thorley F, Wheen D. Rigid versus semi-rigid orthotic use following TMC arthroplasty: a randomized controlled trial. *J* Hand Ther. 2014;27(4):265-70; quiz 71.
- 1678. Blair WF, Steyers CM. Extensor tendon injuries. Orthop Clin North Am. 1992;23(1):141-8.
- 1679. Bury TF, Akelman E, Weiss AP. Prospective, randomized trial of splinting after carpal tunnel release. Ann Plast Surg. 1995;35(1):19-22.
- 1680. Martins RS, Siqueira MG, Simplicio H. Wrist immobilization after carpal tunnel release: a prospective study. Arq Neuropsiquiatr. 2006;64(3A):596-9.
- 1681. Cook AC, Szabo RM, Birkholz SW, King EF. Early mobilization following carpal tunnel release. A prospective randomized study. J Hand Surg [Br]. 1995;20(2):228-30.
- 1682. Crowley TP, Stevenson S, Taghizadeh R, Addison P, Milner RH. Early active mobilization following UCL repair With Mitek bone anchor. *Tech Hand Up Extrem Surg.* 2013;17(3):124-7.
- 1683. Germann G, Wagner H, Blome-Eberwein S, Karle B, Wittemann M. Early dynamic motion versus postoperative immobilization in patients with extensor indicis proprius transfer to restore thumb extension: a prospective randomized study. *J Hand Surg Am*. 2001;26(6):1111-5.
- 1684. Hermann M, Nilsen T, Eriksen CS, Slatkowsky-Christensen B, Haugen IK, Kjeken I. Effects of a soft prefabricated thumb orthosis in carpometacarpal osteoarthritis. *Scand J Occup Ther*. 2014;21(1):31-9.

- 1685. Jerosch-Herold C, Shepstone L, Chojnowski AJ, Larson D, Barrett E, Vaughan SP. Night-time splinting after fasciectomy or dermo-fasciectomy for Dupuytren's contracture: a pragmatic, multi-centre, randomised controlled trial. *BMC Musculoskelet Disord*. 2011;12136.
- 1686. Sillem H, Backman CL, Miller WC, Li LC. Comparison of two carpometacarpal stabilizing splints for individuals with thumb osteoarthritis. *J Hand Ther*. 2011;24(3):216-25; quiz 126; discussion 227-30.
- 1687. Rocchi L, Merolli A, Morini A, Monteleone G, Foti C. A modified spica-splint in postoperative early-motion management of skier's thumb lesion: a randomized clinical trial. *Eur J Phys Rehabil Med.* 2014;50(1):49-57.
- 1688. Sen S, Ugur B, Aydin ON, Ogurlu M, Gezer E, Savk O. The analgesic effect of lornoxicam when added to lidocaine for intravenous regional anaesthesia. *Br J Anaesth*. 2006;97(3):408-13.
- 1689. Ashworth HL, Ong C, Seed PT, Venn PJ. The influence of timing and route of administration of intravenous ketorolac on analgesia after hand surgery. *Anaesthesia*. 2002;57(6):535-9.
- 1690. Cornesse D, Senard M, Hans GA, et al. Comparison between two intraoperative intravenous loading doses of paracetamol on pain after minor hand surgery: two grams versus one gram. *Acta Chir Belg.* 2010;110(5):529-32.
- 1691. Jankovic RJ, Visnjic MM, Milic DJ, Stojanovic MP, Djordjevic DR, Pavlovic MS. Does the addition of ketorolac and dexamethasone to lidocaine intravenous regional anesthesia improve postoperative analgesia and tourniquet tolerance for ambulatory hand surgery? *Minerva Anestesiol*. 2008;74(10):521-7.
- 1692. Reuben SS, Steinberg RB, Kreitzer JM, Duprat KM. Intravenous regional anesthesia using lidocaine and ketorolac. Anesth Analg. 1995;81(1):110-3.
- 1693. Rawal N, Allvin R, Amilon A, Ohlsson T, Hallen J. Postoperative analgesia at home after ambulatory hand surgery: a controlled comparison of tramadol, metamizol, and paracetamol. *Anesth Analg.* 2001;92(2):347-51.
- 1694. Sai S, Fujii K, Hiranuma K, Sato T, Nemoto T. Preoperative ampiroxicam reduces postoperative pain after hand surgery. J Hand Surg Br. 2001;26(4):377-9.
- 1695. Spagnoli AM, Rizzo MI, Palmieri A, Sorvillo V, Quadrini L, Scuderi N. A single blind controlled comparison of tramadol/paracetamol combination and paracetamol in hand and foot surgery. A prospective study. *In Vivo*. 2011;25(2):291-5.
- 1696. Jeffrey SL, Belcher HJ. Use of Arnica to relieve pain after carpal-tunnel release surgery. Altern Ther Health Med. 2002;8(2):66-8.
- 1697. Hochberg J. A randomized prospective study to assess the efficacy of two cold-therapy treatments following carpal tunnel release. J Hand Ther. 2001;14(3):208-15.
- 1698. Pomerance J, Fine I. Outcomes of carpal tunnel surgery with and without supervised postoperative therapy. J Hand Surg Am. 2007;32(8):1159-63.
- 1699. Dilek B, Gozum M, Sahin E, et al. Efficacy of paraffin bath therapy in hand osteoarthritis: a single-blinded randomized controlled trial. *Arch Phys Med Rehabil*. 2013;94(4):642-9.
- 1700. Field T, Diego M, Delgado J, Garcia D, Funk CG. Hand pain is reduced by massage therapy. Complement Ther Clin Pract. 2011;17(4):226-9.
- 1701. Giessler GA, Przybilski M, Germann G, Sauerbier M, Megerle K. Early free active versus dynamic extension splinting after extensor indicis proprius tendon transfer to restore thumb extension: a prospective randomized study. *J Hand Surg Am.* 2008;33(6):864-8.
- 1702. Guzelkucuk U, Duman I, Taskaynatan MA, Dincer K. Comparison of therapeutic activities with therapeutic exercises in the rehabilitation of young adult patients with hand injuries. *J Hand Surg Am*. 2007;32(9):1429-35.
- 1703. Krischak GD, Krasteva A, Schneider F, Gulkin D, Gebhard F, Kramer M. Physiotherapy after volar plating of wrist fractures is effective using a home exercise program. *Arch Phys Med Rehabil*. 2009;90(4):537-44.
- 1704. Mitsukane M, Sekiya N, Himei S, Oyama K. Immediate effects of repetitive wrist extension on grip strength in patients with distal radial fracture. *Arch Phys Med Rehabil*. 2015;96(5):862-8.
- 1705. Rath S, Selles RW, Schreuders TA, Stam HJ, Hovius SE. A randomized clinical trial comparing immediate active motion with immobilization after tendon transfer for claw deformity. *J Hand Surg Am*. 2009;34(3):488-94, 94 e1-5.
- 1706. Rostami HR, Arefi A, Tabatabaei S. Effect of mirror therapy on hand function in patients with hand orthopaedic injuries: a randomized controlled trial. *Disabil Rehabil*. 2013;35(19):1647-51.

- 1707. Souer JS, Buijze G, Ring D. A prospective randomized controlled trial comparing occupational therapy with independent exercises after volar plate fixation of a fracture of the distal part of the radius. *J Bone Joint Surg Am.* 2011;93(19):1761-6.
- 1708. Atherton WG, Faraj AA, Riddick AC, Davis TR. Follow-up after carpal tunnel decompression general practitioner surgery or hand clinic? A randomized prospective study. *J Hand Surg [Br]*. 1999;24(3):296-7.
- 1709. Rasotto C, Bergamin M, Simonetti A, et al. Tailored exercise program reduces symptoms of upper limb work-related musculoskeletal disorders in a group of metalworkers: A randomized controlled trial. *Man Ther*. 2015;20(1):56-62.
- 1710. Naik V, Chitra J, Khatri S. Effectiveness of Maitland versus Mulligan mobilization technique following post surgical management of Colles' fracture RCT. *Indian J Physiother Occup Ther.* 2007;1(4).
- 1711. Taylor N, Bennell K. The effectiveness of passive joint mobilisation on the return of active wrist extension following Colles' fracture: a clinical trial. *New Zealand J Phsysiother*. 199424-8.
- 1712. Freshwater M. Chapter 90: Dupuytren's Disease. Thorne CH Grabb and Smith's Plastic Surgery, Sixth Edition: Lippincott Williams & Wilkins; 2007.
- 1713. Brenner P, Mailänder P, Berger A. Epidemiology of Dupuytren's disease. Dupuytren's disease: Springer; 1994:244-54.
- 1714. Early P. Population studies in Dupuytren's contracture. Journal of Bone & Joint Surgery, British Volume. 1962;44(3):602-13.
- 1715. Rafter D, Kenny R, Gilmore M, Walsh C. Dupuytren's contracture--a survey of a hospital population. Irish medical journal. 1980;73(6):227-8.
- 1716. Ross DC. Epidemiology of Dupuytren's disease. Hand Clin. 1999;15(1):53-62, vi.
- 1717. Strickland JW, Idler RS, Creighton JC. Dupuytren's disease. Indiana Med. 1990;83(6):408-9.
- 1718. Ullah AS, Dias JJ, Bhowal B. Does a 'firebreak' full-thickness skin graft prevent recurrence after surgery for Dupuytren's contracture?: a prospective, randomised trial. J Bone Joint Surg Br. 2009;91(3):374-8.
- 1719. van Rijssen AL, Gerbrandy FS, Ter Linden H, Klip H, Werker PM. A comparison of the direct outcomes of percutaneous needle fasciotomy and limited fasciectomy for Dupuytren's disease: a 6-week follow-up study. *J Hand Surg Am*. 2006;31(5):717-25.
- 1720. Bulstrode NW, Bisson M, Jemec B, Pratt AL, McGrouther DA, Grobbelaar AO. A prospective randomised clinical trial of the intra-operative use of 5-fluorouracil on the outcome of dupuytren's disease. *J Hand Surg Br.* 2004;29(1):18-21.
- 1721. Lucas G, Brichet A, Roquelaure Y, Leclerc A, Descatha A. Dupuytren's disease: personal factors and occupational exposure. Am J Ind Med. 2008;51(1):9-15.
- 1722. Hurst LC, Badalamente MA. Nonoperative treatment of Dupuytren's disease. Hand Clin. 1999;15(1):97-107, vii.
- 1723. Seegenschmiedt MH, Olschewski T, Guntrum F. Radiotherapy optimization in early-stage Dupuytren's contracture: first results of a randomized clinical study. *Int J Radiat Oncol Biol Phys.* 2001;49(3):785-98.
- 1724. Badalamente MA, Hurst LC. Efficacy and safety of injectable mixed collagenase subtypes in the treatment of Dupuytren's contracture. J Hand Surg Am. 2007;32(6):767-74.
- 1725. Badalamente MA, Hurst LC, Hentz VR. Collagen as a clinical target: nonoperative treatment of Dupuytren's disease. J Hand Surg Am. 2002;27(5):788-98.
- 1726. Witthaut J, Bushmakin AG, Gerber RA, Cappelleri JC, Le Graverand-Gastineau MP. Determining clinically important changes in range of motion in patients with Dupuytren's Contracture: secondary analysis of the randomized, double-blind, placebo-controlled CORD I study. *Clin Drug Investig.* 2011;31(11):791-8.
- 1727. Gilpin D, Coleman S, Hall S, Houston A, Karrasch J, Jones N. Injectable collagenase Clostridium histolyticum: a new nonsurgical treatment for Dupuytren's disease. J Hand Surg Am. 2010;35(12):2027-38 e1.
- 1728. Hurst LC, Badalamente MA, Hentz VR, et al. Injectable collagenase clostridium histolyticum for Dupuytren's contracture. N Engl J Med. 2009;361(10):968-79.
- 1729. Mickelson DT, Noland SS, Watt AJ, Kollitz KM, Vedder NB, Huang JI. Prospective randomized controlled trial comparing 1- versus 7-day manipulation following collagenase injection for dupuytren contracture. *J Hand Surg Am*. 2014;39(10):1933-41 e1.
- 1730. U.S. Food and Drug Administration. Joint Meeting of the Drug Safety and Risk Management Advisory Committee with the Anesthetic and Life Support Drugs Advisory Committee and the Nonprescription Drugs Advisory Committee 2009.
- 1731. Citron ND, Nunez V. Recurrence after surgery for Dupuytren's disease: a randomized trial of two skin incisions. J Hand Surg Br. 2005;30(6):563-6.

- 1732. Mäkelä E, Jaroma H, Harju A, Anttila S, Vainio J. Dupuytren's contracture: the long-term results after day surgery. *The Journal of Hand Surgery: British & European Volume*. 1991;16(3):272-4.
- 1733. Rodrigo J, Niebauer J, Brown R, Doyle J. Treatment of Dupuytren's contracture. Long-term results after fasciotomy and fascial excision. *The Journal of Bone & Joint Surgery*. 1976;58(3):380-7.
- 1734. Tonkin M, Burke F, Varian J. Dupuytren's contracture: a comparative study of fasciectomy and dermofasciectomy in one hundred patients. *Journal of Hand Surgery* (*British and European Volume*). 1984;9(2):156-62.
- 1735. Bhatia R, Blackshaw G, Barr V, Savage R. Comparative study of "staples versus sutures" in skin closure following Dupuytren's surgery. J Hand Surg Br. 2002;27(1):53-4.
- 1736. Kan HJ, Selles RW, van Nieuwenhoven CA, Zhou C, Khouri RK, Hovius SE. Percutaneous Aponeurotomy and Lipofilling (PALF) versus Limited Fasciectomy in Patients with Primary Dupuytren's Contracture: A Prospective, Randomized, Controlled Trial. *Plast Reconstr Surg.* 2016;137(6):1800-12.
- 1737. Kemler MA, Houpt P, van der Horst CM. A pilot study assessing the effectiveness of postoperative splinting after limited fasciectomy for Dupuytren's disease. *J Hand Surg Eur Vol.* 2012;37(8):733-7.
- 1738. McGrouther DA, Jenkins A, Brown S, Gerber RA, Szczypa P, Cohen B. The efficacy and safety of collagenase clostridium histolyticum in the treatment of patients with moderate Dupuytren's contracture. *Curr Med Res Opin.* 2014;30(4):733-9.
- 1739. van Rijssen AL, Werker PM. Percutaneous needle fasciotomy for recurrent Dupuytren disease. J Hand Surg Am. 2012;37(9):1820-3.
- 1740. Harris JS, Sinnott PL, Holland JP, et al. Methodology to update the practice recommendations in the American College of Occupational and Environmental Medicine's Occupational Medicine Practice Guidelines. *Journal of Occupational and Environmental Medicine*. 2008;50(3):282-95.